File: bit_array.c

package info (click to toggle)
wine 0.0.980315-1
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 10,136 kB
  • ctags: 26,112
  • sloc: ansic: 156,310; makefile: 1,160; yacc: 807; perl: 655; lex: 555; sh: 304
file content (284 lines) | stat: -rw-r--r-- 6,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/***************************************************************************
 * Copyright 1995, Technion, Israel Institute of Technology
 * Electrical Eng, Software Lab.
 * Author:    Michael Veksler.
 ***************************************************************************
 * File:      bit_array.c
 * Purpose :  manipulate array of bits
 * Portability: This is not completely portable, non CISC arcitectures
 *              Might not have atomic Clear/Set/Toggle bit. On those
 *              architectures semaphores should be used.
 * Big Endian Concerns: This code is big endian compatible,
 *              but the byte order will be different (i.e. bit 0 will be
 *              located in byte 3).
 ***************************************************************************
 */

#ifdef CONFIG_IPC

/*
** uncoment the following line to disable assertions,
** this may boost performance by up to 50%
*/
/* #define NDEBUG */

#if defined(linux) && !defined(NO_ASM)
#include <linux/version.h>
#if LINUX_VERSION_CODE <= 131328 /* Linux 2.1.x doesn't return values with clear_bit and set_bit */
#define HAS_BITOPS
#endif
#endif

#include <stdio.h>

#include <assert.h>

#include "bit_array.h"
#ifdef HAS_BITOPS
#define inline __inline__  /* So we can compile with -ansi */
#include <asm/bitops.h>
#else
static __inline__ int clear_bit(int bit, int *mem);
static __inline__ int set_bit(int bit, int *mem);
#endif /* HAS_BITOPS */


#define INT_NR(bit_nr)       ((bit_nr) >> INT_LOG2)
#define INT_COUNT(bit_count) INT_NR( bit_count + BITS_PER_INT - 1 )
#define BIT_IN_INT(bit_nr)   ((bit_nr) & (BITS_PER_INT - 1))

#if !defined(HAS_BITOPS)

/* first_zero maps bytes value to the index of first zero bit */
static char first_zero[256];
static int arrays_initialized=0;


/*
** initialize static arrays used for bit operations speedup.
** Currently initialized: first_zero[256]
** set "arrays_initialized" to inidate that arrays where initialized
*/

static void initialize_arrays()
{
  int i;
  int bit;

  for (i=0 ; i<256 ; i++) {
     /* find the first zero bit in `i' */
     for (bit=0 ; bit < BITS_PER_BYTE ; bit++)
	/* break if the bit is zero */
	if ( ( (1 << bit) & i )
	     == 0)
	   break;
     first_zero[i]= bit;
  }
  arrays_initialized=1;
}

/*
** Find first zero bit in the integer.
** Assume there is at least one zero.
*/
static __inline__ int find_zbit_in_integer(unsigned int integer)
{
  int i;

  /* find the zero bit */
  for (i=0 ; i < sizeof(int) ; i++, integer>>=8) {
     int byte= integer & 0xff;

     if (byte != 0xff)
	return ( first_zero[ byte ]
		 + (i << BYTE_LOG2) );
  }
  assert(0);			   /* never reached */
  return 0;
}

/* return -1 on failure */
static __inline__ int find_first_zero_bit(unsigned *array, int bits)
{
  unsigned int  integer;
  int i;
  int bytes=INT_COUNT(bits);

  if (!arrays_initialized)
     initialize_arrays();

  for ( i=bytes ; i ; i--, array++) {
     integer= *array;

     /* test if integer contains a zero bit */
     if (integer != ~0U)
	return ( find_zbit_in_integer(integer)
		 + ((bytes-i) << INT_LOG2) );
  }

  /* indicate failure */
  return -1;
}

static __inline__ int test_bit(int pos, unsigned *array)
{
  unsigned int integer;
  int bit = BIT_IN_INT(pos);

  integer= array[ pos >> INT_LOG2 ];

  return (  (integer & (1 << bit)) != 0
	    ? 1
	    : 0 ) ;
}

/*
** The following two functions are x86 specific ,
** other processors will need porting
*/

/* inputs: bit number and memory address (32 bit) */
/* output: Value of the bit before modification */
static __inline__ int clear_bit(int bit, int *mem)
{
  int ret;

  __asm__("xor %1,%1
	   btrl %2,%0
	   adcl %1,%1"
	  :"=m" (*mem), "=&r" (ret)
	  :"r" (bit));
  return (ret);
}

static __inline__ int set_bit(int bit, int *mem)
{
  int ret;
  __asm__("xor %1,%1
	   btsl %2,%0
	   adcl %1,%1"
	  :"=m" (*mem), "=&r" (ret)
	  :"r" (bit));
  return (ret);
}

#endif /* !deined(HAS_BITOPS) */


/* AssembleArray: assemble an array object using existing data */
bit_array *AssembleArray(bit_array *new_array, unsigned int *buff, int bits)
{
  assert(new_array!=NULL);
  assert(buff!=NULL);
  assert(bits>0);
  assert((1 << INT_LOG2) == BITS_PER_INT); /* if fails, redefine INT_LOG2 */

  new_array->bits=bits;
  new_array->array=buff;
  return new_array;
}

/* ResetArray: reset the bit array to zeros */
int ResetArray(bit_array *bits)
{
  int i;
  int *p;

  assert(bits!=NULL);
  assert(bits->array!=NULL);

  for(i= INT_COUNT(bits->bits), p=bits->array; i ; p++, i--)
     *p=0;
  return 1;
}


/* VacantBit: find a vacant (zero) bit in the array,
 * Return: Bit index on success, -1 on failure.
 */
int VacantBit(bit_array *bits)
{
  int bit;

  assert(bits!=NULL);
  assert(bits->array!=NULL);

  bit= find_first_zero_bit(bits->array, bits->bits);

  if (bit >= bits->bits)	   /* failed? */
     return -1;

  return bit;
}

int SampleBit(bit_array *bits, int i)
{
  assert(bits != NULL);
  assert(bits->array != NULL);
  assert(i >= 0  &&  i < bits->bits);

  return ( test_bit(i,bits->array) != 0
	   ? 1
	   : 0
	   );
}


/*
** Use "compare and exchange" mechanism to make sure
** that bits are not modified while "integer" value
** is calculated.
**
** This may be the slowest technique, but it is the most portable
** (Since most architectures have compare and exchange command)
*/
int AssignBit(bit_array *bits, int bit_nr, int val)
{
  int ret;

  assert(bits != NULL);
  assert(bits->array != NULL);
  assert(val==0 || val==1);
  assert(bit_nr >= 0  &&  bit_nr < bits->bits);

  if (val==0)
     ret= clear_bit(BIT_IN_INT(bit_nr), &bits->array[ INT_NR(bit_nr) ]);
  else
     ret= set_bit(BIT_IN_INT(bit_nr), &bits->array[ INT_NR(bit_nr) ]);

  return ( (ret!=0) ? 1 : 0);
}

/*
** Allocate a free bit (==0) and make it used (==1).
** This operation is guaranteed to resemble an atomic instruction.
**
** Return: allocated bit index, or -1 on failure.
**
** There is a crack between locating free bit, and allocating it.
** We assign 1 to the bit, test it was not '1' before the assignment.
** If it was, restart the seek and assign cycle.
**
*/

int AllocateBit(bit_array *bits)
{
  int bit_nr;
  int orig_bit;

  assert(bits != NULL);
  assert(bits->array != NULL);

  do {
     bit_nr= VacantBit(bits);

     if (bit_nr == -1)		   /* No vacant bit ? */
	return -1;

     orig_bit = AssignBit(bits, bit_nr, 1);
  } while (orig_bit != 0);	   /* it got assigned before we tried */

  return bit_nr;
}

#endif  /* CONFIG_IPC */