File: seq.mlw

package info (click to toggle)
why3 1.8.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,028 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (645 lines) | stat: -rw-r--r-- 18,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

(** {1 Sequences}

    This file provides a basic theory of sequences.
*)

(** {2 Sequences and basic operations} *)

module Seq

  use int.Int

  (** the polymorphic type of sequences *)
  type seq 'a

  (** `seq 'a` is an infinite type *)
  meta "infinite_type" type seq

  val function length (seq 'a) : int

  axiom length_nonnegative:
    forall s: seq 'a. 0 <= length s
  meta "remove_unused:dependency" axiom length_nonnegative, function length

  val function get (seq 'a) int : 'a
    (* FIXME requires { 0 <= i < length s } *)
  (** `get s i` is the `i+1`-th element of sequence `s`
      (the first element has index 0) *)

  let function ([]) (s: seq 'a) (i: int) : 'a =
    get s i

  (** equality is extensional *)
  val predicate (==) (s1 s2: seq 'a)
    ensures { result <-> length s1 = length s2 &&
              forall i: int. 0 <= i < length s1 -> s1[i] = s2[i] }
    ensures { result -> s1 = s2 }

  meta "extensionality" predicate (==)

  (** sequence comprehension *)
  val function create (len: int) (f: int -> 'a) : seq 'a
    requires { 0 <= len }
    ensures { length result = len }
    ensures { forall i. 0 <= i < len -> result[i] = f i }

  (*** FIXME: could be defined, but let constant does
     not accept spec. *)
  (*** let constant empty : seq 'a
    ensures { length result = 0 }
  = while false do variant { 0 } () done;
    create 0 (fun _ requires { false } -> absurd)
   *)

  (** empty sequence *)
  val constant empty : seq 'a
    ensures { length result = 0 }

  (** `set s i v` is a new sequence `u` such that
      `u[i] = v` and `u[j] = s[j]` otherwise *)
  let function set (s:seq 'a) (i:int) (v:'a) : seq 'a
    requires { 0 <= i < length s }
    ensures { length result = length s }
    ensures { result[i] = v }
    ensures { forall j. 0 <= j < length s /\ j <> i -> result[j] = s[j] }
  = while false do variant { 0 } () done;
    create s.length (fun j -> if j = i then v else s[j])

  (* FIXME: not a real alias because of spec, but should be. *)
  let function ([<-]) (s: seq 'a) (i: int) (v: 'a) : seq 'a
    requires { 0 <= i < length s }
   = set s i v

  (** singleton sequence *)
  let function singleton (v:'a) : seq 'a
    ensures { length result = 1 }
    ensures { result[0] = v }
  = while false do variant { 0 } () done;
    create 1 (fun _ -> v)

  (** insertion of elements on both sides *)
  let function cons (x:'a) (s:seq 'a) : seq 'a
    ensures { length result = 1 + length s }
    ensures { result[0] = x }
    ensures { forall i. 0 < i <= length s -> result[i] = s[i-1] }
  = while false do variant { 0 } () done;
    create (1 + length s) (fun i -> if i = 0 then x else s[i-1])

  let function snoc (s:seq 'a) (x:'a) : seq 'a
    ensures { length result = 1 + length s }
    ensures { result[length s] = x }
    ensures { forall i. 0 <= i < length s -> result[i] = s[i] }
  = while false do variant { 0 } () done;
    create (1 + length s) (fun i -> if i = length s then x else s[i])

  (** `s[i..j]` is the sub-sequence of `s` from element `i` included
      to element `j` excluded *)
  let function ([..]) (s:seq 'a) (i:int) (j:int) : seq 'a
    requires { 0 <= i <= j <= length s }
    ensures { length result = j - i }
    ensures { forall k. 0 <= k < j - i -> result[k] = s[i + k] }
  = while false do variant { 0 } () done;
    create (j-i) (fun k -> s[i+k])

  (* FIXME: spec/alias *)
  let function ([_..]) (s: seq 'a) (i: int) : seq 'a
    requires { 0 <= i <= length s }
  = s[i .. length s]

  (* FIXME: spec/alias *)
  let function ([.._]) (s: seq 'a) (j: int) : seq 'a
    requires { 0 <= j <= length s }
  = s[0 .. j]

  (** concatenation *)
  let function (++) (s1:seq 'a) (s2:seq 'a) : seq 'a
    ensures { length result = length s1 + length s2 }
    ensures { forall i. 0 <= i < length s1 -> result[i] = s1[i] }
    ensures { forall i. length s1 <= i < length result ->
      result[i] = s2[i - length s1] }
  = while false do variant { 0 } () done;
    let l = length s1 in
    create (l + length s2)
           (fun i -> if i < l then s1[i] else s2[i-l])

end

(** {2 Lemma library about algebraic interactions between
       `empty`/`singleton`/`cons`/`snoc`/`++`/`[ .. ]`} *)

module FreeMonoid

  use int.Int
  use Seq

  (* Monoidal properties/simplification. *)

  let lemma associative (s1 s2 s3:seq 'a)
    ensures { s1 ++ (s2 ++ s3) = (s1 ++ s2) ++ s3 }
  = if not (s1 ++ s2) ++ s3 == s1 ++ (s2 ++ s3) then absurd
  meta rewrite axiom associative
  meta "remove_unused:dependency" axiom associative, function (++)

  let lemma left_neutral (s:seq 'a)
    ensures { empty ++ s = s }
  = if not empty ++ s == s then absurd
  meta rewrite axiom left_neutral
  meta "remove_unused:dependency" axiom left_neutral, function (++)

  let lemma right_neutral (s:seq 'a)
    ensures { s ++ empty = s }
  = if not s ++ empty == s then absurd
  meta rewrite axiom right_neutral
  meta "remove_unused:dependency" axiom right_neutral, function (++)

  let lemma cons_def (x:'a) (s:seq 'a)
    ensures { cons x s = singleton x ++ s }
  = if not cons x s == singleton x ++ s then absurd
  meta rewrite axiom cons_def
  meta "remove_unused:dependency" axiom cons_def, function cons

  let lemma snoc_def (s:seq 'a) (x:'a)
    ensures { snoc s x = s ++ singleton x }
  = if not snoc s x == s ++ singleton x then absurd
  meta rewrite axiom snoc_def
  meta "remove_unused:dependency" axiom snoc_def, function snoc

  let lemma double_sub_sequence (s:seq 'a) (i j k l:int)
    requires { 0 <= i <= j <= length s }
    requires { 0 <= k <= l <= j - i }
    ensures { s[i .. j][k .. l] = s[k+i .. l+i] }
  = if not s[i .. j][k .. l] == s[k+i .. l+i] then absurd

  (* Inverting cons/snoc/catenation *)

  let lemma cons_back (x:'a) (s:seq 'a)
    ensures { (cons x s)[1 ..] = s }
  = if not (cons x s)[1 ..] == s then absurd
  meta "remove_unused:dependency" axiom cons_back, function cons

  let lemma snoc_back (s:seq 'a) (x:'a)
    ensures { (snoc s x)[.. length s] = s }
  = if not (snoc s x)[.. length s] == s then absurd
  meta "remove_unused:dependency" axiom snoc_back, function snoc

  let lemma cat_back (s1 s2:seq 'a)
    ensures { (s1 ++ s2)[.. length s1] = s1 }
    ensures { (s1 ++ s2)[length s1 ..] = s2 }
  = let c = s1 ++ s2 in let l = length s1 in
    if not (c[.. l] == s1 || c[l ..] == s2) then absurd
  meta "remove_unused:dependency" axiom cat_back, function (++)

  (* Decomposing sequences as cons/snoc/catenation/empty/singleton *)

  let lemma cons_dec (s:seq 'a)
    requires { length s >= 1 }
    ensures  { s = cons s[0] s[1 ..] }
  = if not s == cons s[0] s[1 ..] then absurd
  meta "remove_unused:dependency" axiom cons_dec, function cons

  let lemma snoc_dec (s:seq 'a)
    requires { length s >= 1 }
    ensures  { s = snoc s[.. length s - 1] s[length s - 1] }
  = if not s == snoc s[.. length s - 1] s[length s - 1] then absurd
  meta "remove_unused:dependency" axiom snoc_dec, function snoc

  let lemma cat_dec (s:seq 'a) (i:int)
    requires { 0 <= i <= length s }
    ensures  { s = s[.. i] ++ s[i ..] }
  = if not s == s[.. i] ++ s[i ..] then absurd
  meta "remove_unused:dependency" axiom cat_dec, function (++)

  let lemma empty_dec (s:seq 'a)
    requires { length s = 0 }
    ensures  { s = empty }
  = if not s == empty then absurd
  meta "remove_unused:dependency" axiom empty_dec, function empty

  let lemma singleton_dec (s:seq 'a)
    requires { length s = 1 }
    ensures  { s = singleton s[0] }
  = if not s == singleton s[0] then absurd
  meta "remove_unused:dependency" axiom singleton_dec, function singleton

end

module ToList
  use int.Int
  use Seq
  use list.List

  val function to_list (a: seq 'a) : list 'a

  axiom to_list_empty:
    to_list (empty: seq 'a) = (Nil: list 'a)

  axiom to_list_cons:
    forall s: seq 'a. 0 < length s ->
    to_list s = Cons s[0] (to_list s[1 ..])

  use list.Length as ListLength

  lemma to_list_length:
    forall s: seq 'a. ListLength.length (to_list s) = length s

  use list.Nth as ListNth
  use option.Option

  lemma to_list_nth:
    forall s: seq 'a, i: int. 0 <= i < length s ->
    ListNth.nth i (to_list s) = Some s[i]

  let rec lemma to_list_def_cons (s: seq 'a) (x: 'a)
    variant { length s }
    ensures { to_list (cons x s) = Cons x (to_list s) }
  = assert { (cons x s)[1 ..] == s }

end

module OfList
  use int.Int
  use option.Option
  use list.List
  use list.Length as L
  use list.Nth
  use Seq
  use list.Append

  let rec function of_list (l: list 'a) : seq 'a = match l with
    | Nil -> empty
    | Cons x r -> cons x (of_list r)
    end

  lemma length_of_list:
    forall l: list 'a. length (of_list l) = L.length l

  predicate point_wise (s: seq 'a) (l: list 'a) =
    forall i. 0 <= i < L.length l -> Some (get s i) = nth i l

  lemma elts_seq_of_list: forall l: list 'a.
    point_wise (of_list l) l

  lemma is_of_list: forall l: list 'a, s: seq 'a.
    L.length l = length s -> point_wise s l -> s == of_list l

  let rec lemma of_list_app (l1 l2: list 'a)
    ensures { of_list (l1 ++ l2) == Seq.(++) (of_list l1) (of_list l2) }
    variant { l1 }
  = match l1 with
    | Nil -> ()
    | Cons _ r -> of_list_app r l2
    end

  lemma of_list_app_length: forall l1 [@induction] l2: list 'a.
    length (of_list (l1 ++ l2)) = L.length l1 + L.length l2

  let rec lemma of_list_snoc (l: list 'a) (x: 'a)
    variant { l }
    ensures { of_list (l ++ Cons x Nil) == snoc (of_list l) x }
  = match l with
    | Nil -> assert { snoc empty x = cons x empty }
    | Cons _ r -> of_list_snoc r x;
    end

  meta coercion function of_list

  use ToList

  lemma convolution_to_of_list: forall l: list 'a.
    to_list (of_list l) = l

end

module Mem

  use int.Int
  use Seq

  predicate mem (x: 'a) (s: seq 'a) =
    exists i: int. 0 <= i < length s && s[i] = x

  lemma mem_append : forall x: 'a, s1 s2.
    mem x (s1 ++ s2) <-> mem x s1 \/ mem x s2

  lemma mem_tail: forall x: 'a, s.
    length s > 0 ->
    mem x s <-> (x = s[0] \/ mem x s[1 .. ])

end

module Distinct
  use int.Int
  use Seq

  predicate distinct (s : seq 'a) =
    forall i j. 0 <= i < length s -> 0 <= j < length s ->
    i <> j -> s[i] <> s[j]

end

module Reverse

  use int.Int
  use Seq

  let function reverse (s: seq 'a) : seq 'a =
    create (length s) (fun i -> s[length s - 1 - i])

end

module ToFset
  use int.Int
  use set.Fset
  use Mem
  use Seq

  val function to_set (s: seq 'a) : fset 'a

  axiom to_set_empty: to_set (empty: seq 'a) = (Fset.empty: fset 'a)

  axiom to_set_add: forall s: seq 'a. length s > 0 ->
    to_set s = add s[0] (to_set s[1 ..])

  lemma to_set_cardinal: forall s: seq 'a.
    cardinal (to_set s) <= length s

  lemma to_set_mem: forall s: seq 'a, e: 'a.
    mem e s <-> Fset.mem e (to_set s)

  lemma to_set_snoc: forall s: seq 'a, x: 'a.
    to_set (snoc s x) = add x (to_set s)

  use Distinct

  lemma to_set_cardinal_distinct: forall s: seq 'a. distinct s ->
    cardinal (to_set s) = length s

end

(** {2 Sorted Sequences} *)

module Sorted

  use int.Int
  use Seq

  type t
  predicate le t t
  clone relations.TotalPreOrder as TO with
    type t = t, predicate rel = le, axiom .

  predicate sorted_sub (s: seq t) (l u: int) =
    forall i1 i2. l <= i1 <= i2 < u -> le s[i1] s[i2]
  (** `sorted_sub s l u` is true whenever the sub-sequence `s[l .. u-1]` is
      sorted  w.r.t. order relation `le` *)

  predicate sorted (s: seq t) =
    sorted_sub s 0 (length s)
  (** `sorted s` is true whenever the sequence `s` is sorted w.r.t `le`  *)

  lemma sorted_cons:
    forall x: t, s: seq t.
      (forall i: int. 0 <= i < length s -> le x s[i]) /\ sorted s <->
    sorted (cons x s)

  lemma sorted_append:
    forall s1 s2: seq t.
    (sorted s1 /\ sorted s2 /\
      (forall i j: int. 0 <= i < length s1 /\ 0 <= j < length s2 ->
      le s1[i] s2[j])) <-> sorted (s1 ++ s2)

  lemma sorted_snoc:
    forall x: t, s: seq t.
      (forall i: int. 0 <= i < length s -> le s[i] x) /\ sorted s <->
    sorted (snoc s x)

end

module SortedInt (** sorted sequences of integers *)

  use int.Int
  clone export Sorted with type t = int, predicate le = (<=), goal .

end

module Sum

  use int.Int
  use Seq
  use int.Sum as S

  function sum (s: seq int) : int = S.sum (fun i -> s[i]) 0 (length s)

  lemma sum_snoc:
    forall s x. sum (snoc s x) = sum s + x
  lemma sum_tail:
    forall s. length s >= 1 -> sum s = s[0] + sum s[1 .. ]
  lemma sum_tail_tail:
    forall s. length s >= 2 -> sum s = s[0] + s[1] + sum s[2 .. ]

end

(** {2 Number of occurrences in a sequence} *)

module Occ

  use int.Int
  use int.NumOf as N
  use Seq

  function iseq (x: 'a) (s: seq 'a) : int->bool = fun i -> s[i] = x

  function occ (x: 'a) (s: seq 'a) (l u: int) : int = N.numof (iseq x s) l u

  function occ_all (x: 'a) (s: seq 'a) : int =
    occ x s 0 (length s)

  lemma occ_cons:
    forall k: 'a, s: seq 'a, x: 'a.
    (occ_all k (cons x s) =
    if k = x then 1 + occ_all k s else occ_all k s
    ) by (cons x s == (cons x empty) ++ s)

  lemma occ_snoc:
    forall k: 'a, s: seq 'a, x: 'a.
    occ_all k (snoc s x) =
    if k = x then 1 + occ_all k s else occ_all k s

  lemma occ_tail:
    forall k: 'a, s: seq 'a.
    length s > 0 ->
    (occ_all k s[1..] =
    if k = s[0] then (occ_all k s) - 1 else occ_all k s
    ) by (s == cons s[0] s[1..])

  lemma append_num_occ:
    forall x: 'a, s1 s2: seq 'a.
    occ_all x (s1 ++ s2) =
    occ_all x s1 + occ_all x s2

end

(** {2 Sequences Equality} *)

module SeqEq

  use int.Int
  use Seq

  predicate seq_eq_sub (s1 s2: seq 'a) (l u: int) =
    forall i. l <= i < u -> s1[i] = s2[i]

end

module Exchange

  use int.Int
  use Seq

  predicate exchange (s1 s2: seq 'a) (i j: int) =
    length s1 = length s2 /\
    0 <= i < length s1 /\ 0 <= j < length s1 /\
    s1[i] = s2[j] /\ s1[j] = s2[i] /\
    (forall k:int. 0 <= k < length s1 -> k <> i -> k <> j -> s1[k] = s2[k])

  lemma exchange_set :
    forall s: seq 'a, i j: int.
    0 <= i < length s -> 0 <= j < length s ->
    exchange s s[i <- s[j]][j <- s[i]] i j

end

(** {2 Permutation of sequences} *)

module Permut

  use int.Int
  use Seq
  use Occ
  use SeqEq
  use export Exchange

  predicate permut (s1 s2: seq 'a) (l u: int) =
    length s1 = length s2 /\
    0 <= l <= length s1 /\ 0 <= u <= length s1 /\
    forall v: 'a. occ v s1 l u = occ v s2 l u
  (** `permut s1 s2 l u` is true when the segment `s1[l..u-1]` is a
  permutation of the segment `s2[l..u-1]`. Values outside this range are
  ignored. *)

  predicate permut_sub (s1 s2: seq 'a) (l u: int) =
    seq_eq_sub s1 s2 0 l /\
    permut s1 s2 l u /\
    seq_eq_sub s1 s2 u (length s1)
  (** `permut_sub s1 s2 l u` is true when the segment `s1[l..u-1]` is a
  permutation of the segment `s2[l..u-1]` and values outside this range
  are equal. *)

  predicate permut_all (s1 s2: seq 'a) =
    length s1 = length s2 /\ permut s1 s2 0 (length s1)
  (** `permut_all s1 s2` is true when sequence `s1` is a permutation of
  sequence `s2` *)

  lemma exchange_permut_sub:
    forall s1 s2: seq 'a, i j l u: int.
    exchange s1 s2 i j -> l <= i < u -> l <= j < u ->
    0 <= l -> u <= length s1 -> permut_sub s1 s2 l u

  (** enlarge the interval *)
  lemma Permut_sub_weakening:
    forall s1 s2: seq 'a, l1 u1 l2 u2: int.
    permut_sub s1 s2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length s1 ->
    permut_sub s1 s2 l2 u2

  (** {3 Lemmas about permut} *)

  lemma permut_refl: forall s: seq 'a, l u: int.
    0 <= l <= length s -> 0 <= u <= length s ->
    permut s s l u

  lemma permut_sym: forall s1 s2: seq 'a, l u: int.
    permut s1 s2 l u -> permut s2 s1 l u

  lemma permut_trans:
    forall s1 s2 s3: seq 'a, l u: int.
    permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u

  lemma permut_exists:
    forall s1 s2: seq 'a, l u i: int.
    permut s1 s2 l u -> l <= i < u ->
    exists j: int. l <= j < u /\ s1[j] = s2[i]

  (** {3 Lemmas about permut_all} *)

  use Mem

  lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 ->
    forall x. mem x s1 <-> mem x s2

  lemma exchange_permut_all:
    forall s1 s2: seq 'a, i j: int.
    exchange s1 s2 i j -> permut_all s1 s2

end

module FoldLeft

  use Seq
  use int.Int

  (** `fold_left f a [b1; ...; bn]` is `f (... (f (f a b1) b2) ...) bn` *)
  let rec function fold_left (f: 'a -> 'b -> 'a) (acc: 'a) (s: seq 'b) : 'a
    variant { length s }
  = if length s = 0 then acc else fold_left f (f acc s[0]) s[1 ..]

  lemma fold_left_ext: forall f: 'b -> 'a -> 'b, acc: 'b, s1 s2: seq 'a.
    s1 == s2 -> fold_left f acc s1 = fold_left f acc s2

  lemma fold_left_cons: forall s: seq 'a, x: 'a, f: 'b -> 'a -> 'b, acc: 'b.
    fold_left f acc (cons x s) = fold_left f (f acc x) s

  let rec lemma fold_left_app (s1 s2: seq 'a) (f: 'b -> 'a -> 'b) (acc: 'b)
    ensures { fold_left f acc (s1 ++ s2) = fold_left f (fold_left f acc s1) s2 }
    variant { Seq.length s1 }
  = if Seq.length s1 > 0 then fold_left_app s1[1 ..] s2 f (f acc (Seq.get s1 0))

end

module FoldRight

  use Seq
  use int.Int

  (** `fold_right f [a1; ...; an] b` is `f a1 (f a2 (... (f an b) ...))` *)
  let rec function fold_right (f: 'b -> 'a -> 'a) (s: seq 'b) (acc: 'a) : 'a
    variant { length s }
  = if length s = 0 then acc
    else let acc = f s[length s - 1] acc in fold_right f s[.. length s - 1] acc

  lemma fold_right_ext: forall f: 'a -> 'b -> 'b, acc: 'b, s1 s2: seq 'a.
    s1 == s2 -> fold_right f s1 acc = fold_right f s2 acc

  lemma fold_right_snoc: forall s: seq 'a, x: 'a, f: 'a -> 'b -> 'b, acc: 'b.
    fold_right f (snoc s x) acc = fold_right f s (f x acc)

end

(*** TODO / TO DISCUSS

  - what about s[i..j] when i..j is not a valid range?
    left undefined? empty sequence?

  - what about negative index e.g. s[-3..] for the last three elements?

  - a syntax for cons and snoc?

  - create: better name? move to a separate theory?

  - UNPLEASANT: we cannot write s[1..] because 1. is recognized as a float
    so we have to write s[1 ..]

  - UNPLEASANT: when using both arrays and sequences, the lack of overloading
    is a pain; see for instance vstte12_ring_buffer.mlw

*)