1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
(** {1 Tag Sets}
Tag sets are finite sets with a tag function that maps each element to
a unique integer. They also feature the ability to iterate over the elements.
*)
(** {2 Interface for the keys}
The equality of the `tag` values must imply the equality of the
corresponding elements.
*)
module S
use int.Int
use mach.int.Int63 as Int63
type key
val constant dummy: key
val function tag (k:key): Int63.int63
ensures { k<>dummy -> 0 <= result < Int63.max_int63 }
axiom tag_correct: forall x y. tag x = tag y -> x = y
end
(** {2 Interface of a TagSet} *)
module TagSetIntf
use int.Int
use import mach.int.Int63 as Int63
use map.Map
use map.Const
use set.Fset as S
use list.List
use list.Mem as LMem
use import mach.array.Array63 as Array
use seq.Seq as Seq
use bool.Bool
use mach.peano.Peano as Peano
use mach.peano.Int63 as PeanoInt63
use ref.Ref
clone import S as S with axiom tag_correct
type iteration_state = mutable { }
type t = abstract {
mutable elts: S.fset key;
mutable iterated: iteration_state;
}
invariant { not (S.mem S.dummy elts) }
by {
elts = S.empty;
iterated = any iteration_state;
}
val create () : t
ensures { result.elts = S.empty }
val function mem (k: key) (h: t) : bool
requires { k <> S.dummy }
ensures { result = S.mem k h.elts }
val function max_tags (h: t) : Int63.int63
ensures { forall v. S.mem v h.elts -> tag v <= result }
ensures { -1 <= result < Int63.max_int63 }
val add (h: t) (k: key): unit
requires { k <> S.dummy }
ensures { h.elts = S.add k (old h.elts) }
writes { h.elts, h.iterated }
val remove (h: t) (k: key): unit
requires { k <> S.dummy }
ensures { h.elts = S.remove k (old h.elts) }
writes { h.elts, h.iterated }
type iterator = abstract {
iterating: iteration_state;
mutable seen: S.fset key;
mutable todo: S.fset key;
all: S.fset key;
}
invariant { S.(union seen todo == all) }
invariant { S.(inter seen todo == S.empty) }
by {
iterating = any iteration_state;
seen = S.empty;
todo = S.empty;
all = S.empty
}
scope Iterator
val create (h:t) : iterator
ensures { result.seen = S.empty }
ensures { result.todo = h.elts }
ensures { result.all = h.elts }
alias { result.iterating with h.iterated }
predicate is_empty (i:iterator) = S.is_empty i.todo
val is_empty (i:iterator) : bool
ensures { result = (S.is_empty i.todo) }
val next (i:iterator) : key
requires { not (S.is_empty i.todo) }
writes { i.seen, i.todo }
ensures { S.mem result (old i.todo) }
ensures { i.todo = S.remove result (old i.todo) }
ensures { i.seen = S.add result (old i.seen) }
end
end
(** {2 Implementation of a TagSet} *)
module TagSet
use int.Int
use mach.int.MinMax63
use import mach.int.Int63 as Int63
use set.Fset as S
use import mach.array.Array63 as Array
use seq.Seq
use bool.Bool
use mach.peano.Peano as Peano
use mach.peano.Int63 as PeanoInt63
use ref.Ref
clone import S as S with axiom tag_correct
type iteration_state = mutable {
ghost mutable elts': S.fset key;
mutable value: array key;
}
invariant { not (S.mem S.dummy elts') }
invariant { forall v. S.mem v elts' -> tag v < value.length }
invariant { forall v. S.mem v elts' -> value[tag v] <> S.dummy }
invariant { forall i. 0 <= i < value.length -> value[i] <> S.dummy -> tag (value[i]) = i }
invariant { forall i. 0 <= i < value.length -> value[i] <> S.dummy -> S.mem (value[i]) elts' }
by {
elts' = S.empty;
value = Array.make 0 (any key);
}
type t = {
ghost mutable elts: S.fset key;
mutable iterated: iteration_state;
}
invariant { elts = iterated.elts' }
by { elts = S.empty; iterated = { elts' = S.empty; value = Array.make 0 (any key);} }
let create () : t
ensures { result.elts = S.empty }
=
let iterated = {
elts' = S.empty;
value = Array.make 8 S.dummy;
}
in
{
elts = S.empty;
iterated = iterated;
}
let function mem (k: key) (h: t) : bool
requires { k <> S.dummy }
ensures { result = S.mem k h.elts } =
tag k < Array.length h.iterated.value && Array.(S.tag h.iterated.value[tag k] <> S.tag S.dummy)
let function max_tags (h: t) : Int63.int63
ensures { forall v. S.mem v h.elts -> tag v <= result }
ensures { -1 <= result < Int63.max_int63 } =
Array.(length h.iterated.value) - 1
let resize (h:t) (k:key) : unit
requires { k <> S.dummy }
ensures { tag k < Array.(length h.iterated.value) }
=
let len = tag k + 1 in
let n = Array.length h.iterated.value in
if len > n then begin
let nlen = (max len (2 * (min n (Int63.max_int / 2)))) in
let a = Array.(make nlen S.dummy) in
Array.blit h.iterated.value 0 a 0 n;
h.iterated.value <- a;
end
let add (h: t) (k: key): unit
requires { k <> S.dummy }
ensures { h.elts = S.add k (old h.elts) }
writes { h.elts , h.iterated } =
resize h k;
h.elts <- S.add k h.elts;
h.iterated.elts' <- S.add k h.iterated.elts';
h.iterated.value[tag k] <- k;
if false then
h.iterated <- {
elts' = h.iterated.elts';
value = h.iterated.value;
}
let remove (k: key) (h: t) : unit
requires { k <> S.dummy }
ensures { h.elts = S.remove k h.elts } =
if tag k < Array.length h.iterated.value then begin
h.elts <- S.remove k h.elts;
h.iterated.elts' <- S.remove k h.iterated.elts';
Array.(h.iterated.value[tag k] <- S.dummy);
end;
if false then
h.iterated <- {
elts' = h.iterated.elts';
value = h.iterated.value;
}
type iterator = {
iterating: iteration_state;
ghost mutable seen: S.fset key;
ghost mutable todo: S.fset key;
ghost all: S.fset key;
mutable offset: int63;
}
invariant { S.(==) all (S.union seen todo) }
invariant { all = iterating.elts' }
invariant { 0 <= offset <= Seq.length iterating.value }
invariant { offset < Seq.length iterating.value -> iterating.value[offset] <> S.dummy }
invariant { forall v. S.mem v all -> (0 <= tag v < offset) <-> S.mem v seen }
invariant { forall v. S.mem v all -> (offset <= tag v < Seq.length iterating.value) <-> S.mem v todo }
by {
seen = S.empty;
todo = S.empty;
all = S.empty;
offset = 0;
iterating = {
elts' = S.empty;
value = Array.make 0 (any key);
}
}
scope Iterator
let create (h:t) : iterator
ensures { result.seen = S.empty }
ensures { result.todo = h.elts }
ensures { result.all = h.elts }
alias { result.iterating with h.iterated }
=
let i = ref 0 in
while !i < Array.length h.iterated.value && S.tag Array.(h.iterated.value[!i]) = S.tag S.dummy do
variant { Array.length h.iterated.value - !i }
invariant { 0 <= !i <= Array.length h.iterated.value }
invariant { forall j. 0 <= j < !i -> h.iterated.value[j] = S.dummy }
i := !i + 1
done;
{
iterating = h.iterated;
seen = S.empty;
todo = h.elts;
all = h.elts;
offset = !i;
}
predicate is_empty (i:iterator) = S.is_empty i.todo
let is_empty (i:iterator) : bool
ensures { result = (S.is_empty i.todo) } =
if i.offset = Array.length i.iterating.value
then begin
assert { forall v. S.mem v i.todo -> S.mem v i.all };
True
end
else begin
assert { i.offset < Array.length i.iterating.value };
assert { i.iterating.value[i.offset] <> S.dummy };
assert { S.mem i.iterating.value[i.offset] i.all };
assert { S.mem i.iterating.value[i.offset] i.todo };
False
end
let next (i:iterator) : key
requires { not (S.is_empty i.todo) }
writes { i.seen, i.todo, i.offset }
ensures { S.mem result (old i.todo) }
ensures { i.todo = S.remove result (old i.todo) }
ensures { i.seen = S.add result (old i.seen) } =
assert { i.offset < Array.length i.iterating.value };
let k = Array.(i.iterating.value[i.offset]) in
i.seen <- S.add k i.seen;
i.todo <- S.remove k i.todo;
i.offset <- i.offset + 1;
while i.offset < Array.length i.iterating.value && S.tag Array.(i.iterating.value[i.offset]) = S.tag S.dummy do
invariant { old i.offset < i.offset <= Array.length i.iterating.value }
invariant { forall j. old i.offset < j < i.offset -> i.iterating.value[j] = S.dummy }
variant { Array.length i.iterating.value - i.offset }
i.offset <- i.offset + 1
done;
assert { forall j. old i.offset < j < i.offset -> i.iterating.value[j] = S.dummy };
k
end
(***
clone TagSetIntf with
type S.key = key,
val S.tag = tag,
lemma S.tag_correct,
type iteration_state = iteration_state,
type t = t,
val create = create,
val mem = mem,
val max_tags = max_tags,
val add = add,
type iterator = iterator,
val Iterator.create = Iterator.create,
val Iterator.is_empty = Iterator.is_empty,
val Iterator.next = Iterator.next
*)
end
(***
module T
use mach.int.Int63
type t =
| A
| B
let function tag (x:t) : int63 = match x with A -> 0 | B -> 1 end
clone TagSet with type S.key = t, val S.tag = tag
let test () =
let s = create 10 A in
add s A;
let iter1 = Iterator.create s in
assert { not (Iterator.is_empty iter1) };
let b = Iterator.is_empty iter1 in
assert { not b };
let x = Iterator.next iter1 in
assert { x = A };
add s B;
let x = Iterator.next iter1 in
assert { x = A }
end
*)
|