File: pqueue.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (209 lines) | stat: -rw-r--r-- 5,445 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
(** {1 Priority queues} *)

(** {2 Polymorphic mutable priority queues} *)

module Pqueue

  (** {3 Types} *)

  type elt
  (** the abstract type of elements *)

  predicate le elt elt
  (** `elt` is equipped with a total pre order `le` *)

  clone export relations.TotalPreOrder
    with type t = elt, predicate rel = le, axiom .

  use int.Int
  use seq.Seq
  use seq.Occ

  (** the priority queue is modeled as a sorted sequence of elements *)
  type t = abstract { mutable elts: seq elt }
    invariant { forall i1 i2.
                0 <= i1 <= i2 < length elts -> le elts[i1] elts[i2] }
  meta coercion function elts

  (** {3 Operations} *)

  val create () : t ensures { result = empty }
  (** create a fresh, empty queue *)

  val push (x: elt) (q: t) : unit
    writes  { q }
    ensures { length q = 1 + length (old q) }
    ensures { occ_all x q = 1 + occ_all x (old q) }
    ensures { forall y. y <> x -> occ_all y q = occ_all y (old q) }
  (** push an element in a queue *)

  exception Empty
  (** exception raised by `pop` and `peek` to signal an empty queue *)

  val pop (q: t) : elt
    writes {q}
    ensures { length (old q) > 0 }
    ensures { result = (old q)[0] }
    ensures { q = (old q)[1..] }
    raises  { Empty -> q = old q = empty }
  (** remove and return the minimal element *)

  val safe_pop (q: t) : elt
    requires { length q > 0 }
    writes   { q }
    ensures  { result = (old q)[0] }
    ensures  { q = (old q)[1..] }
  (** remove and return the minimal element *)

  val peek (q: t) : elt
    ensures { length q > 0 }
    ensures { result = q[0] }
    raises  { Empty -> q = empty }
  (** return the minimal element, without modifying the queue *)

  val safe_peek (q: t) : elt
    requires { length q > 0 }
    ensures { result = q[0] }
  (** return the minimal element, without modifying the queue *)

  val clear (q: t) : unit
    writes  { q }
    ensures { q = empty }
  (** empty the queue *)

  val copy (q: t) : t
    ensures { result == q }
  (** return a fresh copy of the queue *)

  val is_empty (q: t) : bool
    ensures { result <-> q = empty }
  (** check whether the queue is empty *)

  val length (q: t) : int
    ensures { result = length q }
  (** return the number of elements in the queue *)

end

(** Test the interface above using an external heapsort *)
module Harness

  use int.Int
  use array.Array
  use array.IntArraySorted
  use array.ArrayPermut
  use map.Occ as MO
  use seq.Seq
  use seq.FreeMonoid
  use seq.Occ as SO

  clone Pqueue as PQ with type elt = int, predicate le = (<=)

  let heapsort (a: array int) : unit
    ensures { sorted a }
    ensures { permut_all (old a) a }
  = let n = length a in
    let pq = PQ.create () in
    for i = 0 to n - 1 do
      invariant { length pq = i }
      invariant { forall x. MO.occ x a.elts 0 n =
                  MO.occ x a.elts i n + SO.occ_all x pq }
      PQ.push (Array.([]) a i) pq
    done;
    for i = 0 to n - 1 do
      invariant { length pq = n - i }
      invariant { sorted_sub a 0 i }
      invariant { forall j k. 0 <= j < i -> 0 <= k < length pq ->
                  Array.([]) a j <= pq[k] }
      invariant { forall x. MO.occ x (old a.elts) 0 n =
                  MO.occ x a.elts 0 i + SO.occ_all x pq }
      a[i] <- PQ.safe_pop pq
    done

end

(** {2 Simpler interface}

when duplicate elements are not allowed

*)

module PqueueNoDup

  (** {3 Types} *)

  type elt
  (** the abstract type of elements *)

  predicate le elt elt
  (** `elt` is equipped with a total pre order `le` *)

  clone export relations.TotalPreOrder
    with type t = elt, predicate rel = le, axiom .

  use set.Fset

  type t = abstract { mutable elts: fset elt }
  (** the priority queue is modeled as a finite set of elements *)
  meta coercion function elts

  (** {3 Operations} *)

  val create () : t
    ensures { result = empty }
  (** create a fresh, empty queue *)

  val push (x: elt) (q: t) : unit
    writes  { q }
    ensures { q = add x (old q) }
  (** push an element in a queue *)

  exception Empty
  (** exception raised by `pop` and `peek` to signal an empty queue *)

  predicate minimal_elt (x: elt) (s: fset elt) =
     mem x s /\ forall e: elt. mem e s -> le x e
  (** property of the element returned by `pop` and `peek` *)

  val pop (q: t) : elt
    writes  { q }
    ensures { q = remove result (old q) }
    ensures { minimal_elt result (old q) }
    raises  { Empty -> q = old q = empty }
  (** remove and returns the minimal element *)

  val safe_pop (q: t) : elt
    writes  { q }
    requires { not q = empty }
    ensures { q = remove result (old q) }
    ensures { minimal_elt result (old q) }
  (** remove and returns the minimal element *)

  val peek (q: t) : elt
    ensures { minimal_elt result q }
    raises  { Empty -> q = empty }
  (** return the minimal element, without modifying the queue *)

  val safe_peek (q: t) : elt
    requires { not q = empty }
    ensures { minimal_elt result q }
  (** return the minimal element, without modifying the queue *)

  val clear (q: t) : unit
    writes  { q }
    ensures { q = empty }
  (** empty the queue *)

  val copy (q: t) : t
    ensures { result = q }
  (** return a fresh copy of the queue *)

  val is_empty (q: t) : bool
    ensures { result <-> q = empty }
  (** check whether the queue is empty *)

  val length (q: t) : int
    ensures { result = cardinal q }
  (** return the number of elements in the queue *)

end