File: wpc_flow_connect.erl

package info (click to toggle)
wings3d 1.4.1-4
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 23,772 kB
  • sloc: erlang: 90,032; ansic: 1,437; makefile: 830; sh: 294; cpp: 123; objc: 112
file content (313 lines) | stat: -rw-r--r-- 11,066 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
%%
%%  wpc_flow_connect.erl --
%%
%%    Connect edges with respect to surrounding edge angles.
%%
%%  Copyright (c) 2010-2011 Richard Jones.
%%
%%  See the file "license.terms" for information on usage and redistribution
%%  of this file, and for a DISCLAIMER OF ALL WARRANTIES.
%%

-module(wpc_flow_connect).
-export([init/0,menu/2,command/2]).
-include("wings.hrl").

-define(ANGLE, 90.0).

init() ->
    true.

%%% Menu
menu({edge},Menu) ->
    lists:reverse(parse(Menu, [], false));
menu(_,Menu) ->
    Menu.

parse([], NewMenu, true) ->
    NewMenu;
parse([], NewMenu, false) ->
    [flow_connect(),separator|NewMenu];
parse([A = {_,bevel,_}|Rest], NewMenu, false) ->
    parse(Rest, [flow_connect(),A|NewMenu], true);
parse([Elem|Rest], NewMenu, Found) ->
    parse(Rest, [Elem|NewMenu], Found).

flow_connect() ->
    {?__(1,"Flow Connect"),flow_connect_fun(),
     {?__(2,"Connect edges with respect to the surrounding geometry"),[],
      ?__(3,"Flow Connect and move edges into place")},[]}.

flow_connect_fun() ->
    fun
        (1, _) -> {edge,flow_connect};
        (3, _) -> {edge,flow_connect_drag};
        (_, _) -> ignore
    end.

%%% Commands
command({edge,flow_connect}, St) ->
    flow_connect(St);
command({edge,flow_connect_drag}, St) ->
    flow_connect_drag(St);
command(_, _) ->
    next.

%%% Functions
flow_connect(St0) ->
    {St1,Sel} = wings_sel:mapfold(fun(Edges, #we{id=Id}=We0, Acc) ->
        {NewEdges,We} = calculate_cuts(Edges, Edges, We0, []),
        {We,[{Id,NewEdges}|Acc]}
    end, [], St0),
    St = wings_sel:set(edge, Sel, St1),
    {save_state,wings_sel:valid_sel(St)}.

flow_connect_drag(St0) ->
    {St1,{Tvs,Sel}} = wings_sel:mapfold(fun(Edges, #we{id=Id}=We0, {Tvs0,SelAcc}) ->
        {NewEdges,Vs,Data,We} = calculate_cuts_data(Edges, Edges, We0, []),
        TvsData = [{Id,{Vs,flow_connect_tension_fun(Data,false)}}|Tvs0],
        {We,{TvsData,[{Id,NewEdges}|SelAcc]}}
    end, {[],[]}, St0),
    St = wings_sel:set(edge, Sel, St1),
    Flags = [{mode,{mode(),false}}], %% mode
    wings_drag:setup(Tvs, [percent], Flags, wings_sel:valid_sel(St)).

mode() ->
    fun
      (help, State) -> help(State);
      ({key,$1}, true) -> false;
      ({key,$1}, false) -> true;
      (_,_) -> none
    end.

help(false) -> "[1] " ++ ?__(1,"Move in direction of face normals");
help(true) -> "[1] " ++ ?__(2,"Move in direction of geometry flow").

calculate_cuts_data(Edges0, Es, We, Acc) ->
    case gb_sets:is_empty(Edges0) of
        true ->
            cut_edges(Acc, We, [], []);
        false ->
            {Edge,Edges} = gb_sets:take_smallest(Edges0),
            CutData = edge_link_vectors(Edge, Es, We),
            calculate_cuts_data(Edges, Es, We, [{Edge,CutData}|Acc])
    end.

calculate_cuts(Edges0, Es, We, Acc) ->
    case gb_sets:is_empty(Edges0) of
        true ->
            cut_edges(Acc, We, []);
        false ->
            {Edge,Edges} = gb_sets:take_smallest(Edges0),
            {Mid,Vec,_,Opp} = edge_link_vectors(Edge, Es, We),
            Pos = e3d_vec:add(Mid, e3d_vec:mul(Vec, Opp)),
            calculate_cuts(Edges, Es, We, [{Edge,Pos}|Acc])
    end.

edge_link_vectors(Edge, Es, #we{mirror=Mir,es=Etab,vp=Vtab}=We) ->
    #edge{vs=Va,ve=Vb,ltpr=Lp,rtpr=Rp,lf=Lf,rf=Rf} = array:get(Edge, Etab),
    FNorm = edge_normal(Lf, Rf, We),
    PosA = array:get(Va, Vtab),
    PosB = array:get(Vb, Vtab),
    Mid = e3d_vec:average(PosA, PosB),
    EvecA = e3d_vec:sub(PosA, Mid),
    EvecB = e3d_vec:sub(PosB, Mid),
    ENormA = e3d_vec:norm(EvecA),
    ENormB = e3d_vec:norm(EvecB),
    Len = e3d_vec:len(EvecA),
    OrgMir = orig_on_mirror(Mir, Lf, Rf),
    {OppR,RVec,Nr} = vec_acc(Va, Rp, PosA, PosB, Edge, ENormA, Es, Len, OrgMir, We, []),
    {OppL,LVec,Nl} = vec_acc(Vb, Lp, PosB, PosA, Edge, ENormB, Es, Len, OrgMir, We, []),
    %% Favour poles of 4 (a vertex connecting four edges)
    case OppR < OppL of
        true when Nr=:=4 ->
            cut_point_data(PosA, Mid, ENormA, RVec, FNorm, OppR);
        true when is_atom(OppL) ->
            cut_point_data(PosA, Mid, ENormA, RVec, FNorm, OppR);
        true when Nl=:=4 ->
            cut_point_data(PosB, Mid, ENormB, LVec, FNorm, OppL);
        true ->
            cut_point_data(PosA, Mid, ENormA, RVec, FNorm, OppR);
        false when is_atom(OppR) andalso is_atom(OppL) ->
            {Mid,e3d_vec:zero(),e3d_vec:zero(),0.0};
        false when Nl=:=4 ->
            cut_point_data(PosB, Mid, ENormB, LVec, FNorm, OppL);
        false when Nr=:=4 andalso not is_atom(OppR) ->
            cut_point_data(PosA, Mid, ENormA, RVec, FNorm, OppR);
        false ->
            cut_point_data(PosB, Mid, ENormB, LVec, FNorm, OppL)
    end.

edge_normal(Fa, Fb, We) ->
    FaNorm = wings_face:normal(Fa, We),
    FbNorm = wings_face:normal(Fb, We),
    e3d_vec:norm(e3d_vec:add(FaNorm, FbNorm)).

%% Vector in Mirror
mirrored_vector(Vec, Mir, We) ->
    MirNorm = wings_face:normal(Mir, We),
    U = e3d_vec:mul(MirNorm, e3d_vec:dot(MirNorm, Vec)),
    InMir = e3d_vec:sub(Vec, e3d_vec:mul(U, 2.0)),
    e3d_vec:norm(e3d_vec:add(Vec, InMir)).

orig_on_mirror(Mir, Mir, _) -> true;
orig_on_mirror(Mir, _, Mir) -> true;
orig_on_mirror(_, _, _) -> false.

vec_acc(V, Edge, PosA, PosB, OrigE, EVec, Es, Len, OrgMir, We, Acc) ->
    case adjacent_vector(V, Edge, PosA, PosB, OrigE, OrgMir, We) of
        {VecE,OrigE} ->
            get_best_vec(EVec, Es, Len, [VecE|Acc]);
        {VecE,NextE} ->
            vec_acc(V, NextE, PosA, PosB, OrigE, EVec, Es, Len, OrgMir, We, [VecE|Acc]);
        {VecE,MirVec,OrigE} ->
            get_best_vec(EVec, Es, Len, [VecE,MirVec|Acc]);
        {VecE,MirVec,NextE} ->
            vec_acc(V, NextE, PosA, PosB, OrigE, EVec, Es, Len, OrgMir, We, [VecE,MirVec|Acc])
    end.

adjacent_vector(Va, Edge, PosA, PosB, OrigE, OrgMir, #we{mirror=Mir,es=Etab,vp=Vtab}=We) ->
    case array:get(Edge, Etab) of
        #edge{vs=V,ve=Va,ltpr=NextE,rf=Rf,lf=Lf} when Rf=:=Mir; Lf=:=Mir ->
            PosS = array:get(V, Vtab),
            VecE = e3d_vec:norm_sub(PosA, PosS),
            case OrgMir of
                true ->
                    {{VecE,Edge},NextE};
                false ->
                    Vec = e3d_vec:norm_sub(PosA, PosB),
                    MirVec = mirrored_vector(Vec, Mir, We),
                    {{VecE,Edge},{MirVec,OrigE},NextE}
            end;
        #edge{vs=Va,ve=V,rtpr=NextE,rf=Rf,lf=Lf} when Rf=:=Mir; Lf=:=Mir ->
            PosS = array:get(V, Vtab),
            VecE = e3d_vec:norm_sub(PosA, PosS),
            case OrgMir of
                true ->
                    {{VecE,Edge},NextE};
                false ->
                    Vec = e3d_vec:norm_sub(PosA, PosB),
                    MirVec = mirrored_vector(Vec, Mir, We),
                    {{VecE,Edge},{MirVec,OrigE},NextE}
            end;
        #edge{vs=V,ve=Va,ltpr=NextE} ->
            PosS = array:get(V, Vtab),
            VecE = e3d_vec:norm_sub(PosA, PosS),
            case OrgMir of
                false ->
                    {{VecE,Edge},NextE};
                true ->
                    Vec = e3d_vec:norm_sub(PosA, PosS),
                    MirVec = mirrored_vector(Vec, Mir, We),
                    {{VecE,Edge},{MirVec,Edge},NextE}
            end;
        #edge{vs=Va,ve=V,rtpr=NextE} ->
            PosS = array:get(V, Vtab),
            VecE = e3d_vec:norm_sub(PosA, PosS),
            case OrgMir of
                false ->
                    {{VecE,Edge},NextE};
                true ->
                    Vec = e3d_vec:norm_sub(PosA, PosS),
                    MirVec = mirrored_vector(Vec, Mir, We),
                    {{VecE,Edge},{MirVec,Edge},NextE}
            end
    end.

get_best_vec(EVec, Es, Len, Acc0) ->
    Acc = lists:usort(Acc0),
    N = length(Acc)+1,
    New = {not_allowed,none,?ANGLE,[]},
    {Opp0,Vec0,Deg0,VecAcc} = get_best_vec_1(EVec, Es, Len, New, Acc),
    case N rem 2 of
        0 -> {Opp0,Vec0,N};
        1 ->
            AvgVec = e3d_vec:average(VecAcc),
            Check1 = {Opp0,Vec0,Deg0,[]},
            Check2 = [{AvgVec,gb_sets:smallest(Es)}],
            {Opp,Vec,_,_} = get_best_vec_1(EVec, Es, Len, Check1, Check2),
            case round_float(Opp) < round_float(Opp0) of
                true -> {Opp,Vec,N};
                false -> {Opp0,Vec0,N}
            end
    end.

get_best_vec_1(EVec, Es, Len, New, Acc) ->
    lists:foldl(fun({Vec,Edge}, {Opp0,Vec0,Deg0,VecAcc}) ->
        Deg = round_float(e3d_vec:degrees(EVec, Vec)),
        case get_result(Deg, Len, gb_sets:is_element(Edge, Es)) of
            Opp when Deg > Deg0 ->
                {Opp,Vec,Deg,[Vec|VecAcc]};
            _Opp ->
                {Opp0,Vec0,Deg0,[Vec|VecAcc]}
        end
    end, New, Acc).

cut_point_data(PosA, Mid, Evec, Vec0, FNorm, FinalOpp) ->
    Pos = intersect_vec_plane(PosA, Mid, e3d_vec:norm(Evec), Vec0),
    Vec = e3d_vec:norm_sub(Pos, Mid),
    case e3d_vec:dot(Vec, FNorm) < 0 of
        true -> {Mid,Vec,e3d_vec:neg(Vec),FinalOpp};
        false -> {Mid,Vec,Vec,FinalOpp}
    end.

get_result(Deg, _, _) when Deg =< ?ANGLE ->
    not_allowed;
get_result(Deg, Len, true) ->
    opposite(Deg, Len, 4);
get_result(Deg, Len, false) ->
    opposite(Deg, Len, 3).

opposite(Deg, Adjacent, Divider) ->
    D0 = (180 - Deg)/Divider,
    case D0 of
        0.0 -> 0.0;
        _ ->
            Radians = math:pi()/(180/D0),
            Adjacent * math:tan(Radians)
    end.

intersect_vec_plane(PosA, PosB, Plane, Vec) ->
%% Return point where Vec through PosA intersects with Plane at PosB
    case e3d_vec:dot(Vec,Plane) of
      0.0 ->
        Intersection = e3d_vec:dot(e3d_vec:sub(PosB, PosA), Plane),
        e3d_vec:add(PosB, e3d_vec:mul(Plane, Intersection));
      Dot ->
        Intersection = e3d_vec:dot(e3d_vec:sub(PosB, PosA), Plane) / Dot,
        e3d_vec:add(PosA, e3d_vec:mul(Vec, Intersection))
    end.

%% Drag option cut
cut_edges([{Edge,{Mid,Vec,FVec,Opp}}|Edges], We0, Acc, TvsAcc) ->
    {We,V} = wings_edge:fast_cut(Edge, Mid, We0),
    cut_edges(Edges, We, [V|Acc], [{V,Mid,Vec,FVec,Opp}|TvsAcc]);
cut_edges([], We0, Vs, TvsAcc) ->
    We = wings_vertex_cmd:connect(Vs, We0),
    NewEdges = wings_we:new_items_as_gbset(edge, We0, We),
    {NewEdges,Vs,TvsAcc,We}.

%% Just cut, no drag
cut_edges([{Edge,Pos}|Edges], We0, Acc) ->
    {We,V} = wings_edge:fast_cut(Edge, Pos, We0),
    cut_edges(Edges, We, [V|Acc]);
cut_edges([], We0, Vs) ->
    We = wings_vertex_cmd:connect(Vs, We0),
    NewEdges = wings_we:new_items_as_gbset(edge, We0, We),
    {NewEdges,We}.

round_float(Float) when is_float(Float) ->
    round(10000*Float)/10000;
round_float(Other) -> Other.

flow_connect_tension_fun(Data, Bool) ->
    fun
        (new_mode_data, {NewBool,_}) ->
            flow_connect_tension_fun(Data, NewBool);
        ([Percent], A) ->
            lists:foldl(fun({V,Mid,Vec,FVec,Opp}, VpAcc) ->
                Factor = Opp*Percent,
                Vector = if Bool -> FVec; true -> Vec end,
                [{V,e3d_vec:add(Mid, e3d_vec:mul(Vector, Factor))}|VpAcc]
            end, A, Data)
    end.