1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/*
* wings_pick_nif.c --
*
* Erlang nif for picking.
*
* Copyright (c) 2009-2019 Bjorn Gustavsson
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/
#ifdef __WIN32__
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <string.h>
#include "erl_nif.h"
struct vertex_struct {
float x, y, w, z;
};
typedef struct vertex_struct vertex;
#define PRE_RES_SIZE 512
#define MAX_RES_SIZE 1024*512
/* Declarations of internal functions */
static ERL_NIF_TERM pick(float* vertices, unsigned stride, unsigned num_tris,
float m[16], int, int, int,
ErlNifEnv* env);
static void mul(vertex* out, float x, float y, float z, float m[16]);
static void intersection(vertex* out, vertex* prev_vp, vertex* cur_vp,
float bc_prev, float bc_cur);
static int do_cull(vertex* vp, int ccw);
#if 0
static void print_tri(vertex* tri);
static void print_vertex(vertex* v);
#endif
static ERL_NIF_TERM atom_ok;
static ERL_NIF_TERM atom_true;
static ERL_NIF_TERM atom_false;
static ERL_NIF_TERM faces(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ErlNifFunc nif_funcs[] =
{
{"faces_1", 6, faces},
};
static ERL_NIF_TERM faces(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
ErlNifBinary bin;
unsigned int stride;
int one_hit;
int cull;
int ccw;
int t_arity;
const ERL_NIF_TERM* tuple;
double temp;
float m[16];
int i;
if(!enif_get_uint(env, argv[0], &stride)) return enif_make_badarg(env);
if(!enif_inspect_binary(env, argv[1], &bin)) return enif_make_badarg(env);
one_hit = enif_is_identical(argv[2], atom_true);
cull = enif_is_identical(argv[3], atom_true);
ccw = enif_is_identical(argv[4], atom_true);
if(!enif_get_tuple(env, argv[5], &t_arity, &tuple) || t_arity != 16)
return enif_make_badarg(env);
for(i = 0; i < t_arity; i++) {
enif_get_double(env, tuple[i], &temp);
m[i] = (float) temp;
}
return pick((float *)bin.data, stride / sizeof(float), bin.size / (stride*3),
m, ccw, cull, one_hit, env);
}
/*
* Picking code.
*/
static ERL_NIF_TERM
pick(float* vs, unsigned stride, unsigned num_tris,
float m[16], int ccw, int cull, int one_hit, ErlNifEnv *env)
{
unsigned i;
ERL_NIF_TERM res_array[PRE_RES_SIZE];
ERL_NIF_TERM* res;
int res_size = 0;
int max = PRE_RES_SIZE;
double last_depth = 42.0;
int nearest = -1;
/* printf("\r\nN:stride %d n %d ccw %d cull %d one %d\r\n",
* stride, num_tris, ccw, cull, one_hit);
*/
res = res_array;
for (i = 0; i < num_tris; i++) {
/* Storage for triangle vertices follow. We do the clipping
* in the same buffer, moving forward all the time, never
* reusing a vertex position. Each clipping plane may add
* at most one vertex.
*/
vertex tri[3 + 4+5+6+7+8+9];
unsigned codes[3]; /* Outcodes for all original triangle vertices */
unsigned j;
/*
* For clipping in the non-trivial case.
*/
vertex* prev_vp; /* Previous vertex */
vertex* cur_vp; /* Current vertex */
vertex* next_vp; /* Where to store the next vertex */
int vs_left; /* Vertices left in the polygon */
int vs_new; /* Number of new and copied vertices in
the clipped polygon */
int plane; /* Number of current plane */
int reject; /* Non-trivial reject boolean */
/*
* Pick up the three vertices in a triangle and transform them
* with the pick matrix. Calculate the outcodes for each vertex.
*/
for (j = 0; j < 3; j++) {
unsigned code;
vertex* vp = tri+j;
mul(vp, vs[0], vs[1], vs[2], m);
vs += stride;
/*
* We set the bit for each plane if the vertex is outside
* the plane.
*/
#define OUTCODE(bit, dot) ((dot) < 0.0f ? bit : 0)
code = OUTCODE(1, vp->x);
code |= OUTCODE(2, vp->w - vp->x);
code |= OUTCODE(4, vp->y);
code |= OUTCODE(8, vp->w - vp->y);
code |= OUTCODE(16, vp->z);
code |= OUTCODE(32, vp->w - vp->z);
codes[j] = code;
#undef OUTCODE
}
/*
* Trivial reject test. AND the out codes. If the result is
* non-zero, it means that all vertices are outside at least
* one of the planes.
*/
if (codes[0] & codes[1] & codes[2]) {
#if 0
fprintf(stderr, "%d: Trivial reject\r\n", i);
#endif
continue;
}
/*
* Trivial accept test. OR the out codes. If the result is
* zero, all vertices are inside all of the clipping planes.
* (Only likely to happen for marquee selections.)
*/
if ((codes[0] | codes[1] | codes[2]) == 0) {
#if 0
fprintf(stderr, "%d: Trivial accept\r\n", i);
#endif
if(!cull || do_cull(tri, ccw)) {
if(one_hit) {
double depth = tri[0].z / tri[0].w;
if(depth < last_depth) {
last_depth = depth;
nearest = 3*i;
}
} else if(res_size < MAX_RES_SIZE) {
if(res_size == max) {
/* realloc */
ERL_NIF_TERM *temp;
max *= 2;
temp = enif_alloc(max*sizeof(ERL_NIF_TERM));
for(j=0; j < res_size; j++) {
temp[j] = res[j];
}
if(res != res_array) {
enif_free(res);
}
res = temp;
}
res[res_size++] = enif_make_int(env, 3*i);
} else {
/* give up we only handle MAX_RES_SIZE objects */
break;
}
}
continue;
}
/*
* Start of non-trivial clipping. We must clip the polygon (which
* starts out as a triangle) against each clipping plane in turn.
* If we have less than three vertices less after clipping against
* a plane, we have a non-trivial reject. If the polygon survives
* all clipping planes we have a non-trivial accept.
*/
prev_vp = tri+2;
cur_vp = tri;
vs_left = 3;
next_vp = tri + 3;
vs_new = 0;
reject = 0;
for (plane = 0; plane < 6; plane++) {
while (vs_left-- > 0) {
float bc_prev; /* Boundary code for previous */
float bc_cur; /* Boundary code for current */
switch (plane) {
case 0:
bc_prev = prev_vp->x;
bc_cur = cur_vp->x;
break;
case 1:
bc_prev = prev_vp->w - prev_vp->x;
bc_cur = cur_vp->w - cur_vp->x;
break;
case 2:
bc_prev = prev_vp->y;
bc_cur = cur_vp->y;
break;
case 3:
bc_prev = prev_vp->w - prev_vp->y;
bc_cur = cur_vp->w - cur_vp->y;
break;
case 4:
bc_prev = prev_vp->z;
bc_cur = cur_vp->z;
break;
case 5:
bc_prev = prev_vp->w - prev_vp->z;
bc_cur = cur_vp->w - cur_vp->z;
break;
default:
abort();
}
if (bc_prev < 0.0f) {
/* The previous vertex is outside */
if (bc_cur >= 0.0f) {
/* The current vertex is inside. We'll add a new vertex
* at the intersectin point on the clipping plane and
* we will keep the current vertex.
*/
intersection(next_vp, prev_vp, cur_vp, bc_prev, bc_cur);
next_vp++;
*next_vp++ = *cur_vp;
vs_new += 2;
}
/* Nothing to do if both are outside. */
} else {
/* The previous vertex is inside. */
if (bc_cur < 0.0f) {
/* The current vertex is outside. Add the intersection
* with the clipping plane. (Discard current vertex.) */
intersection(next_vp, prev_vp, cur_vp, bc_prev, bc_cur);
next_vp++;
vs_new++;
} else {
/* Both vertices are inside. Keep the current vertex. */
*next_vp++ = *cur_vp;
vs_new++;
}
}
prev_vp = cur_vp++;
}
if (vs_new < 3) {
/*
* Too few vertices. No longer a polygon. Non-trivial reject.
*/
reject = 1;
break;
}
prev_vp = next_vp - 1;
cur_vp = next_vp - vs_new;
vs_left = vs_new;
vs_new = 0;
}
#if 0
if (reject) {
fprintf(stderr, "%d: non-trivial reject\r\n", i);
} else {
fprintf(stderr, "%d: non-trivial reject\r\n", i);
}
#endif
if (!reject && (!cull || do_cull(cur_vp, ccw))) {
if(one_hit) {
double depth = cur_vp[0].z / cur_vp[0].w;
if(depth < last_depth) {
last_depth = depth;
nearest = 3*i;
}
} else if(res_size < MAX_RES_SIZE) {
if(res_size == max) {
/* realloc */
ERL_NIF_TERM *temp;
max *= 2;
temp = enif_alloc(max*sizeof(ERL_NIF_TERM));
for(j=0; j < res_size; j++) {
temp[j] = res[j];
}
if(res != res_array) {
enif_free(res);
}
res = temp;
}
res[res_size++] = enif_make_int(env, 3*i);
} else {
/* give up we only handle MAX_RES_SIZE objects */
break;
}
}
}
if(res_size > 0 || nearest > -1) {
if(one_hit) {
unsigned depth;
depth = (unsigned) (last_depth * (double) (0xFFFFFFFF) + 0.5);
return enif_make_tuple2(env,
enif_make_int(env, nearest),
enif_make_uint(env, depth));
} else {
ERL_NIF_TERM temp;
temp = enif_make_list_from_array(env, res, res_size);
if(res != res_array) enif_free(res);
return temp;
}
} else {
return enif_make_list(env, 0);
}
}
static void
mul(vertex* out, float x, float y, float z, float m[16])
{
out->x = m[0]*x + m[4]*y + m[8]*z + m[12];
out->y = m[1]*x + m[5]*y + m[9]*z + m[13];
out->z = m[2]*x + m[6]*y + m[10]*z + m[14];
out->w = m[3]*x + m[7]*y + m[11]*z + m[15];
}
static void
intersection(vertex* out, vertex* prev_vp, vertex* cur_vp,
float bc_prev, float bc_cur)
{
float alpha = bc_prev / (bc_prev - bc_cur);
out->x = prev_vp->x + alpha * (cur_vp->x - prev_vp->x);
out->y = prev_vp->y + alpha * (cur_vp->y - prev_vp->y);
out->z = prev_vp->z + alpha * (cur_vp->z - prev_vp->z);
out->w = prev_vp->w + alpha * (cur_vp->w - prev_vp->w);
}
static int
do_cull(vertex* vp, int ccw_is_front)
{
/*
* Calculate the signed area of the first three vertices
* (converted to windows coordinates).
*/
float Dx02, Dx12, Dy02, Dy12;
float area;
vp[0].x /= vp[0].w; vp[0].y /= vp[0].w;
vp[1].x /= vp[1].w; vp[1].y /= vp[1].w;
vp[2].x /= vp[2].w; vp[2].y /= vp[2].w;
Dx02 = vp[0].x - vp[2].x;
Dx12 = vp[1].x - vp[2].x;
Dy02 = vp[0].y - vp[2].y;
Dy12 = vp[1].y - vp[2].y;
area = Dx02*Dy12 - Dx12*Dy02;
if (area < 0.0f && ccw_is_front) {
return 0;
}
return 1;
}
#if 0
static void
print_tri(vertex* tri)
{
int j;
for (j = 0; j < 3; j++) {
print_vertex(tri+j);
putchar(' ');
}
putchar('\r');
putchar('\n');
}
static void
print_vertex(vertex* v)
{
printf("(%f, %f, %f, %f)", v->x, v->y, v->z, v->w);
}
#endif
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
{
atom_ok = enif_make_atom(env,"ok");
atom_true = enif_make_atom(env,"true");
atom_false = enif_make_atom(env,"false");
// avec_r = enif_open_resource_type(env, "eblas", "avec", NULL, ERL_NIF_RT_CREATE, NULL);
return 0;
}
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data,
ERL_NIF_TERM load_info)
{
return 0;
}
static void unload(ErlNifEnv* env, void* priv_data)
{
}
ERL_NIF_INIT(wings_pick_nif,nif_funcs,load,NULL,upgrade,unload)
|