1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*****************************************************************************/
/* kernels for bvh */
/* */
/* Mostly stolen from Luxrender guys all credit to them */
/* */
/* See the file "license.terms" for information on usage and redistribution */
/* of this file, and for a DISCLAIMER OF ALL WARRANTIES. */
/*****************************************************************************/
#define IsLeaf(nodeData) ((nodeData) & 0x80000000u)
#define GetSkipIndex(nodeData) ((nodeData) & 0x7fffffffu)
typedef struct {
union {
struct {
float bboxMin[3];
float bboxMax[3];
} bvhNode;
struct {
unsigned int v[3];
unsigned int meshIndex, triangleIndex;
} triangleLeaf;
};
// Most significant bit is used to mark leafs
unsigned int nodeData;
int pad0; // To align to float4
} TreeNode;
typedef struct {
float x, y, z;
} Point;
typedef struct {
Point o;
Point d;
float mint, maxt;
} Ray;
typedef struct {
float t, b1, b2;
unsigned int meshIndex, triangleIndex;
} RayHit;
float3 make_float3(const __global float *p)
{
return (float3)(p[0], p[1], p[2]);
}
void make_ray(__global const Ray* restrict ray, Ray *dstRay)
{
__global float4 *basePtr =(__global float4 *)ray;
const float4 data0 = (*basePtr++);
const float4 data1 = (*basePtr);
dstRay->o.x = data0.x;
dstRay->o.y = data0.y;
dstRay->o.z = data0.z;
dstRay->d.x = data0.w;
dstRay->d.y = data1.x;
dstRay->d.z = data1.y;
dstRay->mint = data1.z;
dstRay->maxt = data1.w;
}
int bbox_ray(const float3 pMin, const float3 pMax,
const float3 rayOrig, const float3 invRayDir,
const float mint, const float maxt)
{
const float3 l1 = (pMin - rayOrig) * invRayDir;
const float3 l2 = (pMax - rayOrig) * invRayDir;
const float3 tNear = fmin(l1, l2);
const float3 tFar = fmax(l1, l2);
float t0 = fmax(fmax(fmax(tNear.x, tNear.y), fmax(tNear.x, tNear.z)), mint);
float t1 = fmin(fmin(fmin(tFar.x, tFar.y), fmin(tFar.x, tFar.z)), maxt);
return (t1 > t0);
}
void tri_ray(const float3 rayOrig, const float3 rayDir, const float mint, float *maxt,
uint *hitMeshIndex, uint *hitTriangleIndex,
float *hitB1, float *hitB2,
const uint currentMeshIndex, const uint currentTriangleIndex,
const float3 v0, const float3 v1, const float3 v2)
{
// Calculate intersection
const float3 e1 = v1 - v0;
const float3 e2 = v2 - v0;
const float3 s1 = cross(rayDir, e2);
const float divisor = dot(s1, e1);
if (divisor == 0.f)
return;
const float invDivisor = 1.f / divisor;
// Compute first barycentric coordinate
const float3 d = rayOrig - v0;
const float b1 = dot(d, s1) * invDivisor;
if (b1 < 0.f)
return;
// Compute second barycentric coordinate
const float3 s2 = cross(d, e1);
const float b2 = dot(rayDir, s2) * invDivisor;
if (b2 < 0.f)
return;
const float b0 = 1.f - b1 - b2;
if (b0 < 0.f)
return;
// Compute _t_ to intersection point
const float t = dot(e2, s2) * invDivisor;
if (t < mint || t > *maxt)
return;
*maxt = t;
*hitB1 = b1;
*hitB2 = b2;
*hitMeshIndex = currentMeshIndex;
*hitTriangleIndex = currentTriangleIndex;
}
void bvh_ray(const Ray *ray, RayHit *rayHit,
__global const Point* restrict verts, __global const TreeNode* restrict tree)
{
const uint stopNode = GetSkipIndex(tree[0].nodeData); // Non-existent
const float3 rayOrig = (float3)(ray->o.x, ray->o.y, ray->o.z);
const float3 rayDir = (float3)(ray->d.x, ray->d.y, ray->d.z);
const float mint = ray->mint;
float maxt = ray->maxt;
const float3 invRayDir = 1.f / rayDir;
uint hitMeshIndex = 0xffffffffu;
uint hitTriangleIndex = 0xffffffffu;
uint currentNode = 0; // Root Node
float b1, b2;
while (currentNode < stopNode) {
__global const TreeNode* restrict node = &tree[currentNode];
// Read the node
__global float4* restrict data = (__global float4* restrict)node;
const float4 data0 = *data++;
const float4 data1 = *data;
const uint nodeData = as_uint(data1.s2);
if (IsLeaf(nodeData)) { // It is a leaf, check the triangle
const uint v0 = as_uint(data0.s0);
const uint v1 = as_uint(data0.s1);
const uint v2 = as_uint(data0.s2);
const float3 p0 = make_float3(&verts[v0].x);
const float3 p1 = make_float3(&verts[v1].x);
const float3 p2 = make_float3(&verts[v2].x);
const uint meshIndex = as_uint(data0.s3);
const uint triangleIndex = as_uint(data1.s0);
tri_ray(rayOrig, rayDir, mint, &maxt, &hitMeshIndex, &hitTriangleIndex,
&b1, &b2, meshIndex, triangleIndex, p0, p1, p2);
++currentNode;
} else { // It is a node, check the bounding box
const float3 pMin = (float3)(data0.s0, data0.s1, data0.s2);
const float3 pMax = (float3)(data0.s3, data1.s0, data1.s1);
if (bbox_ray(pMin, pMax, rayOrig, invRayDir, mint, maxt)) {
++currentNode;
} else {
currentNode = nodeData;
}
}
}
rayHit->t = maxt;
rayHit->b1 = b1;
rayHit->b2 = b2;
rayHit->meshIndex = hitMeshIndex;
rayHit->triangleIndex = hitTriangleIndex;
}
__kernel __attribute__((work_group_size_hint(64, 1, 1)))
void bvh_rays(__global const Ray* restrict rays, __global RayHit *rayHits,
const uint rayCount,
__global const Point* restrict verts, __global const TreeNode* restrict tree)
{
// Select the ray to check
const int gid = get_global_id(0);
if (gid >= rayCount)
return;
Ray ray;
make_ray(&rays[gid], &ray);
RayHit rayHit;
bvh_ray(&ray, &rayHit, verts, tree);
// Write result
__global RayHit *memRayHit = &rayHits[gid];
memRayHit->t = rayHit.t;
memRayHit->b1 = rayHit.b1;
memRayHit->b2 = rayHit.b2;
memRayHit->meshIndex = rayHit.meshIndex;
memRayHit->triangleIndex = rayHit.triangleIndex;
}
|