1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
(** {1 Sequences}
This file provides a basic theory of sequences.
*)
(** {2 Sequences and basic operations} *)
module Seq
use int.Int
(** the polymorphic type of sequences *)
type seq 'a
(** `seq 'a` is an infinite type *)
meta "infinite_type" type seq
val function length (seq 'a) : int
axiom length_nonnegative:
forall s: seq 'a. 0 <= length s
meta "remove_unused:dependency" axiom length_nonnegative, function length
val function get (seq 'a) int : 'a
(* FIXME requires { 0 <= i < length s } *)
(** `get s i` is the `i+1`-th element of sequence `s`
(the first element has index 0) *)
let function ([]) (s: seq 'a) (i: int) : 'a =
get s i
(** equality is extensional *)
val predicate (==) (s1 s2: seq 'a)
ensures { result <-> length s1 = length s2 &&
forall i: int. 0 <= i < length s1 -> s1[i] = s2[i] }
ensures { result -> s1 = s2 }
meta "extensionality" predicate (==)
(** sequence comprehension *)
val function create (len: int) (f: int -> 'a) : seq 'a
requires { 0 <= len }
ensures { length result = len }
ensures { forall i. 0 <= i < len -> result[i] = f i }
(*** FIXME: could be defined, but let constant does
not accept spec. *)
(*** let constant empty : seq 'a
ensures { length result = 0 }
= while false do variant { 0 } () done;
create 0 (fun _ requires { false } -> absurd)
*)
(** empty sequence *)
val constant empty : seq 'a
ensures { length result = 0 }
(** `set s i v` is a new sequence `u` such that
`u[i] = v` and `u[j] = s[j]` otherwise *)
let function set (s:seq 'a) (i:int) (v:'a) : seq 'a
requires { 0 <= i < length s }
ensures { length result = length s }
ensures { result[i] = v }
ensures { forall j. 0 <= j < length s /\ j <> i -> result[j] = s[j] }
= while false do variant { 0 } () done;
create s.length (fun j -> if j = i then v else s[j])
(* FIXME: not a real alias because of spec, but should be. *)
let function ([<-]) (s: seq 'a) (i: int) (v: 'a) : seq 'a
requires { 0 <= i < length s }
= set s i v
(** singleton sequence *)
let function singleton (v:'a) : seq 'a
ensures { length result = 1 }
ensures { result[0] = v }
= while false do variant { 0 } () done;
create 1 (fun _ -> v)
(** insertion of elements on both sides *)
let function cons (x:'a) (s:seq 'a) : seq 'a
ensures { length result = 1 + length s }
ensures { result[0] = x }
ensures { forall i. 0 < i <= length s -> result[i] = s[i-1] }
= while false do variant { 0 } () done;
create (1 + length s) (fun i -> if i = 0 then x else s[i-1])
let function snoc (s:seq 'a) (x:'a) : seq 'a
ensures { length result = 1 + length s }
ensures { result[length s] = x }
ensures { forall i. 0 <= i < length s -> result[i] = s[i] }
= while false do variant { 0 } () done;
create (1 + length s) (fun i -> if i = length s then x else s[i])
(** `s[i..j]` is the sub-sequence of `s` from element `i` included
to element `j` excluded *)
let function ([..]) (s:seq 'a) (i:int) (j:int) : seq 'a
requires { 0 <= i <= j <= length s }
ensures { length result = j - i }
ensures { forall k. 0 <= k < j - i -> result[k] = s[i + k] }
= while false do variant { 0 } () done;
create (j-i) (fun k -> s[i+k])
(* FIXME: spec/alias *)
let function ([_..]) (s: seq 'a) (i: int) : seq 'a
requires { 0 <= i <= length s }
= s[i .. length s]
(* FIXME: spec/alias *)
let function ([.._]) (s: seq 'a) (j: int) : seq 'a
requires { 0 <= j <= length s }
= s[0 .. j]
(** concatenation *)
let function (++) (s1:seq 'a) (s2:seq 'a) : seq 'a
ensures { length result = length s1 + length s2 }
ensures { forall i. 0 <= i < length s1 -> result[i] = s1[i] }
ensures { forall i. length s1 <= i < length result ->
result[i] = s2[i - length s1] }
= while false do variant { 0 } () done;
let l = length s1 in
create (l + length s2)
(fun i -> if i < l then s1[i] else s2[i-l])
end
(** {2 Lemma library about algebraic interactions between
`empty`/`singleton`/`cons`/`snoc`/`++`/`[ .. ]`} *)
module FreeMonoid
use int.Int
use Seq
(* Monoidal properties/simplification. *)
let lemma associative (s1 s2 s3:seq 'a)
ensures { s1 ++ (s2 ++ s3) = (s1 ++ s2) ++ s3 }
= if not (s1 ++ s2) ++ s3 == s1 ++ (s2 ++ s3) then absurd
meta rewrite axiom associative
meta "remove_unused:dependency" axiom associative, function (++)
let lemma left_neutral (s:seq 'a)
ensures { empty ++ s = s }
= if not empty ++ s == s then absurd
meta rewrite axiom left_neutral
meta "remove_unused:dependency" axiom left_neutral, function (++)
let lemma right_neutral (s:seq 'a)
ensures { s ++ empty = s }
= if not s ++ empty == s then absurd
meta rewrite axiom right_neutral
meta "remove_unused:dependency" axiom right_neutral, function (++)
let lemma cons_def (x:'a) (s:seq 'a)
ensures { cons x s = singleton x ++ s }
= if not cons x s == singleton x ++ s then absurd
meta rewrite axiom cons_def
meta "remove_unused:dependency" axiom cons_def, function cons
let lemma snoc_def (s:seq 'a) (x:'a)
ensures { snoc s x = s ++ singleton x }
= if not snoc s x == s ++ singleton x then absurd
meta rewrite axiom snoc_def
meta "remove_unused:dependency" axiom snoc_def, function snoc
let lemma double_sub_sequence (s:seq 'a) (i j k l:int)
requires { 0 <= i <= j <= length s }
requires { 0 <= k <= l <= j - i }
ensures { s[i .. j][k .. l] = s[k+i .. l+i] }
= if not s[i .. j][k .. l] == s[k+i .. l+i] then absurd
(* Inverting cons/snoc/catenation *)
let lemma cons_back (x:'a) (s:seq 'a)
ensures { (cons x s)[1 ..] = s }
= if not (cons x s)[1 ..] == s then absurd
meta "remove_unused:dependency" axiom cons_back, function cons
let lemma snoc_back (s:seq 'a) (x:'a)
ensures { (snoc s x)[.. length s] = s }
= if not (snoc s x)[.. length s] == s then absurd
meta "remove_unused:dependency" axiom snoc_back, function snoc
let lemma cat_back (s1 s2:seq 'a)
ensures { (s1 ++ s2)[.. length s1] = s1 }
ensures { (s1 ++ s2)[length s1 ..] = s2 }
= let c = s1 ++ s2 in let l = length s1 in
if not (c[.. l] == s1 || c[l ..] == s2) then absurd
meta "remove_unused:dependency" axiom cat_back, function (++)
(* Decomposing sequences as cons/snoc/catenation/empty/singleton *)
let lemma cons_dec (s:seq 'a)
requires { length s >= 1 }
ensures { s = cons s[0] s[1 ..] }
= if not s == cons s[0] s[1 ..] then absurd
meta "remove_unused:dependency" axiom cons_dec, function cons
let lemma snoc_dec (s:seq 'a)
requires { length s >= 1 }
ensures { s = snoc s[.. length s - 1] s[length s - 1] }
= if not s == snoc s[.. length s - 1] s[length s - 1] then absurd
meta "remove_unused:dependency" axiom snoc_dec, function snoc
let lemma cat_dec (s:seq 'a) (i:int)
requires { 0 <= i <= length s }
ensures { s = s[.. i] ++ s[i ..] }
= if not s == s[.. i] ++ s[i ..] then absurd
meta "remove_unused:dependency" axiom cat_dec, function (++)
let lemma empty_dec (s:seq 'a)
requires { length s = 0 }
ensures { s = empty }
= if not s == empty then absurd
meta "remove_unused:dependency" axiom empty_dec, function empty
let lemma singleton_dec (s:seq 'a)
requires { length s = 1 }
ensures { s = singleton s[0] }
= if not s == singleton s[0] then absurd
meta "remove_unused:dependency" axiom singleton_dec, function singleton
end
module ToList
use int.Int
use Seq
use list.List
val function to_list (a: seq 'a) : list 'a
axiom to_list_empty:
to_list (empty: seq 'a) = (Nil: list 'a)
axiom to_list_cons:
forall s: seq 'a. 0 < length s ->
to_list s = Cons s[0] (to_list s[1 ..])
use list.Length as ListLength
lemma to_list_length:
forall s: seq 'a. ListLength.length (to_list s) = length s
use list.Nth as ListNth
use option.Option
lemma to_list_nth:
forall s: seq 'a, i: int. 0 <= i < length s ->
ListNth.nth i (to_list s) = Some s[i]
let rec lemma to_list_def_cons (s: seq 'a) (x: 'a)
variant { length s }
ensures { to_list (cons x s) = Cons x (to_list s) }
= assert { (cons x s)[1 ..] == s }
end
module OfList
use int.Int
use option.Option
use list.List
use list.Length as L
use list.Nth
use Seq
use list.Append
let rec function of_list (l: list 'a) : seq 'a = match l with
| Nil -> empty
| Cons x r -> cons x (of_list r)
end
lemma length_of_list:
forall l: list 'a. length (of_list l) = L.length l
predicate point_wise (s: seq 'a) (l: list 'a) =
forall i. 0 <= i < L.length l -> Some (get s i) = nth i l
lemma elts_seq_of_list: forall l: list 'a.
point_wise (of_list l) l
lemma is_of_list: forall l: list 'a, s: seq 'a.
L.length l = length s -> point_wise s l -> s == of_list l
let rec lemma of_list_app (l1 l2: list 'a)
ensures { of_list (l1 ++ l2) == Seq.(++) (of_list l1) (of_list l2) }
variant { l1 }
= match l1 with
| Nil -> ()
| Cons _ r -> of_list_app r l2
end
lemma of_list_app_length: forall l1 [@induction] l2: list 'a.
length (of_list (l1 ++ l2)) = L.length l1 + L.length l2
let rec lemma of_list_snoc (l: list 'a) (x: 'a)
variant { l }
ensures { of_list (l ++ Cons x Nil) == snoc (of_list l) x }
= match l with
| Nil -> assert { snoc empty x = cons x empty }
| Cons _ r -> of_list_snoc r x;
end
meta coercion function of_list
use ToList
lemma convolution_to_of_list: forall l: list 'a.
to_list (of_list l) = l
end
module Mem
use int.Int
use Seq
predicate mem (x: 'a) (s: seq 'a) =
exists i: int. 0 <= i < length s && s[i] = x
lemma mem_append : forall x: 'a, s1 s2.
mem x (s1 ++ s2) <-> mem x s1 \/ mem x s2
lemma mem_tail: forall x: 'a, s.
length s > 0 ->
mem x s <-> (x = s[0] \/ mem x s[1 .. ])
end
module Distinct
use int.Int
use Seq
predicate distinct (s : seq 'a) =
forall i j. 0 <= i < length s -> 0 <= j < length s ->
i <> j -> s[i] <> s[j]
end
module Reverse
use int.Int
use Seq
let function reverse (s: seq 'a) : seq 'a =
create (length s) (fun i -> s[length s - 1 - i])
end
module ToFset
use int.Int
use set.Fset
use Mem
use Seq
val function to_set (s: seq 'a) : fset 'a
axiom to_set_empty: to_set (empty: seq 'a) = (Fset.empty: fset 'a)
axiom to_set_add: forall s: seq 'a. length s > 0 ->
to_set s = add s[0] (to_set s[1 ..])
lemma to_set_cardinal: forall s: seq 'a.
cardinal (to_set s) <= length s
lemma to_set_mem: forall s: seq 'a, e: 'a.
mem e s <-> Fset.mem e (to_set s)
lemma to_set_snoc: forall s: seq 'a, x: 'a.
to_set (snoc s x) = add x (to_set s)
use Distinct
lemma to_set_cardinal_distinct: forall s: seq 'a. distinct s ->
cardinal (to_set s) = length s
end
(** {2 Sorted Sequences} *)
module Sorted
use int.Int
use Seq
type t
predicate le t t
clone relations.TotalPreOrder as TO with
type t = t, predicate rel = le, axiom .
predicate sorted_sub (s: seq t) (l u: int) =
forall i1 i2. l <= i1 <= i2 < u -> le s[i1] s[i2]
(** `sorted_sub s l u` is true whenever the sub-sequence `s[l .. u-1]` is
sorted w.r.t. order relation `le` *)
predicate sorted (s: seq t) =
sorted_sub s 0 (length s)
(** `sorted s` is true whenever the sequence `s` is sorted w.r.t `le` *)
lemma sorted_cons:
forall x: t, s: seq t.
(forall i: int. 0 <= i < length s -> le x s[i]) /\ sorted s <->
sorted (cons x s)
lemma sorted_append:
forall s1 s2: seq t.
(sorted s1 /\ sorted s2 /\
(forall i j: int. 0 <= i < length s1 /\ 0 <= j < length s2 ->
le s1[i] s2[j])) <-> sorted (s1 ++ s2)
lemma sorted_snoc:
forall x: t, s: seq t.
(forall i: int. 0 <= i < length s -> le s[i] x) /\ sorted s <->
sorted (snoc s x)
end
module SortedInt (** sorted sequences of integers *)
use int.Int
clone export Sorted with type t = int, predicate le = (<=), goal .
end
module Sum
use int.Int
use Seq
use int.Sum as S
function sum (s: seq int) : int = S.sum (fun i -> s[i]) 0 (length s)
lemma sum_snoc:
forall s x. sum (snoc s x) = sum s + x
lemma sum_tail:
forall s. length s >= 1 -> sum s = s[0] + sum s[1 .. ]
lemma sum_tail_tail:
forall s. length s >= 2 -> sum s = s[0] + s[1] + sum s[2 .. ]
end
(** {2 Number of occurrences in a sequence} *)
module Occ
use int.Int
use int.NumOf as N
use Seq
function iseq (x: 'a) (s: seq 'a) : int->bool = fun i -> s[i] = x
function occ (x: 'a) (s: seq 'a) (l u: int) : int = N.numof (iseq x s) l u
function occ_all (x: 'a) (s: seq 'a) : int =
occ x s 0 (length s)
lemma occ_cons:
forall k: 'a, s: seq 'a, x: 'a.
(occ_all k (cons x s) =
if k = x then 1 + occ_all k s else occ_all k s
) by (cons x s == (cons x empty) ++ s)
lemma occ_snoc:
forall k: 'a, s: seq 'a, x: 'a.
occ_all k (snoc s x) =
if k = x then 1 + occ_all k s else occ_all k s
lemma occ_tail:
forall k: 'a, s: seq 'a.
length s > 0 ->
(occ_all k s[1..] =
if k = s[0] then (occ_all k s) - 1 else occ_all k s
) by (s == cons s[0] s[1..])
lemma append_num_occ:
forall x: 'a, s1 s2: seq 'a.
occ_all x (s1 ++ s2) =
occ_all x s1 + occ_all x s2
end
(** {2 Sequences Equality} *)
module SeqEq
use int.Int
use Seq
predicate seq_eq_sub (s1 s2: seq 'a) (l u: int) =
forall i. l <= i < u -> s1[i] = s2[i]
end
module Exchange
use int.Int
use Seq
predicate exchange (s1 s2: seq 'a) (i j: int) =
length s1 = length s2 /\
0 <= i < length s1 /\ 0 <= j < length s1 /\
s1[i] = s2[j] /\ s1[j] = s2[i] /\
(forall k:int. 0 <= k < length s1 -> k <> i -> k <> j -> s1[k] = s2[k])
lemma exchange_set :
forall s: seq 'a, i j: int.
0 <= i < length s -> 0 <= j < length s ->
exchange s s[i <- s[j]][j <- s[i]] i j
end
(** {2 Permutation of sequences} *)
module Permut
use int.Int
use Seq
use Occ
use SeqEq
use export Exchange
predicate permut (s1 s2: seq 'a) (l u: int) =
length s1 = length s2 /\
0 <= l <= length s1 /\ 0 <= u <= length s1 /\
forall v: 'a. occ v s1 l u = occ v s2 l u
(** `permut s1 s2 l u` is true when the segment `s1[l..u-1]` is a
permutation of the segment `s2[l..u-1]`. Values outside this range are
ignored. *)
predicate permut_sub (s1 s2: seq 'a) (l u: int) =
seq_eq_sub s1 s2 0 l /\
permut s1 s2 l u /\
seq_eq_sub s1 s2 u (length s1)
(** `permut_sub s1 s2 l u` is true when the segment `s1[l..u-1]` is a
permutation of the segment `s2[l..u-1]` and values outside this range
are equal. *)
predicate permut_all (s1 s2: seq 'a) =
length s1 = length s2 /\ permut s1 s2 0 (length s1)
(** `permut_all s1 s2` is true when sequence `s1` is a permutation of
sequence `s2` *)
lemma exchange_permut_sub:
forall s1 s2: seq 'a, i j l u: int.
exchange s1 s2 i j -> l <= i < u -> l <= j < u ->
0 <= l -> u <= length s1 -> permut_sub s1 s2 l u
(** enlarge the interval *)
lemma Permut_sub_weakening:
forall s1 s2: seq 'a, l1 u1 l2 u2: int.
permut_sub s1 s2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length s1 ->
permut_sub s1 s2 l2 u2
(** {3 Lemmas about permut} *)
lemma permut_refl: forall s: seq 'a, l u: int.
0 <= l <= length s -> 0 <= u <= length s ->
permut s s l u
lemma permut_sym: forall s1 s2: seq 'a, l u: int.
permut s1 s2 l u -> permut s2 s1 l u
lemma permut_trans:
forall s1 s2 s3: seq 'a, l u: int.
permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u
lemma permut_exists:
forall s1 s2: seq 'a, l u i: int.
permut s1 s2 l u -> l <= i < u ->
exists j: int. l <= j < u /\ s1[j] = s2[i]
(** {3 Lemmas about permut_all} *)
use Mem
lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 ->
forall x. mem x s1 <-> mem x s2
lemma exchange_permut_all:
forall s1 s2: seq 'a, i j: int.
exchange s1 s2 i j -> permut_all s1 s2
end
module FoldLeft
use Seq
use int.Int
(** `fold_left f a [b1; ...; bn]` is `f (... (f (f a b1) b2) ...) bn` *)
let rec function fold_left (f: 'a -> 'b -> 'a) (acc: 'a) (s: seq 'b) : 'a
variant { length s }
= if length s = 0 then acc else fold_left f (f acc s[0]) s[1 ..]
lemma fold_left_ext: forall f: 'b -> 'a -> 'b, acc: 'b, s1 s2: seq 'a.
s1 == s2 -> fold_left f acc s1 = fold_left f acc s2
lemma fold_left_cons: forall s: seq 'a, x: 'a, f: 'b -> 'a -> 'b, acc: 'b.
fold_left f acc (cons x s) = fold_left f (f acc x) s
let rec lemma fold_left_app (s1 s2: seq 'a) (f: 'b -> 'a -> 'b) (acc: 'b)
ensures { fold_left f acc (s1 ++ s2) = fold_left f (fold_left f acc s1) s2 }
variant { Seq.length s1 }
= if Seq.length s1 > 0 then fold_left_app s1[1 ..] s2 f (f acc (Seq.get s1 0))
end
module FoldRight
use Seq
use int.Int
(** `fold_right f [a1; ...; an] b` is `f a1 (f a2 (... (f an b) ...))` *)
let rec function fold_right (f: 'b -> 'a -> 'a) (s: seq 'b) (acc: 'a) : 'a
variant { length s }
= if length s = 0 then acc
else let acc = f s[length s - 1] acc in fold_right f s[.. length s - 1] acc
lemma fold_right_ext: forall f: 'a -> 'b -> 'b, acc: 'b, s1 s2: seq 'a.
s1 == s2 -> fold_right f s1 acc = fold_right f s2 acc
lemma fold_right_snoc: forall s: seq 'a, x: 'a, f: 'a -> 'b -> 'b, acc: 'b.
fold_right f (snoc s x) acc = fold_right f s (f x acc)
end
(*** TODO / TO DISCUSS
- what about s[i..j] when i..j is not a valid range?
left undefined? empty sequence?
- what about negative index e.g. s[-3..] for the last three elements?
- a syntax for cons and snoc?
- create: better name? move to a separate theory?
- UNPLEASANT: we cannot write s[1..] because 1. is recognized as a float
so we have to write s[1 ..]
- UNPLEASANT: when using both arrays and sequences, the lack of overloading
is a pain; see for instance vstte12_ring_buffer.mlw
*)
|