File: onetime.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (99 lines) | stat: -rw-r--r-- 2,570 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

(** {2 One-time integers}

  This module implements the idea described in this paper:
  {h <a href="https://hal.inria.fr/hal-01162661">
     How to avoid proving the absence of integer overflows</a>}

  When extracted to OCaml, the following type `OneTime.t` will be mapped to
  OCaml's type `int` (63-bit signed integers).

  See also `mach.peano`.
*)

module OneTime

  use int.Int

  type t = abstract { v: int; mutable valid: bool }
  meta coercion function v

  val to_int (x: t) : int
    ensures { result = x.v }

  val zero (): t
    ensures { result.valid }
    ensures { result.v = 0 }

  val one () : t
    ensures { result.valid }
    ensures { result.v = 1 }

  val succ (x: t) : t
    requires { x.valid }
    writes   { x.valid }
    ensures  { result.valid /\ not x.valid }
    ensures  { result.v = x.v + 1 }

  val pred (x: t) : t
    requires { x.valid }
    writes   { x.valid }
    ensures  { result.valid /\ not x.valid }
    ensures  { result.v = x.v - 1 }

  val lt (x y: t) : bool
    ensures { result <-> x.v < y.v }
  val le (x y: t) : bool
    ensures { result <-> x.v <= y.v }
  val gt (x y: t) : bool
    ensures { result <-> x.v > y.v }
  val ge (x y: t) : bool
    ensures { result <-> x.v >= y.v }
  val eq (x y: t) : bool
    ensures { result <-> x.v = y.v }
  val ne (x y: t) : bool
    ensures { result <-> x.v <> y.v }

  use mach.peano.Peano as P

  val to_peano (x: t) : P.t
    ensures { result.P.v = x.v }

  val transfer (x: t) : t
    requires { x.valid }
    writes   { x.valid }
    ensures  { result.valid /\ not x.valid }
    ensures  { result.v = x.v }

  val neg (x: t) : t
    requires { x.valid }
    writes   { x.valid }
    ensures  { result.valid /\ not x.valid }
    ensures  { result.v = - x.v }

  val abs (x: t) : t
    requires { x.valid }
    writes   { x.valid }
    ensures  { result.valid /\ not x.valid }
    ensures  { result.v = if x.v >= 0 then x.v else - x.v }

  val add (x y: t) : t
    requires { x.valid /\ y.valid }
    writes   { x.valid, y.valid }
    ensures  { result.valid /\ not x.valid /\ not y.valid }
    ensures  { result.v = x.v + y.v }

  val sub (x y: t) : t
    requires { x.valid /\ y.valid }
    writes   { x.valid, y.valid }
    ensures  { result.valid /\ not x.valid /\ not y.valid }
    ensures  { result.v = x.v - y.v }

  val split (x: t) (p: P.t) : (t, t)
    requires { x.valid }
    requires { 0 <= p.P.v <= x.v \/ x.v <= p.P.v <= 0 }
    writes   { x.valid }
    ensures  { not x.valid }
    returns  { a, b -> a.valid /\ b.valid /\ a.v = x.v - b.v /\ b.v = p.P.v }

end