File: tagset.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (358 lines) | stat: -rw-r--r-- 10,253 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
(** {1 Tag Sets}

Tag sets are finite sets with a tag function that maps each element to
a unique integer. They also feature the ability to iterate over the elements.
*)


(** {2 Interface for the keys}

The equality of the `tag` values must imply the equality of the
corresponding elements.
*)

module S

  use int.Int
  use mach.int.Int63 as Int63

  type key

  val constant dummy: key

  val function tag (k:key): Int63.int63
      ensures { k<>dummy -> 0 <= result < Int63.max_int63 }

  axiom tag_correct: forall x y. tag x = tag y -> x = y

end

(** {2 Interface of a TagSet} *)

module TagSetIntf

  use int.Int
  use import mach.int.Int63 as Int63
  use map.Map
  use map.Const
  use set.Fset as S
  use list.List
  use list.Mem as LMem
  use import mach.array.Array63 as Array
  use seq.Seq as Seq
  use bool.Bool
  use mach.peano.Peano as Peano
  use mach.peano.Int63 as PeanoInt63
  use ref.Ref

  clone import S as S with axiom tag_correct

  type iteration_state = mutable { }

  type t = abstract {
         mutable elts: S.fset key;
         mutable iterated: iteration_state;
       }
   invariant { not (S.mem S.dummy elts) }
   by {
      elts = S.empty;
      iterated = any iteration_state;
    }

  val create () : t
   ensures { result.elts = S.empty }

  val function mem (k: key) (h: t) : bool
   requires { k <> S.dummy }
   ensures { result = S.mem k h.elts }

  val function max_tags (h: t) : Int63.int63
    ensures { forall v. S.mem v h.elts -> tag v <= result }
    ensures { -1 <= result  < Int63.max_int63 }

  val add (h: t) (k: key): unit
    requires { k <> S.dummy }
    ensures { h.elts = S.add k (old h.elts) }
    writes { h.elts, h.iterated }

  val remove (h: t) (k: key): unit
    requires { k <> S.dummy }
    ensures { h.elts = S.remove k (old h.elts) }
    writes { h.elts, h.iterated }

  type iterator = abstract {
       iterating: iteration_state;
       mutable seen: S.fset key;
       mutable todo: S.fset key;
       all: S.fset key;
  }
  invariant { S.(union seen todo == all) }
  invariant { S.(inter seen todo == S.empty) }
  by {
    iterating = any iteration_state;
    seen = S.empty;
    todo = S.empty;
    all = S.empty
    }

  scope Iterator

     val create (h:t) : iterator
          ensures { result.seen = S.empty }
          ensures { result.todo = h.elts }
          ensures { result.all = h.elts }
          alias { result.iterating with h.iterated }

      predicate is_empty (i:iterator) = S.is_empty i.todo

      val is_empty (i:iterator) : bool
          ensures { result = (S.is_empty i.todo) }

      val next (i:iterator) : key
          requires { not (S.is_empty i.todo) }
          writes { i.seen, i.todo }
          ensures { S.mem result (old i.todo) }
          ensures { i.todo = S.remove result (old i.todo) }
          ensures { i.seen = S.add result (old i.seen) }
  end

end

(** {2 Implementation of a TagSet} *)

module TagSet

  use int.Int
  use mach.int.MinMax63
  use import mach.int.Int63 as Int63
  use set.Fset as S
  use import mach.array.Array63 as Array
  use seq.Seq
  use bool.Bool
  use mach.peano.Peano as Peano
  use mach.peano.Int63 as PeanoInt63
  use ref.Ref

  clone import S as S with axiom tag_correct

  type iteration_state = mutable {
       ghost mutable elts': S.fset key;
       mutable value: array key;
  }
  invariant { not (S.mem S.dummy elts') }
  invariant { forall v. S.mem v elts' -> tag v < value.length  }
  invariant { forall v. S.mem v elts' -> value[tag v] <> S.dummy }
  invariant { forall i. 0 <= i < value.length -> value[i] <> S.dummy -> tag (value[i]) = i }
  invariant { forall i. 0 <= i < value.length -> value[i] <> S.dummy -> S.mem (value[i]) elts' }
  by {
     elts' = S.empty;
     value = Array.make 0 (any key);
   }

  type t = {
         ghost mutable elts: S.fset key;
         mutable iterated: iteration_state;
       }
   invariant { elts = iterated.elts' }
   by { elts = S.empty; iterated = { elts' = S.empty; value = Array.make 0 (any key);} }


  let create () : t
   ensures { result.elts = S.empty }
   =
   let iterated =  {
         elts' = S.empty;
         value = Array.make 8 S.dummy;
      }
   in
   {
      elts = S.empty;
      iterated = iterated;
   }

  let function mem (k: key) (h: t) : bool
   requires { k <> S.dummy }
   ensures { result = S.mem k h.elts } =
     tag k < Array.length h.iterated.value && Array.(S.tag h.iterated.value[tag k] <> S.tag S.dummy)

  let function max_tags (h: t) : Int63.int63
    ensures { forall v. S.mem v h.elts -> tag v <= result }
    ensures { -1 <= result  < Int63.max_int63 } =
    Array.(length h.iterated.value) - 1

  let resize (h:t) (k:key) : unit
     requires { k <> S.dummy }
     ensures { tag k < Array.(length h.iterated.value) }
    =
    let len = tag k + 1 in
    let n = Array.length h.iterated.value in
    if len > n then begin
      let nlen = (max len (2 * (min n (Int63.max_int / 2)))) in
      let a = Array.(make nlen S.dummy) in
      Array.blit h.iterated.value 0 a 0 n;
      h.iterated.value <- a;
    end


  let add (h: t) (k: key): unit
    requires { k <> S.dummy }
    ensures { h.elts = S.add k (old h.elts) }
    writes { h.elts , h.iterated } =
    resize h k;
    h.elts <- S.add k h.elts;
    h.iterated.elts' <- S.add k h.iterated.elts';
    h.iterated.value[tag k] <- k;
    if false then
       h.iterated <- {
           elts' = h.iterated.elts';
           value = h.iterated.value;
         }

  let remove (k: key) (h: t) : unit
   requires { k <> S.dummy }
   ensures { h.elts = S.remove k h.elts } =
    if tag k < Array.length h.iterated.value then begin
        h.elts <- S.remove k h.elts;
        h.iterated.elts' <- S.remove k h.iterated.elts';
        Array.(h.iterated.value[tag k] <- S.dummy);
    end;
    if false then
       h.iterated <- {
           elts' = h.iterated.elts';
           value = h.iterated.value;
         }


  type iterator = {
       iterating: iteration_state;
       ghost mutable seen: S.fset key;
       ghost mutable todo: S.fset key;
       ghost all: S.fset key;
       mutable offset: int63;
  }
  invariant { S.(==) all (S.union seen todo) }
  invariant { all = iterating.elts' }
  invariant { 0 <= offset <= Seq.length iterating.value }
  invariant { offset < Seq.length iterating.value -> iterating.value[offset] <> S.dummy }
  invariant { forall v. S.mem v all -> (0 <= tag v < offset) <-> S.mem v seen }
  invariant { forall v. S.mem v all -> (offset <= tag v < Seq.length iterating.value) <-> S.mem v todo }
  by {
    seen = S.empty;
    todo = S.empty;
    all = S.empty;
    offset = 0;
    iterating =  {
     elts' = S.empty;
     value = Array.make 0 (any key);
   }
 }

  scope Iterator

      let create (h:t) : iterator
          ensures { result.seen = S.empty }
          ensures { result.todo = h.elts }
          ensures { result.all = h.elts }
          alias { result.iterating with h.iterated }
      =
       let i = ref 0 in
       while !i < Array.length h.iterated.value && S.tag Array.(h.iterated.value[!i]) = S.tag S.dummy do
          variant { Array.length h.iterated.value - !i }
          invariant { 0 <= !i <= Array.length h.iterated.value }
          invariant { forall j. 0 <= j < !i -> h.iterated.value[j] = S.dummy }
          i := !i + 1
       done;
       {
          iterating = h.iterated;
          seen = S.empty;
          todo = h.elts;
          all = h.elts;
          offset = !i;
        }


      predicate is_empty (i:iterator) = S.is_empty i.todo

      let is_empty (i:iterator) : bool
          ensures { result = (S.is_empty i.todo) } =
          if i.offset = Array.length i.iterating.value
          then begin
            assert { forall v. S.mem v i.todo -> S.mem v i.all };
            True
          end
          else begin
            assert { i.offset < Array.length i.iterating.value };
            assert { i.iterating.value[i.offset] <> S.dummy };
            assert { S.mem i.iterating.value[i.offset] i.all };
            assert { S.mem i.iterating.value[i.offset] i.todo };
            False
          end

      let next (i:iterator) : key
          requires { not (S.is_empty i.todo) }
          writes { i.seen, i.todo, i.offset }
          ensures { S.mem result (old i.todo) }
          ensures { i.todo = S.remove result (old i.todo) }
          ensures { i.seen = S.add result (old i.seen) } =
           assert { i.offset < Array.length i.iterating.value };
           let k = Array.(i.iterating.value[i.offset]) in
           i.seen <- S.add k i.seen;
           i.todo <- S.remove k i.todo;
           i.offset <- i.offset + 1;
           while i.offset < Array.length i.iterating.value && S.tag Array.(i.iterating.value[i.offset]) = S.tag S.dummy do
             invariant { old i.offset < i.offset <= Array.length i.iterating.value }
             invariant { forall j. old i.offset < j < i.offset -> i.iterating.value[j] = S.dummy }
             variant { Array.length i.iterating.value - i.offset }
             i.offset <- i.offset + 1
           done;
           assert { forall j. old i.offset < j < i.offset -> i.iterating.value[j] = S.dummy };
           k
  end

(***
  clone TagSetIntf with
        type S.key = key,
        val S.tag = tag,
        lemma S.tag_correct,
        type iteration_state = iteration_state,
        type t = t,
        val create = create,
        val mem = mem,
        val max_tags = max_tags,
        val add = add,
        type iterator = iterator,
        val Iterator.create = Iterator.create,
        val Iterator.is_empty = Iterator.is_empty,
        val Iterator.next = Iterator.next
*)

end

(***
module T

       use mach.int.Int63

       type t =
       | A
       | B

       let function tag (x:t) : int63 = match x with A -> 0 | B -> 1 end
       clone TagSet with type S.key = t, val S.tag = tag

       let test () =
           let s = create 10 A in
           add s A;
           let iter1 = Iterator.create s in
           assert { not (Iterator.is_empty iter1) };
           let b = Iterator.is_empty iter1 in
           assert { not b };
           let x = Iterator.next iter1 in
           assert { x = A };
           add s B;
           let x = Iterator.next iter1 in
           assert { x = A }


end
*)