File: map.cc

package info (click to toggle)
widelands 1%3A19%2Brepack-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 371,172 kB
  • sloc: cpp: 108,458; ansic: 18,695; python: 5,155; sh: 487; xml: 460; makefile: 229
file content (2038 lines) | stat: -rw-r--r-- 60,807 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
/*
 * Copyright (C) 2002-2004, 2006-2013 by the Widelands Development Team
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 */

#include "logic/map.h"

#include <algorithm>
#include <memory>

#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/format.hpp>

#include "base/log.h"
#include "base/macros.h"
#include "base/wexception.h"
#include "build_info.h"
#include "economy/flag.h"
#include "economy/road.h"
#include "editor/tools/increase_resources_tool.h"
#include "io/filesystem/layered_filesystem.h"
#include "logic/findimmovable.h"
#include "logic/findnode.h"
#include "logic/map_objects/checkstep.h"
#include "logic/map_objects/tribes/soldier.h"
#include "logic/map_objects/tribes/tribe_descr.h"
#include "logic/map_objects/world/terrain_description.h"
#include "logic/map_objects/world/world.h"
#include "logic/mapfringeregion.h"
#include "logic/objective.h"
#include "logic/pathfield.h"
#include "logic/player.h"
#include "map_io/s2map.h"
#include "map_io/widelands_map_loader.h"
#include "notifications/notifications.h"

namespace Widelands {

/*
==============================================================================

Map IMPLEMENTATION

==============================================================================
*/

/** class Map
 *
 * This really identifies a map like it is in the game
 */

Map::Map()
   : nrplayers_(0),
     scenario_types_(NO_SCENARIO),
     width_(0),
     height_(0),
     pathfieldmgr_(new PathfieldManager) {
}

Map::~Map() {
	cleanup();
}

void Map::recalc_border(const FCoords& fc) {
	if (const PlayerNumber owner = fc.field->get_owned_by()) {
		//  A node that is owned by a player and has a neighbour that is not owned
		//  by that player is a border node.
		for (uint8_t i = 1; i <= 6; ++i) {
			FCoords neighbour;
			get_neighbour(fc, i, &neighbour);
			if (neighbour.field->get_owned_by() != owner) {
				fc.field->set_border(true);
				return;  //  Do not calculate further if there is a border.
			}
		}
	}
	fc.field->set_border(false);
}

/*
===============
Call this function whenever the field at fx/fy has changed in one of the ways:
 - height has changed
 - robust MapObject has been added or removed

This performs the steps outlined in the comment above Map::recalc_brightness()
and recalcs the interactive player's overlay.
===============
*/
void Map::recalc_for_field_area(const World& world, const Area<FCoords> area) {
	assert(0 <= area.x);
	assert(area.x < width_);
	assert(0 <= area.y);
	assert(area.y < height_);
	assert(fields_.get() <= area.field);
	assert(area.field < fields_.get() + max_index());

	{  //  First pass.
		MapRegion<Area<FCoords>> mr(*this, area);
		do {
			recalc_brightness(mr.location());
			recalc_border(mr.location());
			recalc_nodecaps_pass1(world, mr.location());
		} while (mr.advance(*this));
	}

	{  //  Second pass.
		MapRegion<Area<FCoords>> mr(*this, area);
		do
			recalc_nodecaps_pass2(world, mr.location());
		while (mr.advance(*this));
	}
}

/*
===========

this recalculates all data that needs to be recalculated.
This is only needed when all fields have change, this means
a map has been loaded or newly created or in the editor that
the overlays have completely changed.
===========
*/
void Map::recalc_whole_map(const World& world) {
	//  Post process the map in the necessary two passes to calculate
	//  brightness and building caps
	FCoords f;

	for (int16_t y = 0; y < height_; ++y)
		for (int16_t x = 0; x < width_; ++x) {
			f = get_fcoords(Coords(x, y));
			uint32_t radius = 0;
			check_neighbour_heights(f, radius);
			recalc_brightness(f);
			recalc_border(f);
			recalc_nodecaps_pass1(world, f);
		}

	for (int16_t y = 0; y < height_; ++y)
		for (int16_t x = 0; x < width_; ++x) {
			f = get_fcoords(Coords(x, y));
			recalc_nodecaps_pass2(world, f);
		}
}

void Map::recalc_default_resources(const World& world) {
	for (int16_t y = 0; y < height_; ++y)
		for (int16_t x = 0; x < width_; ++x) {
			FCoords f, f1;
			f = get_fcoords(Coords(x, y));
			//  only on unset nodes
			if (f.field->get_resources() != Widelands::kNoResource || f.field->get_resources_amount())
				continue;
			std::map<int32_t, int32_t> m;
			ResourceAmount amount = 0;

			//  this node
			{
				const TerrainDescription& terr = world.terrain_descr(f.field->terrain_r());
				++m[terr.get_default_resource()];
				amount += terr.get_default_resource_amount();
			}
			{
				const TerrainDescription& terd = world.terrain_descr(f.field->terrain_d());
				++m[terd.get_default_resource()];
				amount += terd.get_default_resource_amount();
			}

			//  If one of the neighbours is unwalkable, count its resource
			//  stronger
			//  top left neigbour
			get_neighbour(f, WALK_NW, &f1);
			{
				const TerrainDescription& terr = world.terrain_descr(f1.field->terrain_r());
				const DescriptionIndex resr = terr.get_default_resource();
				const ResourceAmount default_amount = terr.get_default_resource_amount();
				if ((terr.get_is() & TerrainDescription::Is::kUnwalkable) && default_amount > 0)
					m[resr] += 3;
				else
					++m[resr];
				amount += default_amount;
			}
			{
				const TerrainDescription& terd = world.terrain_descr(f1.field->terrain_d());
				const DescriptionIndex resd = terd.get_default_resource();
				const ResourceAmount default_amount = terd.get_default_resource_amount();
				if ((terd.get_is() & TerrainDescription::Is::kUnwalkable) && default_amount > 0)
					m[resd] += 3;
				else
					++m[resd];
				amount += default_amount;
			}

			//  top right neigbour
			get_neighbour(f, WALK_NE, &f1);
			{
				const TerrainDescription& terd = world.terrain_descr(f1.field->terrain_d());
				const DescriptionIndex resd = terd.get_default_resource();
				const ResourceAmount default_amount = terd.get_default_resource_amount();
				if ((terd.get_is() & TerrainDescription::Is::kUnwalkable) && default_amount > 0)
					m[resd] += 3;
				else
					++m[resd];
				amount += default_amount;
			}

			//  left neighbour
			get_neighbour(f, WALK_W, &f1);
			{
				const TerrainDescription& terr = world.terrain_descr(f1.field->terrain_r());
				const DescriptionIndex resr = terr.get_default_resource();
				const ResourceAmount default_amount = terr.get_default_resource_amount();
				if ((terr.get_is() & TerrainDescription::Is::kUnwalkable) && default_amount > 0)
					m[resr] += 3;
				else
					++m[resr];
				amount += default_amount;
			}

			int32_t lv = 0;
			int32_t res = 0;
			std::map<int32_t, int32_t>::iterator i = m.begin();
			while (i != m.end()) {
				if (i->second > lv) {
					lv = i->second;
					res = i->first;
				}
				++i;
			}
			amount /= 6;

			if (res == -1 || res == INVALID_INDEX || res == Widelands::kNoResource || !amount) {
				clear_resources(f);
			} else {
				initialize_resources(f, res, amount);
			}
		}
}

/*
===============
remove your world, remove your data
go back to your initial state
===============
*/
void Map::cleanup() {
	nrplayers_ = 0;
	width_ = height_ = 0;

	fields_.reset();

	starting_pos_.clear();
	scenario_tribes_.clear();
	scenario_names_.clear();
	scenario_ais_.clear();
	scenario_closeables_.clear();

	tags_.clear();
	hint_ = std::string();
	background_ = std::string();

	objectives_.clear();

	port_spaces_.clear();

	// TODO(meitis): should be done here ... but WidelandsMapLoader::preload_map calls
	// this cleanup AFTER assigning filesystem_ in WidelandsMapLoader::WidelandsMapLoader
	// ... so we can't do it here :/
	// filesystem_.reset(nullptr);
}

/*
===========
creates an empty map without name with
the given data
===========
*/
void Map::create_empty_map(const World& world,
                           uint32_t const w,
                           uint32_t const h,
                           const Widelands::DescriptionIndex default_terrain,
                           const std::string& name,
                           const std::string& author,
                           const std::string& description) {
	set_size(w, h);
	set_name(name);
	set_author(author);
	set_description(description);
	set_nrplayers(1);
	// Set first tribe found as the "basic" tribe
	// <undefined> (as set before) is useless and will lead to a
	// crash -> Widelands will search for tribe "<undefined>"
	set_scenario_player_tribe(1, Tribes::get_all_tribenames()[0]);
	set_scenario_player_name(1, (boost::format(_("Player %u")) % 1).str());
	set_scenario_player_ai(1, "");
	set_scenario_player_closeable(1, false);

	{
		Field::Terrains default_terrains;
		default_terrains.d = default_terrain;
		default_terrains.r = default_terrain;
		for (int16_t y = 0; y < height_; ++y) {
			for (int16_t x = 0; x < width_; ++x) {
				auto f = get_fcoords(Coords(x, y));
				f.field->set_height(10);
				f.field->set_terrains(default_terrains);
				clear_resources(f);
			}
		}
	}
	recalc_whole_map(world);

	filesystem_.reset(nullptr);
}

void Map::set_origin(const Coords& new_origin) {
	assert(0 <= new_origin.x);
	assert(new_origin.x < width_);
	assert(0 <= new_origin.y);
	assert(new_origin.y < height_);

	for (uint8_t i = get_nrplayers(); i;) {
		starting_pos_[--i].reorigin(new_origin, extent());
	}

	std::unique_ptr<Field[]> new_field_order(new Field[width_ * height_]);
	memset(new_field_order.get(), 0, sizeof(Field) * width_ * height_);

	// Rearrange The fields
	// NOTE because of the triangle design, we have to take special care about cases
	// NOTE where y is changed by an odd number
	bool yisodd = (new_origin.y % 2) != 0;
	for (FCoords c(Coords(0, 0)); c.y < height_; ++c.y) {
		bool cyisodd = (c.y % 2) != 0;
		for (c.x = 0; c.x < width_; ++c.x) {
			Coords temp;
			if (yisodd && cyisodd)
				temp = Coords(c.x + new_origin.x + 1, c.y + new_origin.y);
			else
				temp = Coords(c.x + new_origin.x, c.y + new_origin.y);
			normalize_coords(temp);
			new_field_order[get_index(c, width_)] = operator[](temp);
		}
	}
	// Now that we restructured the fields, we just overwrite the old order
	fields_.reset(new_field_order.release());

	//  Inform immovables and bobs about their new coordinates.
	for (FCoords c(Coords(0, 0), fields_.get()); c.y < height_; ++c.y)
		for (c.x = 0; c.x < width_; ++c.x, ++c.field) {
			assert(c.field == &operator[](c));
			if (upcast(Immovable, immovable, c.field->get_immovable()))
				immovable->position_ = c;
			for (Bob* bob = c.field->get_first_bob(); bob; bob = bob->get_next_bob()) {
				bob->position_.x = c.x;
				bob->position_.y = c.y;
				bob->position_.field = c.field;
			}
		}

	// Take care about port spaces
	PortSpacesSet new_port_spaces;
	for (PortSpacesSet::iterator it = port_spaces_.begin(); it != port_spaces_.end(); ++it) {
		Coords temp;
		if (yisodd && ((it->y % 2) == 0))
			temp = Coords(it->x - new_origin.x - 1, it->y - new_origin.y);
		else
			temp = Coords(it->x - new_origin.x, it->y - new_origin.y);
		normalize_coords(temp);
		log("(%i,%i) -> (%i,%i)\n", it->x, it->y, temp.x, temp.y);
		new_port_spaces.insert(temp);
	}
	port_spaces_ = new_port_spaces;
}

/*
===============
Set the size of the map. This should only happen once during initial load.
===============
*/
void Map::set_size(const uint32_t w, const uint32_t h) {
	assert(!fields_);

	width_ = w;
	height_ = h;

	fields_.reset(new Field[w * h]);
	memset(fields_.get(), 0, sizeof(Field) * w * h);

	pathfieldmgr_->set_size(w * h);
}

/*
 * The scenario get/set functions
 */
const std::string& Map::get_scenario_player_tribe(const PlayerNumber p) const {
	assert(scenario_tribes_.size() == get_nrplayers());
	assert(p);
	assert(p <= get_nrplayers());
	return scenario_tribes_[p - 1];
}

const std::string& Map::get_scenario_player_name(const PlayerNumber p) const {
	assert(scenario_names_.size() == get_nrplayers());
	assert(p);
	assert(p <= get_nrplayers());
	return scenario_names_[p - 1];
}

const std::string& Map::get_scenario_player_ai(const PlayerNumber p) const {
	assert(scenario_ais_.size() == get_nrplayers());
	assert(p);
	assert(p <= get_nrplayers());
	return scenario_ais_[p - 1];
}

bool Map::get_scenario_player_closeable(const PlayerNumber p) const {
	assert(scenario_closeables_.size() == get_nrplayers());
	assert(p);
	assert(p <= get_nrplayers());
	return scenario_closeables_[p - 1];
}

void Map::swap_filesystem(std::unique_ptr<FileSystem>& fs) {
	filesystem_.swap(fs);
}

void Map::reset_filesystem() {
	filesystem_.reset();
}

FileSystem* Map::filesystem() const {
	return filesystem_.get();
}

void Map::set_scenario_player_tribe(PlayerNumber const p, const std::string& tribename) {
	assert(p);
	assert(p <= get_nrplayers());
	scenario_tribes_.resize(get_nrplayers());
	scenario_tribes_[p - 1] = tribename;
}

void Map::set_scenario_player_name(PlayerNumber const p, const std::string& playername) {
	assert(p);
	assert(p <= get_nrplayers());
	scenario_names_.resize(get_nrplayers());
	scenario_names_[p - 1] = playername;
}

void Map::set_scenario_player_ai(PlayerNumber const p, const std::string& ainame) {
	assert(p);
	assert(p <= get_nrplayers());
	scenario_ais_.resize(get_nrplayers());
	scenario_ais_[p - 1] = ainame;
}

void Map::set_scenario_player_closeable(PlayerNumber const p, bool closeable) {
	assert(p);
	assert(p <= get_nrplayers());
	scenario_closeables_.resize(get_nrplayers());
	scenario_closeables_[p - 1] = closeable;
}

/*
===============
Change the number of players the map supports.
Could happen multiple times in the map editor.
===============
*/
void Map::set_nrplayers(PlayerNumber const nrplayers) {
	if (!nrplayers) {
		nrplayers_ = 0;
		return;
	}

	starting_pos_.resize(nrplayers, Coords(-1, -1));
	scenario_tribes_.resize(nrplayers);
	scenario_ais_.resize(nrplayers);
	scenario_closeables_.resize(nrplayers);
	scenario_names_.resize(nrplayers);
	scenario_tribes_.resize(nrplayers);

	nrplayers_ = nrplayers;  // in case the number players got less
}

/*
===============
Set the starting coordinates of a player
===============
*/
void Map::set_starting_pos(PlayerNumber const plnum, const Coords& c) {
	assert(1 <= plnum && plnum <= get_nrplayers());
	starting_pos_[plnum - 1] = c;
}

void Map::set_filename(const std::string& filename) {
	filename_ = filename;
}

void Map::set_author(const std::string& author) {
	author_ = author;
}

void Map::set_name(const std::string& name) {
	name_ = name;
}

void Map::set_description(const std::string& description) {
	description_ = description;
}

void Map::set_hint(const std::string& hint) {
	hint_ = hint;
}

void Map::set_background(const std::string& image_path) {
	if (image_path.empty())
		background_.clear();
	else
		background_ = image_path;
}

void Map::add_tag(const std::string& tag) {
	tags_.insert(tag);
}

void Map::delete_tag(const std::string& tag) {
	if (has_tag(tag)) {
		tags_.erase(tags_.find(tag));
	}
}

NodeCaps Map::get_max_nodecaps(const World& world, const FCoords& fc) {
	NodeCaps caps = calc_nodecaps_pass1(world, fc, false);
	caps = calc_nodecaps_pass2(world, fc, false, caps);
	return caps;
}

/// \returns the immovable at the given coordinate
BaseImmovable* Map::get_immovable(const Coords& coord) const {
	return operator[](coord).get_immovable();
}

/*
===============
Call the functor for every field that can be reached from coord without moving
outside the given radius.

Functor is of the form: functor(Map*, FCoords)
===============
*/
template <typename functorT>
void Map::find_reachable(const Area<FCoords>& area, const CheckStep& checkstep, functorT& functor) {
	std::vector<Coords> queue;
	boost::shared_ptr<Pathfields> pathfields = pathfieldmgr_->allocate();

	queue.push_back(area);

	while (queue.size()) {
		// Pop the last ware from the queue
		FCoords const cur = get_fcoords(*queue.rbegin());
		queue.pop_back();
		Pathfield& curpf = pathfields->fields[cur.field - fields_.get()];

		//  handle this node
		functor(*this, cur);
		curpf.cycle = pathfields->cycle;

		// Get neighbours
		for (Direction dir = 1; dir <= 6; ++dir) {
			FCoords neighb;

			get_neighbour(cur, dir, &neighb);

			if  //  node not already handled?
			   (pathfields->fields[neighb.field - fields_.get()].cycle != pathfields->cycle &&
			    //  node within the radius?
			    calc_distance(area, neighb) <= area.radius &&
			    //  allowed to move onto this node?
			    checkstep.allowed(*this, cur, neighb, dir,
			                      cur == area ? CheckStep::stepFirst : CheckStep::stepNormal))
				queue.push_back(neighb);
		}
	}
}

/*
===============
Call the functor for every field within the given radius.

Functor is of the form: functor(Map &, FCoords)
===============
*/
template <typename functorT> void Map::find(const Area<FCoords>& area, functorT& functor) const {
	MapRegion<Area<FCoords>> mr(*this, area);
	do
		functor(*this, mr.location());
	while (mr.advance(*this));
}

/*
===============
FindBobsCallback

The actual logic behind find_bobs and find_reachable_bobs.
===============
*/
struct FindBobsCallback {
	FindBobsCallback(std::vector<Bob*>* const list, const FindBob& functor)
	   : list_(list), functor_(functor), found_(0) {
	}

	void operator()(const Map&, const FCoords& cur) {
		for (Bob* bob = cur.field->get_first_bob(); bob; bob = bob->get_next_bob()) {
			if (list_ && std::find(list_->begin(), list_->end(), bob) != list_->end())
				continue;

			if (functor_.accept(bob)) {
				if (list_)
					list_->push_back(bob);

				++found_;
			}
		}
	}

	std::vector<Bob*>* list_;
	const FindBob& functor_;
	uint32_t found_;
};

/*
===============
Find Bobs in the given area. Only finds objects for which
functor.accept() returns true (the default functor always returns true)
If list is non-zero, pointers to the relevant objects will be stored in
the list.

Returns the number of objects found.
===============
*/
uint32_t
Map::find_bobs(Area<FCoords> const area, std::vector<Bob*>* const list, const FindBob& functor) {
	FindBobsCallback cb(list, functor);

	find(area, cb);

	return cb.found_;
}

/*
===============
Find Bobs that are reachable by moving within the given radius (also see
find_reachable()).
Only finds objects for which functor.accept() returns true (the default functor
always returns true).
If list is non-zero, pointers to the relevant objects will be stored in
the list.

Returns the number of objects found.
===============
*/
uint32_t Map::find_reachable_bobs(Area<FCoords> const area,
                                  std::vector<Bob*>* const list,
                                  const CheckStep& checkstep,
                                  const FindBob& functor) {
	FindBobsCallback cb(list, functor);

	find_reachable(area, checkstep, cb);

	return cb.found_;
}

/*
===============
FindImmovablesCallback

The actual logic behind find_immovables and find_reachable_immovables.
===============
*/
struct FindImmovablesCallback {
	FindImmovablesCallback(std::vector<ImmovableFound>* const list, const FindImmovable& functor)
	   : list_(list), functor_(functor), found_(0) {
	}

	void operator()(const Map&, const FCoords& cur) {
		BaseImmovable* const imm = cur.field->get_immovable();

		if (!imm)
			return;

		if (functor_.accept(*imm)) {
			if (list_) {
				ImmovableFound imf;
				imf.object = imm;
				imf.coords = cur;
				list_->push_back(imf);
			}

			++found_;
		}
	}

	std::vector<ImmovableFound>* list_;
	const FindImmovable& functor_;
	uint32_t found_;
};

/*
===============
Find all immovables in the given area for which functor returns true
(the default functor always returns true).
Returns true if an immovable has been found.
If list is not 0, found immovables are stored in list.
===============
*/
uint32_t Map::find_immovables(Area<FCoords> const area,
                              std::vector<ImmovableFound>* const list,
                              const FindImmovable& functor) {
	FindImmovablesCallback cb(list, functor);

	find(area, cb);

	return cb.found_;
}

/*
===============
Find all immovables reachable by moving in the given radius (see
find_reachable()).
Return immovables for which functor returns true (the default functor
always returns true).
If list is not 0, found immovables are stored in list.
Returns the number of immovables we found.
===============
*/
uint32_t Map::find_reachable_immovables(Area<FCoords> const area,
                                        std::vector<ImmovableFound>* const list,
                                        const CheckStep& checkstep,
                                        const FindImmovable& functor) {
	FindImmovablesCallback cb(list, functor);

	find_reachable(area, checkstep, cb);

	return cb.found_;
}

/**
 * Find all immovables that are reachable without moving out of the
 * given area with the additional constraints given by checkstep,
 * and store them uniquely in a list.
 *
 * \return the number of immovables found.
 */
uint32_t Map::find_reachable_immovables_unique(const Area<FCoords> area,
                                               std::vector<BaseImmovable*>& list,
                                               const CheckStep& checkstep,
                                               const FindImmovable& functor) {
	std::vector<ImmovableFound> duplist;
	FindImmovablesCallback cb(&duplist, find_immovable_always_true());

	find_reachable(area, checkstep, cb);

	for (ImmovableFound& imm_found : duplist) {
		BaseImmovable& obj = *imm_found.object;
		if (std::find(list.begin(), list.end(), &obj) == list.end()) {
			if (functor.accept(obj)) {
				list.push_back(&obj);
			}
		}
	}

	return list.size();
}

/*
===============
FindNodesCallback

The actual logic behind find_fields and find_reachable_fields.
===============
*/
struct FindNodesCallback {
	FindNodesCallback(std::vector<Coords>* const list, const FindNode& functor)
	   : list_(list), functor_(functor), found_(0) {
	}

	void operator()(const Map& map, const FCoords& cur) {
		if (functor_.accept(map, cur)) {
			if (list_)
				list_->push_back(cur);

			++found_;
		}
	}

	std::vector<Coords>* list_;
	const FindNode& functor_;
	uint32_t found_;
};

/*
===============
Fills in a list of coordinates of fields within the given area that functor
accepts.
Returns the number of matching fields.

Note that list can be 0.
===============
*/
uint32_t
Map::find_fields(Area<FCoords> const area, std::vector<Coords>* list, const FindNode& functor) {
	FindNodesCallback cb(list, functor);

	find(area, cb);

	return cb.found_;
}

/*
===============
Fills in a list of coordinates of fields reachable by walking within the given
radius that functor accepts.
Returns the number of matching fields.

Note that list can be 0.
===============
*/
uint32_t Map::find_reachable_fields(Area<FCoords> const area,
                                    std::vector<Coords>* list,
                                    const CheckStep& checkstep,
                                    const FindNode& functor) {
	FindNodesCallback cb(list, functor);

	find_reachable(area, checkstep, cb);

	return cb.found_;
}

/*
Node attribute recalculation passes
------------------------------------

Some events can change the map in a way that run-time calculated attributes
(Field::brightness and Field::caps) need to be recalculated.

These events include:
- change of height (e.g. by planing)
- change of terrain (in the editor)
- insertion of a "robust" MapObject
- removal of a "robust" MapObject

All these events can change the passability, buildability, etc. of fields
with a radius of two fields. This means that you must build a list of the
directly affected field and all fields that can be reached in two steps.

You must then perform the following operations:
1. Call recalc_brightness() and recalc_nodecaps_pass1() on all nodes
2. Call recalc_nodecaps_pass2() on all fields

Note: it is possible to leave out recalc_brightness() unless the height has
been changed.

The Field::caps calculation is split into more passes because of inter-field
dependencies.
*/

/*
===============
Fetch the slopes to neighbours and call the actual logic in Field
===============
*/
void Map::recalc_brightness(const FCoords& f) {
	int32_t left, right, top_left, top_right, bottom_left, bottom_right;
	Field::Height const height = f.field->get_height();

	{
		FCoords neighbour;
		get_ln(f, &neighbour);
		left = height - neighbour.field->get_height();
	}
	{
		FCoords neighbour;
		get_rn(f, &neighbour);
		right = height - neighbour.field->get_height();
	}
	{
		FCoords neighbour;
		get_tln(f, &neighbour);
		top_left = height - neighbour.field->get_height();
		get_rn(neighbour, &neighbour);
		top_right = height - neighbour.field->get_height();
	}
	{
		FCoords neighbour;
		get_bln(f, &neighbour);
		bottom_left = height - neighbour.field->get_height();
		get_rn(neighbour, &neighbour);
		bottom_right = height - neighbour.field->get_height();
	}
	f.field->set_brightness(left, right, top_left, top_right, bottom_left, bottom_right);
}

/*
===============
Recalculate the caps for the given node.
 - Check terrain types for passability and flag buildability

I hope this is understandable and maintainable.

Note: due to inter-field dependencies, nodecaps calculations are split up
into two passes. You should always perform both passes. See the comment
above recalc_brightness.
===============
*/
void Map::recalc_nodecaps_pass1(const World& world, const FCoords& f) {
	f.field->caps = calc_nodecaps_pass1(world, f, true);
}

NodeCaps Map::calc_nodecaps_pass1(const World& world, const FCoords& f, bool consider_mobs) {
	uint8_t caps = CAPS_NONE;

	// 1a) Get all the neighbours to make life easier
	const FCoords tr = tr_n(f);
	const FCoords tl = tl_n(f);
	const FCoords l = l_n(f);

	const TerrainDescription::Is tr_d_terrain_is =
	   world.terrain_descr(tr.field->terrain_d()).get_is();
	const TerrainDescription::Is tl_r_terrain_is =
	   world.terrain_descr(tl.field->terrain_r()).get_is();
	const TerrainDescription::Is tl_d_terrain_is =
	   world.terrain_descr(tl.field->terrain_d()).get_is();
	const TerrainDescription::Is l_r_terrain_is = world.terrain_descr(l.field->terrain_r()).get_is();
	const TerrainDescription::Is f_d_terrain_is = world.terrain_descr(f.field->terrain_d()).get_is();
	const TerrainDescription::Is f_r_terrain_is = world.terrain_descr(f.field->terrain_r()).get_is();

	//  1b) Collect some information about the neighbours
	uint8_t cnt_unwalkable = 0;
	uint8_t cnt_water = 0;
	uint8_t cnt_unreachable = 0;

	if (tr_d_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;
	if (tl_r_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;
	if (tl_d_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;
	if (l_r_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;
	if (f_d_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;
	if (f_r_terrain_is & TerrainDescription::Is::kUnwalkable)
		++cnt_unwalkable;

	if (tr_d_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;
	if (tl_r_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;
	if (tl_d_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;
	if (l_r_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;
	if (f_d_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;
	if (f_r_terrain_is & TerrainDescription::Is::kWater)
		++cnt_water;

	if (tr_d_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;
	if (tl_r_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;
	if (tl_d_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;
	if (l_r_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;
	if (f_d_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;
	if (f_r_terrain_is & TerrainDescription::Is::kUnreachable)
		++cnt_unreachable;

	//  2) Passability

	//  2a) If any of the neigbouring triangles is walkable this node is
	//  walkable.
	if (cnt_unwalkable < 6)
		caps |= MOVECAPS_WALK;

	//  2b) If all neighbouring triangles are water, the node is swimmable.
	if (cnt_water == 6)
		caps |= MOVECAPS_SWIM;

	// 2c) [OVERRIDE] If any of the neighbouring triangles is really "bad" (such
	// as lava), we can neither walk nor swim to this node.
	if (cnt_unreachable)
		caps &= ~(MOVECAPS_WALK | MOVECAPS_SWIM);

	//  === everything below is used to check buildability ===

	// if we are interested in the maximum theoretically available NodeCaps, this is not run
	if (consider_mobs) {
		//  3) General buildability check: if a "robust" MapObject is on this node
		//  we cannot build anything on it. Exception: we can build flags on roads.
		if (BaseImmovable* const imm = get_immovable(f))
			if (!dynamic_cast<Road const*>(imm) && imm->get_size() >= BaseImmovable::SMALL) {
				// 3b) [OVERRIDE] check for "unwalkable" MapObjects
				if (!imm->get_passable())
					caps &= ~(MOVECAPS_WALK | MOVECAPS_SWIM);
				return static_cast<NodeCaps>(caps);
			}
	}

	//  4) Flags
	//  We can build flags on anything that's walkable and buildable, with some
	//  restrictions
	if (caps & MOVECAPS_WALK) {
		//  4b) Flags must be at least 2 edges apart
		if (consider_mobs &&
		    find_immovables(Area<FCoords>(f, 1), nullptr, FindImmovableType(MapObjectType::FLAG)))
			return static_cast<NodeCaps>(caps);
		caps |= BUILDCAPS_FLAG;
	}
	return static_cast<NodeCaps>(caps);
}

/*
===============
Second pass of nodecaps. Determine which kind of building (if any) can be built
on this Field.

Important: flag buildability has already been checked in the first pass.
===============
*/
void Map::recalc_nodecaps_pass2(const World& world, const FCoords& f) {
	f.field->caps = calc_nodecaps_pass2(world, f, true);
}

NodeCaps Map::calc_nodecaps_pass2(const World& world,
                                  const FCoords& f,
                                  bool consider_mobs,
                                  NodeCaps initcaps) {
	uint8_t caps = consider_mobs ? f.field->caps : static_cast<uint8_t>(initcaps);

	// NOTE  This dependency on the bottom-right neighbour is the reason
	// NOTE  why the caps calculation is split into two passes
	// NOTE  However this dependency has to be recalculated in case we are interested in the
	// NOTE  maximum possible NodeCaps for this FCoord
	const FCoords br = br_n(f);
	if (consider_mobs) {
		if (!(br.field->caps & BUILDCAPS_FLAG) &&
		    (!br.field->get_immovable() ||
		     br.field->get_immovable()->descr().type() != MapObjectType::FLAG))
			return static_cast<NodeCaps>(caps);
	} else {
		if (!(calc_nodecaps_pass1(world, br, false) & BUILDCAPS_FLAG))
			return static_cast<NodeCaps>(caps);
	}

	bool mine;
	uint8_t buildsize = calc_buildsize(world, f, true, &mine, consider_mobs, initcaps);
	if (buildsize < BaseImmovable::SMALL)
		return static_cast<NodeCaps>(caps);
	assert(buildsize >= BaseImmovable::SMALL && buildsize <= BaseImmovable::BIG);

	if (buildsize == BaseImmovable::BIG) {
		if (calc_buildsize(world, l_n(f), false, nullptr, consider_mobs, initcaps) <
		       BaseImmovable::BIG ||
		    calc_buildsize(world, tl_n(f), false, nullptr, consider_mobs, initcaps) <
		       BaseImmovable::BIG ||
		    calc_buildsize(world, tr_n(f), false, nullptr, consider_mobs, initcaps) <
		       BaseImmovable::BIG)
			buildsize = BaseImmovable::MEDIUM;
	}

	// Reduce building size if it would block connectivity
	if (buildsize == BaseImmovable::BIG) {
		static const WalkingDir cycledirs[10] = {
		   WALK_NE, WALK_NE, WALK_NW, WALK_W, WALK_W, WALK_SW, WALK_SW, WALK_SE, WALK_E, WALK_E};
		if (!is_cycle_connected(br, 10, cycledirs))
			buildsize = BUILDCAPS_MEDIUM;
	}
	if (buildsize < BaseImmovable::BIG) {
		static const WalkingDir cycledirs[6] = {WALK_NE, WALK_NW, WALK_W, WALK_SW, WALK_SE, WALK_E};
		if (!is_cycle_connected(br, 6, cycledirs))
			return static_cast<NodeCaps>(caps);
	}

	if (mine) {
		if (static_cast<int32_t>(br.field->get_height()) - f.field->get_height() < 4)
			caps |= BUILDCAPS_MINE;
	} else {
		Field::Height const f_height = f.field->get_height();

		// Reduce building size based on slope of direct neighbours:
		//  - slope >= 4: can't build anything here -> return
		//  - slope >= 3: maximum size is small
		{
			MapFringeRegion<Area<FCoords>> mr(*this, Area<FCoords>(f, 1));
			do {
				uint16_t const slope = abs(mr.location().field->get_height() - f_height);
				if (slope >= 4)
					return static_cast<NodeCaps>(caps);
				if (slope >= 3)
					buildsize = BaseImmovable::SMALL;
			} while (mr.advance(*this));
		}
		if (abs(br.field->get_height() - f_height) >= 2)
			return static_cast<NodeCaps>(caps);

		// Reduce building size based on height diff. of second order
		// neighbours  If height difference between this field and second
		// order neighbour is >= 3, we can only build a small house here.
		// Additionally, we can potentially build a port on this field
		// if one of the second order neighbours is swimmable.
		if (buildsize >= BaseImmovable::MEDIUM) {
			MapFringeRegion<Area<FCoords>> mr(*this, Area<FCoords>(f, 2));

			do {
				if (abs(mr.location().field->get_height() - f_height) >= 3) {
					buildsize = BaseImmovable::SMALL;
					break;
				}
			} while (mr.advance(*this));
		}

		if ((buildsize == BaseImmovable::BIG) && is_port_space(f) && !find_portdock(f).empty())
			caps |= BUILDCAPS_PORT;

		caps |= buildsize;
	}
	return static_cast<NodeCaps>(caps);
}

/**
 * Return the size of immovable that is supposed to be buildable on \p f,
 * based on immovables on \p f and its neighbours.
 * Sets \p ismine depending on whether the field is on mountaineous terrain
 * or not.
 * \p consider_mobs defines, whether mapobjects currently on \p f or neighbour fields should be
 * considered
 * for the calculation. If not (calculation of maximum theoretical possible buildsize) initcaps must
 * be set.
 */
int Map::calc_buildsize(const World& world,
                        const FCoords& f,
                        bool avoidnature,
                        bool* ismine,
                        bool consider_mobs,
                        NodeCaps initcaps) {
	if (consider_mobs) {
		if (!(f.field->get_caps() & MOVECAPS_WALK))
			return BaseImmovable::NONE;
		if (BaseImmovable const* const immovable = get_immovable(f))
			if (immovable->get_size() >= BaseImmovable::SMALL)
				return BaseImmovable::NONE;
	} else if (!(initcaps & MOVECAPS_WALK))
		return BaseImmovable::NONE;

	// Get all relevant neighbours and count terrain triangle types.
	const FCoords tr = tr_n(f);
	const FCoords tl = tl_n(f);
	const FCoords l = l_n(f);

	const TerrainDescription::Is terrains[6] = {world.terrain_descr(tr.field->terrain_d()).get_is(),
	                                            world.terrain_descr(tl.field->terrain_r()).get_is(),
	                                            world.terrain_descr(tl.field->terrain_d()).get_is(),
	                                            world.terrain_descr(l.field->terrain_r()).get_is(),
	                                            world.terrain_descr(f.field->terrain_d()).get_is(),
	                                            world.terrain_descr(f.field->terrain_r()).get_is()};

	uint32_t cnt_mineable = 0;
	uint32_t cnt_walkable = 0;
	for (uint32_t i = 0; i < 6; ++i) {
		if (terrains[i] & TerrainDescription::Is::kWater ||
		    terrains[i] & TerrainDescription::Is::kUnwalkable)
			return BaseImmovable::NONE;
		if (terrains[i] & TerrainDescription::Is::kMineable)
			++cnt_mineable;
		if (terrains[i] & TerrainDescription::Is::kWalkable)
			++cnt_walkable;
	}

	if (cnt_mineable == 6) {
		if (ismine)
			*ismine = true;
		return BaseImmovable::SMALL;
	}
	if (cnt_mineable || cnt_walkable)
		return BaseImmovable::NONE;

	// Adjust size based on neighbouring immovables
	int buildsize = BaseImmovable::BIG;
	if (consider_mobs) {
		std::vector<ImmovableFound> objectlist;
		find_immovables(Area<FCoords>(f, 1), &objectlist,
		                FindImmovableSize(BaseImmovable::SMALL, BaseImmovable::BIG));
		for (uint32_t i = 0; i < objectlist.size(); ++i) {
			const BaseImmovable* obj = objectlist[i].object;
			int objsize = obj->get_size();
			if (objsize == BaseImmovable::NONE)
				continue;
			if (avoidnature && obj->descr().type() == MapObjectType::IMMOVABLE)
				objsize += 1;
			if (objsize + buildsize > BaseImmovable::BIG)
				buildsize = BaseImmovable::BIG - objsize + 1;
		}
	}

	if (ismine)
		*ismine = false;
	return buildsize;
}

/**
 * We call a cycle on the map simply connected
 * if the subgraph of the cycle which can be walked on is connected.
 *
 * The cycle is described as a \p start point plus
 * a description of the directions in which to walk from the starting point.
 * The array \p dirs must have length \p length, where \p length is
 * the length of the cycle.
 */
bool Map::is_cycle_connected(const FCoords& start, uint32_t length, const WalkingDir* dirs) {
	FCoords f = start;
	bool prev_walkable = start.field->get_caps() & MOVECAPS_WALK;
	uint32_t alternations = 0;

	for (uint32_t i = 0; i < length; ++i) {
		f = get_neighbour(f, dirs[i]);
		const bool walkable = f.field->get_caps() & MOVECAPS_WALK;
		alternations += walkable != prev_walkable;
		if (alternations > 2)
			return false;
		prev_walkable = walkable;
	}

	assert(start == f);

	return true;
}

/**
 * Returns a list of portdock fields (if any) that a port built at \p c should have.
 */
std::vector<Coords> Map::find_portdock(const Coords& c) const {
	static const WalkingDir cycledirs[16] = {WALK_NE, WALK_NE, WALK_NE, WALK_NW, WALK_NW, WALK_W,
	                                         WALK_W,  WALK_W,  WALK_SW, WALK_SW, WALK_SW, WALK_SE,
	                                         WALK_SE, WALK_E,  WALK_E,  WALK_E};
	const FCoords start = br_n(br_n(get_fcoords(c)));
	const Widelands::PlayerNumber owner = start.field->get_owned_by();
	bool is_good_water;
	FCoords f = start;
	std::vector<Coords> portdock;
	for (uint32_t i = 0; i < 16; ++i) {
		is_good_water = (f.field->get_caps() & (MOVECAPS_SWIM | MOVECAPS_WALK)) == MOVECAPS_SWIM;

		// Any immovable here? (especially another portdock)
		if (is_good_water && f.field->get_immovable()) {
			is_good_water = false;
		}

		// If starting point is owned we make sure this field has the same owner
		if (is_good_water && owner != neutral() && f.field->get_owned_by() != owner) {
			is_good_water = false;
		}

		// ... and is not on a border
		if (is_good_water && owner != neutral() && f.field->is_border()) {
			is_good_water = false;
		}

		if (is_good_water) {
			portdock.push_back(f);
			// Occupy 2 fields maximum in order not to block space for other ports that
			// might be built in the vicinity.
			if (portdock.size() == 2) {
				return portdock;
			}
		}

		if (i < 15)
			f = get_neighbour(f, cycledirs[i]);
	}

	return portdock;
}

/// \returns true, if Coordinates are in port space list
bool Map::is_port_space(const Coords& c) const {
	return port_spaces_.count(c);
}

/// Set or unset a space as port space
void Map::set_port_space(Coords c, bool allowed) {
	if (allowed) {
		port_spaces_.insert(c);
	} else {
		port_spaces_.erase(c);
	}
}

/**
 * Calculate the (Manhattan) distance from a to b
 * a and b are expected to be normalized!
 */
uint32_t Map::calc_distance(const Coords& a, const Coords& b) const {
	uint32_t dist;
	int32_t dy;

	// do we fly up or down?
	dy = b.y - a.y;
	if (dy > static_cast<int32_t>(height_ >> 1))  //  wrap-around!
		dy -= height_;
	else if (dy < -static_cast<int32_t>(height_ >> 1))
		dy += height_;

	dist = abs(dy);

	if (static_cast<int16_t>(dist) >= width_)
		// no need to worry about x movement at all
		return dist;

	// [lx..rx] is the x-range we can cover simply by walking vertically
	// towards b
	// Hint: (~a.y & 1) is 1 for even rows, 0 for odd rows.
	// This means we round UP for even rows, and we round DOWN for odd rows.
	int32_t lx, rx;

	lx = a.x - ((dist + (~a.y & 1)) >> 1);  // div 2
	rx = lx + dist;

	// Allow for wrap-around
	// Yes, the second is an else if; see the above if (dist >= width_)
	if (lx < 0)
		lx += width_;
	else if (rx >= static_cast<int32_t>(width_))
		rx -= width_;

	// Normal, non-wrapping case
	if (lx <= rx) {
		if (b.x < lx) {
			int32_t dx1 = lx - b.x;
			int32_t dx2 = b.x - (rx - width_);
			dist += std::min(dx1, dx2);
		} else if (b.x > rx) {
			int32_t dx1 = b.x - rx;
			int32_t dx2 = (lx + width_) - b.x;
			dist += std::min(dx1, dx2);
		}
	} else {
		// Reverse case
		if (b.x > rx && b.x < lx) {
			int32_t dx1 = b.x - rx;
			int32_t dx2 = lx - b.x;
			dist += std::min(dx1, dx2);
		}
	}

	return dist;
}

#define BASE_COST_PER_FIELD 1800
#define SLOPE_COST_DIVISOR 50
#define SLOPE_COST_STEPS 8

/*
===============
Calculates the cost estimate between the two points.
This function is used mainly for the path-finding estimate.
===============
*/
int32_t Map::calc_cost_estimate(const Coords& a, const Coords& b) const {
	return calc_distance(a, b) * BASE_COST_PER_FIELD;
}

/**
 * \return a lower bound on the time required to walk from \p a to \p b
 */
int32_t Map::calc_cost_lowerbound(const Coords& a, const Coords& b) const {
	return calc_distance(a, b) * calc_cost(-SLOPE_COST_STEPS);
}

/*
===============
Calculate the hard cost of walking the given slope (positive means up,
negative means down).
The cost is in milliseconds it takes to walk.

The time is calculated as BASE_COST_PER_FIELD * f, where

f = 1.0 + d(Slope) - d(0)
d = (Slope + SLOPE_COST_STEPS) * (Slope + SLOPE_COST_STEPS - 1)
       / (2 * SLOPE_COST_DIVISOR)

Note that the actual calculations multiply through by (2 * SLOPE_COST_DIVISOR)
to avoid using floating point numbers in game logic code.

Slope is limited to the range [ -SLOPE_COST_STEPS; +oo [
===============
*/
#define CALC_COST_D(slope) (((slope) + SLOPE_COST_STEPS) * ((slope) + SLOPE_COST_STEPS - 1))

static int32_t calc_cost_d(int32_t slope) {
	if (slope < -SLOPE_COST_STEPS)
		slope = -SLOPE_COST_STEPS;

	return CALC_COST_D(slope);
}

int32_t Map::calc_cost(int32_t const slope) const {
	return BASE_COST_PER_FIELD * (2 * SLOPE_COST_DIVISOR + calc_cost_d(slope) - CALC_COST_D(0)) /
	       (2 * SLOPE_COST_DIVISOR);
}

/*
===============
Return the time it takes to walk the given step from coords in the given
direction, in milliseconds.
===============
*/
int32_t Map::calc_cost(const Coords& coords, const int32_t dir) const {
	FCoords f;
	int32_t startheight;
	int32_t delta;

	// Calculate the height delta
	f = get_fcoords(coords);
	startheight = f.field->get_height();

	get_neighbour(f, dir, &f);
	delta = f.field->get_height() - startheight;

	return calc_cost(delta);
}

/*
===============
Calculate the average cost of walking the given step in both directions.
===============
*/
int32_t Map::calc_bidi_cost(const Coords& coords, const int32_t dir) const {
	FCoords f;
	int32_t startheight;
	int32_t delta;

	// Calculate the height delta
	f = get_fcoords(coords);
	startheight = f.field->get_height();

	get_neighbour(f, dir, &f);
	delta = f.field->get_height() - startheight;

	return (calc_cost(delta) + calc_cost(-delta)) / 2;
}

/*
===============
Calculate the cost of walking the given path.
If either of the forward or backward pointers is set, it will be filled in
with the cost of walking in said direction.
===============
*/
void Map::calc_cost(const Path& path, int32_t* const forward, int32_t* const backward) const {
	Coords coords = path.get_start();

	if (forward)
		*forward = 0;
	if (backward)
		*backward = 0;

	const Path::StepVector::size_type nr_steps = path.get_nsteps();
	for (Path::StepVector::size_type i = 0; i < nr_steps; ++i) {
		const Direction dir = path[i];

		if (forward)
			*forward += calc_cost(coords, dir);
		get_neighbour(coords, dir, &coords);
		if (backward)
			*backward += calc_cost(coords, get_reverse_dir(dir));
	}
}

/// Get a node's neighbour by direction.
void Map::get_neighbour(const Coords& f, Direction const dir, Coords* const o) const {
	switch (dir) {
	case WALK_NW:
		get_tln(f, o);
		break;
	case WALK_NE:
		get_trn(f, o);
		break;
	case WALK_E:
		get_rn(f, o);
		break;
	case WALK_SE:
		get_brn(f, o);
		break;
	case WALK_SW:
		get_bln(f, o);
		break;
	case WALK_W:
		get_ln(f, o);
		break;
	default:
		NEVER_HERE();
	}
}

void Map::get_neighbour(const FCoords& f, Direction const dir, FCoords* const o) const {
	switch (dir) {
	case WALK_NW:
		get_tln(f, o);
		break;
	case WALK_NE:
		get_trn(f, o);
		break;
	case WALK_E:
		get_rn(f, o);
		break;
	case WALK_SE:
		get_brn(f, o);
		break;
	case WALK_SW:
		get_bln(f, o);
		break;
	case WALK_W:
		get_ln(f, o);
		break;
	default:
		NEVER_HERE();
	}
}

std::unique_ptr<MapLoader> Map::get_correct_loader(const std::string& filename) {
	std::unique_ptr<MapLoader> result;

	std::string lower_filename = filename;
	boost::algorithm::to_lower(lower_filename);

	if (boost::algorithm::ends_with(lower_filename, WLMF_SUFFIX)) {
		try {
			result.reset(new WidelandsMapLoader(g_fs->make_sub_file_system(filename), this));
		} catch (...) {
			//  If this fails, it is an illegal file.
			//  TODO(unknown): catchall hides real errors! Replace with more specific code
		}
	} else if (boost::algorithm::ends_with(lower_filename, S2MF_SUFFIX) ||
	           boost::algorithm::ends_with(lower_filename, S2MF_SUFFIX2)) {
		result.reset(new S2MapLoader(filename, *this));
	}
	return result;
}

/**
 * Finds a path from start to end for a MapObject with the given movecaps.
 *
 * The path is stored in \p path, as a series of MapObject::WalkingDir entries.
 *
 * \param persist tells the function how hard it should try to find a path:
 * If \p persist is \c 0, the function will never give up early. Otherwise, the
 * function gives up when it becomes clear that the path takes longer than
 * persist * bird's distance of flat terrain.
 * Note that if the terrain contains steep hills, the cost calculation will
 * cause the search to terminate earlier than you may think. If persist==1,
 * findpath() can only find a path if the terrain is completely flat.
 *
 * \param checkstep findpath() calls this checkstep functor-like to determine
 * whether moving from one field to another is legal.
 *
 * \param instart starting point of the search
 * \param inend end point of the search
 * \param path will receive the found path if successful
 * \param flags UNDOCUMENTED
 *
 * \return the cost of the path (in milliseconds of normal walking
 * speed) or -1 if no path has been found.
 */
// TODO(unknown): Document parameters instart, inend, path, flags
int32_t Map::findpath(Coords instart,
                      Coords inend,
                      int32_t const persist,
                      Path& path,
                      const CheckStep& checkstep,
                      uint32_t const flags) {
	FCoords start;
	FCoords end;
	int32_t upper_cost_limit;
	FCoords cur;

	normalize_coords(instart);
	normalize_coords(inend);

	start = FCoords(instart, &operator[](instart));
	end = FCoords(inend, &operator[](inend));

	path.path_.clear();

	// Some stupid cases...
	if (start == end) {
		path.start_ = start;
		path.end_ = end;
		return 0;  // duh...
	}

	if (!checkstep.reachable_dest(*this, end))
		return -1;

	if (!persist)
		upper_cost_limit = 0;
	else
		// assume flat terrain
		upper_cost_limit = persist * calc_cost_estimate(start, end);

	// Actual pathfinding
	boost::shared_ptr<Pathfields> pathfields = pathfieldmgr_->allocate();
	Pathfield::Queue Open;
	Pathfield* curpf = &pathfields->fields[start.field - fields_.get()];
	curpf->cycle = pathfields->cycle;
	curpf->real_cost = 0;
	curpf->estim_cost = calc_cost_lowerbound(start, end);
	curpf->backlink = IDLE;

	Open.push(curpf);

	for (;;) {
		if (Open.empty())  // there simply is no path
			return -1;
		curpf = Open.top();
		Open.pop(curpf);

		cur.field = fields_.get() + (curpf - pathfields->fields.get());
		get_coords(*cur.field, cur);

		if (upper_cost_limit && curpf->real_cost > upper_cost_limit)
			break;  // upper cost limit reached, give up
		if (cur == end)
			break;  // found our target

		// avoid bias by using different orders when pathfinding
		static const int8_t order1[] = {WALK_NW, WALK_NE, WALK_E, WALK_SE, WALK_SW, WALK_W};
		static const int8_t order2[] = {WALK_NW, WALK_W, WALK_SW, WALK_SE, WALK_E, WALK_NE};
		int8_t const* direction = (cur.x + cur.y) & 1 ? order1 : order2;

		// Check all the 6 neighbours
		for (uint32_t i = 6; i; i--, direction++) {
			FCoords neighb;
			int32_t cost;

			get_neighbour(cur, *direction, &neighb);
			Pathfield& neighbpf = pathfields->fields[neighb.field - fields_.get()];

			// Is the field Closed already?
			if (neighbpf.cycle == pathfields->cycle && !neighbpf.heap_cookie.is_active())
				continue;

			// Check passability
			if (!checkstep.allowed(
			       *this, cur, neighb, *direction, neighb == end ? CheckStep::stepLast : cur == start ?
			                                                       CheckStep::stepFirst :
			                                                       CheckStep::stepNormal))
				continue;

			// Calculate cost
			cost = curpf->real_cost +
			       (flags & fpBidiCost ? calc_bidi_cost(cur, *direction) : calc_cost(cur, *direction));

			if (neighbpf.cycle != pathfields->cycle) {
				// add to open list
				neighbpf.cycle = pathfields->cycle;
				neighbpf.real_cost = cost;
				neighbpf.estim_cost = calc_cost_lowerbound(neighb, end);
				neighbpf.backlink = *direction;
				Open.push(&neighbpf);
			} else if (neighbpf.cost() > cost + neighbpf.estim_cost) {
				// found a better path to a field that's already Open
				neighbpf.real_cost = cost;
				neighbpf.backlink = *direction;
				Open.decrease_key(&neighbpf);
			}
		}
	}

	// Now unwind the taken route (even if we couldn't find a complete one!)
	int32_t const result = cur == end ? curpf->real_cost : -1;

	path.start_ = start;
	path.end_ = cur;

	path.path_.clear();

	while (curpf->backlink != IDLE) {
		path.path_.push_back(curpf->backlink);

		// Reverse logic! (WALK_NW needs to find the SE neighbour)
		get_neighbour(cur, get_reverse_dir(curpf->backlink), &cur);
		curpf = &pathfields->fields[cur.field - fields_.get()];
	}

	return result;
}

bool Map::can_reach_by_water(const Coords& field) const {
	FCoords fc = get_fcoords(field);

	if (fc.field->nodecaps() & MOVECAPS_SWIM)
		return true;
	if (!(fc.field->nodecaps() & MOVECAPS_WALK))
		return false;

	FCoords neighb;

	for (Direction dir = FIRST_DIRECTION; dir <= LAST_DIRECTION; ++dir) {
		if (get_neighbour(fc, dir).field->nodecaps() & MOVECAPS_SWIM)
			return true;
	}

	return false;
}

int32_t
Map::change_terrain(const World& world, TCoords<FCoords> const c, DescriptionIndex const terrain) {
	c.field->set_terrain(c.t, terrain);

	// remove invalid resources if necessary
	// check vertex to which the triangle belongs
	if (!is_resource_valid(world, c, c.field->get_resources())) {
		clear_resources(c);
	}

	// always check south-east vertex
	Widelands::FCoords f_se(c, c.field);
	get_neighbour(f_se, Widelands::WALK_SE, &f_se);
	if (!is_resource_valid(world, f_se, f_se.field->get_resources())) {
		clear_resources(f_se);
	}

	// check south-west vertex if d-Triangle is changed, check east vertex if r-Triangle is changed
	Widelands::FCoords f_sw_e(c, c.field);
	get_neighbour(
	   f_sw_e, c.t == TCoords<FCoords>::D ? Widelands::WALK_SW : Widelands::WALK_E, &f_sw_e);
	if (!is_resource_valid(world, f_sw_e, f_sw_e.field->get_resources())) {
		clear_resources(f_sw_e);
	}

	Notifications::publish(NoteFieldTerrainChanged{c, static_cast<MapIndex>(c.field - &fields_[0])});

	// Changing the terrain can affect ports, which can be up to 3 fields away.
	constexpr int kPotentiallyAffectedNeighbors = 3;
	recalc_for_field_area(world, Area<FCoords>(c, kPotentiallyAffectedNeighbors));
	return kPotentiallyAffectedNeighbors;
}

bool Map::is_resource_valid(const Widelands::World& world,
                            const TCoords<Widelands::FCoords>& c,
                            DescriptionIndex curres) {
	if (curres == Widelands::kNoResource)
		return true;

	Widelands::FCoords f(c, c.field);
	Widelands::FCoords f1;

	int32_t count = 0;

	//  this field
	count += world.terrain_descr(f.field->terrain_r()).is_resource_valid(curres);
	count += world.terrain_descr(f.field->terrain_d()).is_resource_valid(curres);

	//  If one of the neighbours is impassable, count its resource stronger.
	//  top left neigbour
	get_neighbour(f, Widelands::WALK_NW, &f1);
	count += world.terrain_descr(f1.field->terrain_r()).is_resource_valid(curres);
	count += world.terrain_descr(f1.field->terrain_d()).is_resource_valid(curres);

	//  top right neigbour
	get_neighbour(f, Widelands::WALK_NE, &f1);
	count += world.terrain_descr(f1.field->terrain_d()).is_resource_valid(curres);

	//  left neighbour
	get_neighbour(f, Widelands::WALK_W, &f1);
	count += world.terrain_descr(f1.field->terrain_r()).is_resource_valid(curres);

	return count > 1;
}

void Map::ensure_resource_consistency(const World& world) {
	for (MapIndex i = 0; i < max_index(); ++i) {
		auto fcords = get_fcoords(fields_[i]);
		if (!is_resource_valid(world, fcords, fcords.field->get_resources())) {
			clear_resources(fcords);
		}
	}
}

void Map::initialize_resources(const FCoords& c,
                               const DescriptionIndex resource_type,
                               ResourceAmount amount) {
	// You cannot have an amount of nothing.
	if (resource_type == Widelands::kNoResource) {
		amount = 0;
	}
	const auto note = NoteFieldResourceChanged{
	   c, c.field->resources, c.field->initial_res_amount, c.field->res_amount,
	};

	c.field->resources = resource_type;
	c.field->initial_res_amount = amount;
	c.field->res_amount = amount;
	Notifications::publish(note);
}

void Map::set_resources(const FCoords& c, ResourceAmount amount) {
	// You cannot change the amount of resources on a field without resources.
	if (c.field->resources == Widelands::kNoResource) {
		return;
	}
	const auto note = NoteFieldResourceChanged{
	   c, c.field->resources, c.field->initial_res_amount, c.field->res_amount,
	};
	c.field->res_amount = amount;
	Notifications::publish(note);
}

void Map::clear_resources(const FCoords& c) {
	initialize_resources(c, Widelands::kNoResource, 0);
}

uint32_t Map::set_height(const World& world, const FCoords fc, uint8_t const new_value) {
	assert(new_value <= MAX_FIELD_HEIGHT);
	assert(fields_.get() <= fc.field);
	assert(fc.field < fields_.get() + max_index());
	fc.field->height = new_value;
	uint32_t radius = 2;
	check_neighbour_heights(fc, radius);
	recalc_for_field_area(world, Area<FCoords>(fc, radius));
	return radius;
}

uint32_t Map::change_height(const World& world, Area<FCoords> area, int16_t const difference) {
	{
		MapRegion<Area<FCoords>> mr(*this, area);
		do {
			if (difference < 0 && mr.location().field->height < static_cast<uint8_t>(-difference))
				mr.location().field->height = 0;
			else if (static_cast<int16_t>(MAX_FIELD_HEIGHT) - difference <
			         static_cast<int16_t>(mr.location().field->height))
				mr.location().field->height = MAX_FIELD_HEIGHT;
			else
				mr.location().field->height += difference;
		} while (mr.advance(*this));
	}
	uint32_t regional_radius = 0;
	MapFringeRegion<Area<FCoords>> mr(*this, area);
	do {
		uint32_t local_radius = 0;
		check_neighbour_heights(mr.location(), local_radius);
		regional_radius = std::max(regional_radius, local_radius);
	} while (mr.advance(*this));
	area.radius += regional_radius + 2;
	recalc_for_field_area(world, area);
	return area.radius;
}

uint32_t Map::set_height(const World& world, Area<FCoords> area, HeightInterval height_interval) {
	assert(height_interval.valid());
	assert(height_interval.max <= MAX_FIELD_HEIGHT);
	{
		MapRegion<Area<FCoords>> mr(*this, area);
		do {
			if (mr.location().field->height < height_interval.min)
				mr.location().field->height = height_interval.min;
			else if (height_interval.max < mr.location().field->height)
				mr.location().field->height = height_interval.max;
		} while (mr.advance(*this));
	}
	++area.radius;
	{
		MapFringeRegion<Area<FCoords>> mr(*this, area);
		bool changed;
		do {
			changed = false;
			height_interval.min = height_interval.min < MAX_FIELD_HEIGHT_DIFF ?
			                         0 :
			                         height_interval.min - MAX_FIELD_HEIGHT_DIFF;
			height_interval.max = height_interval.max < MAX_FIELD_HEIGHT - MAX_FIELD_HEIGHT_DIFF ?
			                         height_interval.max + MAX_FIELD_HEIGHT_DIFF :
			                         MAX_FIELD_HEIGHT;
			do {
				if (mr.location().field->height < height_interval.min) {
					mr.location().field->height = height_interval.min;
					changed = true;
				} else if (height_interval.max < mr.location().field->height) {
					mr.location().field->height = height_interval.max;
					changed = true;
				}
			} while (mr.advance(*this));
			mr.extend(*this);
		} while (changed);
		area.radius = mr.radius();
	}
	recalc_for_field_area(world, area);
	return area.radius;
}

/*
===========
Map::check_neighbour_heights()

This private functions checks all neighbours of a field
if they are in valid boundaries, if not, they are reheighted
accordingly.
The radius of modified fields is stored in area.
=============
*/
void Map::check_neighbour_heights(FCoords coords, uint32_t& area) {
	assert(fields_.get() <= coords.field);
	assert(coords.field < fields_.get() + max_index());

	int32_t height = coords.field->get_height();
	bool check[] = {false, false, false, false, false, false};

	const FCoords n[] = {
	   tl_n(coords), tr_n(coords), l_n(coords), r_n(coords), bl_n(coords), br_n(coords)};

	for (uint8_t i = 0; i < 6; ++i) {
		Field& f = *n[i].field;
		const int32_t diff = height - f.get_height();
		if (diff > MAX_FIELD_HEIGHT_DIFF) {
			++area;
			f.set_height(height - MAX_FIELD_HEIGHT_DIFF);
			check[i] = true;
		}
		if (diff < -MAX_FIELD_HEIGHT_DIFF) {
			++area;
			f.set_height(height + MAX_FIELD_HEIGHT_DIFF);
			check[i] = true;
		}
	}

	for (uint8_t i = 0; i < 6; ++i)
		if (check[i])
			check_neighbour_heights(n[i], area);
}

/*
===========
Map::allows_seafaring()

This function checks if there are two ports that are reachable
for each other - then the map is seafaring.
=============
*/
bool Map::allows_seafaring() {
	Map::PortSpacesSet port_spaces = get_port_spaces();
	std::vector<Coords> portdocks;
	std::set<Coords, Coords::OrderingFunctor> swim_coords;

	for (const Coords& c : port_spaces) {
		std::queue<Coords> q_positions;
		std::set<Coords, Coords::OrderingFunctor> visited_positions;
		FCoords fc = get_fcoords(c);
		portdocks = find_portdock(fc);

		/* remove the port space if it is not longer valid port space */
		if ((fc.field->get_caps() & BUILDCAPS_SIZEMASK) != BUILDCAPS_BIG || portdocks.empty()) {
			set_port_space(c, false);
			continue;
		}

		for (const Coords& portdock : portdocks) {
			visited_positions.insert(portdock);
			q_positions.push(portdock);
		}

		while (!q_positions.empty()) {
			const Coords& swim_coord = q_positions.front();
			q_positions.pop();
			for (uint8_t i = 1; i <= 6; ++i) {
				FCoords neighbour;
				get_neighbour(get_fcoords(swim_coord), i, &neighbour);
				if ((neighbour.field->get_caps() & (MOVECAPS_SWIM | MOVECAPS_WALK)) == MOVECAPS_SWIM) {
					if (visited_positions.count(neighbour) == 0) {
						visited_positions.insert(neighbour);
						q_positions.push(neighbour);
					}
				}
			}
		}

		for (const Coords& swim_coord : visited_positions)
			if (swim_coords.count(swim_coord) == 0)
				swim_coords.insert(swim_coord);
			else
				return true;
	}
	return false;
}

bool Map::has_artifacts() {
	for (MapIndex i = 0; i < max_index(); ++i) {
		if (upcast(Immovable, immovable, fields_[i].get_immovable())) {
			if (immovable->descr().has_attribute(immovable->descr().get_attribute_id("artifact"))) {
				return true;
			}
		}
	}
	return false;
}

#define MAX_RADIUS 32
MilitaryInfluence Map::calc_influence(Coords const a, Area<> const area) const {
	const int16_t w = get_width();
	const int16_t h = get_height();
	MilitaryInfluence influence =
	   std::max(std::min(std::min(abs(a.x - area.x), abs(a.x - area.x + w)), abs(a.x - area.x - w)),
	            std::min(std::min(abs(a.y - area.y), abs(a.y - area.y + h)), abs(a.y - area.y - h)));

	influence = influence > area.radius ? 0 : influence == 0 ? MAX_RADIUS : MAX_RADIUS - influence;
	influence *= influence;

	return influence;
}

}  // namespace Widelands