File: netlog.c

package info (click to toggle)
wireshark 4.6.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 351,244 kB
  • sloc: ansic: 3,101,885; cpp: 129,710; xml: 100,972; python: 56,512; perl: 24,575; sh: 5,874; lex: 4,383; pascal: 4,304; makefile: 165; ruby: 113; objc: 91; tcl: 35
file content (907 lines) | stat: -rw-r--r-- 34,930 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/* netlog.c
 *
 * Wiretap Library
 * Copyright (c) 1998 by Gilbert Ramirez <gram@alumni.rice.edu>
 *
 * NetLog file support
 * Copyright (c) 2025 by Moshe Kaplan
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 *
 * About NetLog:
 * NetLog files are JSON files representing each event occurring in the browser.
 * If configured to capture raw bytes, NetLog files will also contain the packet data.
 * For more information about NetLog, see https://www.chromium.org/developers/design-documents/network-stack/netlog/
 */

#include "config.h"
#include "netlog.h"

#include <string.h>

#include "wtap-int.h"
#include "file_wrappers.h"

/* Grab constants for generating supporting layers */
#include <epan/ipproto.h>
#include <epan/dissectors/packet-tcp.h>

#include <wsutil/wsjson.h>

#define WS_LOG_DOMAIN "NetLog"

/* This is to avoid having large files overload the JSON parser. Adjust as appropriate. */
#define MAX_FILE_SIZE (1024*1024*1024)

#define DECRYPTED_TRAFFIC_PORT 44380
#define CLIENT_SEQ_START 10000
#define SERVER_SEQ_START 20000
#define IPV4_HEADER_LEN 20
#define IPV6_HEADER_LEN 40
#define TCP_HEADER_LEN  20
#define UDP_HEADER_LEN   8

#define NETLOG_TCP_IDENTICATION_NUMBER  0x1234

static int netlog_file_type_subtype = -1;

void register_netlog(void);

typedef struct {
    int64_t timeTickOffset;
    int64_t TCP_CONNECT;
    int64_t SOCKET_BYTES_RECEIVED;
    int64_t SOCKET_BYTES_SENT;
    int64_t SOCKET_CLOSED;
    int64_t SSL_SOCKET_BYTES_RECEIVED;
    int64_t SSL_SOCKET_BYTES_SENT;
    int64_t UDP_BYTES_RECEIVED;
    int64_t UDP_BYTES_SENT;
    int64_t UDP_CONNECT;
    int64_t UDP_LOCAL_ADDRESS;
} NetLogEventConstants;


typedef enum {
    IP_VERSION_4,
    IP_VERSION_6
} IPVersion;

typedef enum {
    TransportProtocol_TCP,
    TransportProtocol_UDP
} TransportProtocol;

typedef enum {
    TrafficDirection_CTS, /* Client to Server */
    TrafficDirection_STC  /* Server to Client */
} TrafficDirection;

typedef union {
    ws_in4_addr ipv4;
    ws_in6_addr ipv6;
} IPAddress;

/**
 * Represents a TCP or UDP session at the moment bytes are being transferred.
 * UDP does not use sequence number fields.
*/
typedef struct {
    IPVersion ip_version;
    TransportProtocol transport;
    IPAddress client_ip;
    IPAddress server_ip;
    uint16_t client_port;
    uint16_t server_port;
    uint32_t client_seq;
    uint32_t server_seq;
    TrafficDirection direction;
    int64_t timestamp;
} TransportSession;

/**
 * Represents the byte offset of a single JSON object
 * which can be parsed to obtain the associated data
 */
 typedef struct {
    uint32_t offset;
    uint32_t length;
    TransportSession session;
} JSONPacket;

typedef struct {
    IPVersion ip_version;
    IPAddress ip;
    uint16_t port;
} IP_Port;

typedef struct {
    uint32_t idx;
    GHashTable* json_packets_ht;
} NetLogState;

/**
 * Parse a string like "127.0.0.1:443" or "[2001::1]:443" into an IP_port combination
 * Stores the result in the provided `dest`.
 * Returns true on successful parse, false on failure.
 */
static bool parse_address_port(const char* address_port, IP_Port* dest)
{
    const char* dest_port_str = strrchr(address_port, ':');
    if (dest_port_str == NULL || strlen(dest_port_str) <= 1){
        return false;
    }
    const int dest_port = (int) g_ascii_strtoll(dest_port_str+1, NULL, 10);
    dest->port = dest_port;
    ws_debug("dest_port: %i", dest_port);

    char* dest_ip = g_strndup(address_port, dest_port_str - address_port);
    if (dest_ip == NULL){
        return false;
    }

    ws_in4_addr ipv4_addr;
    if (ws_inet_pton4(dest_ip, &ipv4_addr)){
        dest->ip_version = IP_VERSION_4;
        dest->ip.ipv4 = ipv4_addr;
        g_free(dest_ip);
        return true;
    }

    /* Must be IPv6. The input is in brackets (e.g., "[2001::1]:443"),
     * so we'll need to remove the brackets and parse it afterward */
    if (strlen(dest_ip) <= 2){
        g_free(dest_ip);
        return false;
    }
    /* Done with dest_ip, get rid of it */
    g_free(dest_ip);
    ws_in6_addr ipv6_addr;
    char* dest_ip2 = g_strndup(address_port + 1, dest_port_str - address_port - 2);
    if (dest_ip2 == NULL){
        return false;
    }
    if (ws_inet_pton6(dest_ip2, &ipv6_addr)){
        dest->ip_version = IP_VERSION_6;
        memcpy(dest->ip.ipv6.bytes, ipv6_addr.bytes, sizeof(ipv6_addr.bytes));
        g_free(dest_ip2);
        return true;
    }
    /* Not able to be parsed as IPv4 or IPv6 */
    g_free(dest_ip2);
    return false;
}

/**
 * Parses all of the significant log event constants from JSON data and stores them in `out`
 */
static bool parse_log_event_constants(char *filebuf, jsmntok_t *root_json_token, NetLogEventConstants *out)
{
    if (!filebuf || !root_json_token || !out) {
        return false;
    }

    jsmntok_t* json_constants = json_get_object(filebuf, root_json_token, "constants");
    if (json_constants == NULL){
        ws_warning("Failed to parse the JSON constants");
        return false;
    }
    jsmntok_t* json_logevent_constants = json_get_object(filebuf, json_constants, "logEventTypes");
    if (json_logevent_constants == NULL){
        ws_warning("Failed to parse the JSON logEventTypes");
        return false;
    }

    bool ok = true;
    ok &= json_get_int(filebuf, json_constants, "timeTickOffset", &out->timeTickOffset);
    ok &= json_get_int(filebuf, json_logevent_constants, "TCP_CONNECT", &out->TCP_CONNECT);
    ok &= json_get_int(filebuf, json_logevent_constants, "SOCKET_BYTES_RECEIVED", &out->SOCKET_BYTES_RECEIVED);
    ok &= json_get_int(filebuf, json_logevent_constants, "SOCKET_BYTES_SENT", &out->SOCKET_BYTES_SENT);
    ok &= json_get_int(filebuf, json_logevent_constants, "SOCKET_CLOSED", &out->SOCKET_CLOSED);
    ok &= json_get_int(filebuf, json_logevent_constants, "SSL_SOCKET_BYTES_RECEIVED", &out->SSL_SOCKET_BYTES_RECEIVED);
    ok &= json_get_int(filebuf, json_logevent_constants, "SSL_SOCKET_BYTES_SENT", &out->SSL_SOCKET_BYTES_SENT);
    ok &= json_get_int(filebuf, json_logevent_constants, "UDP_BYTES_RECEIVED", &out->UDP_BYTES_RECEIVED);
    ok &= json_get_int(filebuf, json_logevent_constants, "UDP_BYTES_SENT", &out->UDP_BYTES_SENT);
    ok &= json_get_int(filebuf, json_logevent_constants, "UDP_CONNECT", &out->UDP_CONNECT);
    ok &= json_get_int(filebuf, json_logevent_constants, "UDP_LOCAL_ADDRESS", &out->UDP_LOCAL_ADDRESS);

    ws_debug("TCP_CONNECT: %" PRIi64, out->TCP_CONNECT);
    ws_debug("SOCKET_BYTES_RECEIVED: %" PRIi64, out->SOCKET_BYTES_RECEIVED);
    ws_debug("SOCKET_BYTES_SENT: %" PRIi64, out->SOCKET_BYTES_SENT);
    ws_debug("SOCKET_CLOSED: %" PRIi64, out->SOCKET_CLOSED);
    ws_debug("SSL_SOCKET_BYTES_RECEIVED: %" PRIi64, out->SSL_SOCKET_BYTES_RECEIVED);
    ws_debug("SSL_SOCKET_BYTES_SENT: %" PRIi64, out->SSL_SOCKET_BYTES_SENT);
    ws_debug("UDP_BYTES_RECEIVED: %" PRIi64, out->UDP_BYTES_RECEIVED);
    ws_debug("UDP_BYTES_SENT: %" PRIi64, out->UDP_BYTES_SENT);
    ws_debug("UDP_CONNECT: %" PRIi64, out->UDP_CONNECT);
    ws_debug("UDP_LOCAL_ADDRESS: %" PRIi64, out->UDP_LOCAL_ADDRESS);


    if (ok) {
        ws_debug("Successfully parsed all values");
    } else {
        ws_debug("Failed to parse all values!");
    }
    return ok;
}


/**
 * Given a provided session and traffic payload, generates the complete Wireshark 'packet'
 * with the IPv4/IPv6 header, TCP/UDP header, and payload, and stores them in the supplied wtap rec.
 */
static bool generate_packet(const wtap* wth, wtap_rec* rec, const TransportSession* session, const uint8_t* payload, const size_t payload_len)
{
    if (payload == NULL){
        return false;
    }
    size_t packet_size;
    /* First calculate total bytes needed: */
    if (session->ip_version == IP_VERSION_4) {
        if (session->transport == TransportProtocol_TCP) {
            packet_size = (uint32_t)(IPV4_HEADER_LEN + TCP_HEADER_LEN + payload_len);
        }
        else if (session->transport == TransportProtocol_UDP) {
            packet_size = (uint32_t)(IPV4_HEADER_LEN + UDP_HEADER_LEN + payload_len);
        }
        else {
            return false;
        }
    }
    else if (session->ip_version == IP_VERSION_6) {
        if (session->transport == TransportProtocol_TCP) {
            packet_size = (uint32_t)(IPV6_HEADER_LEN + TCP_HEADER_LEN + payload_len);
        }
        else if (session->transport == TransportProtocol_UDP) {
            packet_size = (uint32_t)(IPV6_HEADER_LEN + UDP_HEADER_LEN + payload_len);
        }
        else {
            return false;
        }
    } else {
        return false;
    }

    /* Set the wtap record data */
    ws_buffer_assure_space(&rec->data, packet_size);
    ws_buffer_increase_length(&rec->data, packet_size);

    wtap_setup_packet_rec(rec, wth->file_encap);
    rec->block = wtap_block_create(WTAP_BLOCK_PACKET);
    rec->rec_header.packet_header.caplen = (uint32_t) packet_size;
    rec->rec_header.packet_header.len = (uint32_t) packet_size;
    rec->presence_flags = WTAP_HAS_TS;
    rec->ts.secs = (time_t)session->timestamp / 1000;
    rec->ts.nsecs = (int)((session->timestamp % 1000) * 1000 * 1000);

    /* Fill in the packet data, starting with the IP header */
    uint8_t* p = ws_buffer_start_ptr(&rec->data);
    if (session->ip_version == IP_VERSION_4) {
        // --- IPv4 Header ---
        *p++ = 0x45; // Version 4, IHL 5
        *p++ = 0x00; // DSCP/ECN
        uint16_t total_len = (uint16_t)packet_size;
        *(uint16_t*)p = g_htons(total_len); p += 2;
        *(uint16_t*)p = g_htons(NETLOG_TCP_IDENTICATION_NUMBER); p += 2;
        *(uint16_t*)p = g_htons(0x4000); p += 2; // Flags + Fragment offset
        *p++ = 64; // TTL
        if (session->transport == TransportProtocol_TCP) {
            *p++ = IP_PROTO_TCP;
        }
        else if (session->transport == TransportProtocol_UDP) {
            *p++ = IP_PROTO_UDP;
        }
        *(uint16_t*)p = 0; p += 2; // Header checksum (optional)
        if (session->direction == TrafficDirection_CTS) {
            memcpy(p, &session->client_ip.ipv4, 4); p += 4;
            memcpy(p, &session->server_ip.ipv4, 4); p += 4;
        }
        else {
            memcpy(p, &session->server_ip.ipv4, 4); p += 4;
            memcpy(p, &session->client_ip.ipv4, 4); p += 4;
        }
    }
    else {
        // --- IPv6 Header ---
        uint32_t ver_tc_fl = g_htonl(0x60000000); // Version 6, TC=0, Flow=0
        memcpy(p, &ver_tc_fl, 4); p += 4;
        uint16_t ipv6_payload_len = (uint16_t)(TCP_HEADER_LEN + payload_len);
        *(uint16_t*)p = g_htons(ipv6_payload_len); p += 2;
        if (session->transport == TransportProtocol_TCP) {
            *p++ = IP_PROTO_TCP;
        }
        else if (session->transport == TransportProtocol_UDP) {
            *p++ = IP_PROTO_UDP;
        }
        *p++ = 64; // Hop limit
        if (session->direction == TrafficDirection_CTS) {
            memcpy(p, session->client_ip.ipv6.bytes, 16); p += 16;
            memcpy(p, session->server_ip.ipv6.bytes, 16); p += 16;
        }
        else {
            memcpy(p, session->server_ip.ipv6.bytes, 16); p += 16;
            memcpy(p, session->client_ip.ipv6.bytes, 16); p += 16;
        }
    }

    /* Fill in the packet data, continuing with the TCP/UDP header */
    if (session->transport == TransportProtocol_TCP) {
        // --- TCP Header ---
        if (session->direction == TrafficDirection_CTS) {
            *(uint16_t*)p = g_htons(session->client_port); p += 2;
            *(uint16_t*)p = g_htons(session->server_port); p += 2;
            *(uint32_t*)p = g_htonl(session->client_seq); p += 4;
            *(uint32_t*)p = g_htonl(session->server_seq); p += 4;
        }
        else {
            *(uint16_t*)p = g_htons(session->server_port); p += 2;
            *(uint16_t*)p = g_htons(session->client_port); p += 2;
            *(uint32_t*)p = g_htonl(session->server_seq); p += 4;
            *(uint32_t*)p = g_htonl(session->client_seq); p += 4;
        }
        *p++ = (5 << 4); // Data offset = 5 (20 bytes), reserved
        *p++ = TH_ACK;    // TCP flags
        *(uint16_t*)p = g_htons(8192); p += 2; // Window size
        *(uint16_t*)p = 0; p += 2; // Checksum (optional)
        *(uint16_t*)p = 0; p += 2; // Urgent pointer
    }
    else if (session->transport == TransportProtocol_UDP) {
        // --- UDP Header ---
        if (session->direction == TrafficDirection_CTS) {
            *(uint16_t*)p = g_htons(session->client_port); p += 2;
            *(uint16_t*)p = g_htons(session->server_port); p += 2;
        }
        else {
            *(uint16_t*)p = g_htons(session->server_port); p += 2;
            *(uint16_t*)p = g_htons(session->client_port); p += 2;
        }
        *(uint16_t*)p = g_htons(UDP_HEADER_LEN + payload_len); p += 2;
        *(uint16_t*)p = 0; p += 2; // Checksum (optional)
    }

    /* Fill in the packet data, continuing with the TCP/UDP payload */
    memcpy(p, payload, payload_len);
    return true;
}

/**
 * Given a hash table of indexes to JSONPacket*, and an index, read the data from the fh and store it in the provided wtap rec
 */
static bool netlog_read_packet(const wtap* wth, wtap_rec* rec, GHashTable *json_packets_ht, const int idx, int* err, char **err_info, FILE_T fh)
{
    JSONPacket* json_packet = g_hash_table_lookup(json_packets_ht, GINT_TO_POINTER(idx));
    if (!json_packet){
        return false;
    }

    /* Now we have the offset, length, and context. Let's read the data! */
    if (file_seek(fh, json_packet->offset, SEEK_SET, err) == -1) {
        return false;
    }
    uint8_t* filebuf = (uint8_t*)g_malloc(json_packet->length);
    if (!filebuf){
        return false;
    }
    int bytes_read = file_read(filebuf, (unsigned int) json_packet->length, fh);
    if (bytes_read < 0) {
        /* Read error. */
        *err = file_error(fh, err_info);
        g_free(filebuf);
        return false;
    }
    if (bytes_read == 0) {
        /* empty file, not *anybody's* */
        g_free(filebuf);
        return false;
    }

    int num_tokens = json_parse_len(filebuf, json_packet->length, NULL, 0);
    if (num_tokens < 0) {
        g_free(filebuf);
        return false;
    }
    jsmntok_t* json_tokens = g_new0(jsmntok_t, num_tokens);
    if (!json_tokens) {
        g_free(filebuf);
        return false;
    }
    int json_parse_result = json_parse_len(filebuf, json_packet->length, json_tokens, num_tokens);
    if (json_parse_result < 0){
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }

    jsmntok_t* params_entry = json_tokens;
    const char* base64_bytes = json_get_string(filebuf, params_entry, "bytes");
    if (base64_bytes == NULL){
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }
    size_t payload_len;
    uint8_t* payload = g_base64_decode(base64_bytes, &payload_len);
    /* Now that we have the TCP/UDP packet's payload, let's build the packet */

    bool result = generate_packet(wth, rec, &json_packet->session, payload, payload_len);
    g_free(payload);
    g_free(json_tokens);
    g_free(filebuf);
    return result;
}


/**
 * Generates a JSONPacket* for a provided event with bytes transferred, given the context of the existing session table and the traffic direction.
 */
JSONPacket* handle_traffic_event(char* filebuf, jsmntok_t* event_entry, GHashTable* sessions_table, int64_t event_id, TrafficDirection direction){
    jsmntok_t* params_entry = json_get_object(filebuf, event_entry, "params");
    if (params_entry == NULL)
        return NULL;

    TransportSession* session = g_hash_table_lookup(sessions_table, GINT_TO_POINTER(event_id));
    if (!session){
        return NULL;
    }

    /* Now we need to save the packet metadata */
    JSONPacket* json_packet = g_new0(JSONPacket, 1);
    if (!json_packet){
        return NULL;
    }

    json_packet->session = *session;
    json_packet->length = params_entry->end - params_entry->start;
    json_packet->offset = params_entry->start;
    json_packet->session.direction = direction;

    /* After copying the session object, increase the sequence numbers for the next packet */
    if (session->transport == TransportProtocol_TCP) {
        /* We need the payload's size to increment the sequence numbers */
        int64_t payload_len = 0;
        if (!json_get_int(filebuf, params_entry, "byte_count", &payload_len)){
            g_free(json_packet);
            return NULL;
        }
        if (direction == TrafficDirection_STC){
            session->server_seq += (uint32_t)payload_len;
        }
        else if (direction == TrafficDirection_CTS){
            session->client_seq += (uint32_t)payload_len;
        }
    }
    return json_packet;
}

/**
 * Generates a TransportSession* from the provided local_address, remote_address, and TransportProtocol.
 */
TransportSession* create_transport_session(const IP_Port* local_address, const IP_Port* remote_address, const TransportProtocol transport){
    /* As a quick sanity check, confirm that both source and destination are the same IP version */
    if (local_address->ip_version != remote_address->ip_version){
        ws_warning("IP versions are different! local_address->ip_version: %d, remote_address_ptr: %d", local_address->ip_version, remote_address->ip_version);
        return NULL;
    }

    TransportSession* session = g_new0(TransportSession, 1);
    if (session == NULL){
        return NULL;
    }
    session->transport = transport;
    session->ip_version = remote_address->ip_version;
    if (session->ip_version == IP_VERSION_4){
        session->client_ip.ipv4 = local_address->ip.ipv4;
        session->server_ip.ipv4 = remote_address->ip.ipv4;
    }
    else if (session->ip_version == IP_VERSION_6){
        memcpy(session->client_ip.ipv6.bytes, local_address->ip.ipv6.bytes, sizeof(local_address->ip.ipv6.bytes));
        memcpy(session->server_ip.ipv6.bytes, remote_address->ip.ipv6.bytes, sizeof(remote_address->ip.ipv6.bytes));
    }
    session->client_port = local_address->port;
    session->server_port = remote_address->port;

    if (transport == TransportProtocol_TCP){
        session->client_seq = CLIENT_SEQ_START;
        session->server_seq = SERVER_SEQ_START;
    }
    return session;
}

/**
 * Iterate through the Netlog file's events and store them in the provided GHashTable*, so that they can
 * be efficiently accessed via index.
 */
static bool parse_json_events(char* filebuf, const NetLogEventConstants netlog_event_constants, jsmntok_t* json_events, GHashTable *json_packets_ht)
{
    /* We'll need to store the session information independently of individual events, so let's do that:*/
    GHashTable* TCP_sessions = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free);
    GHashTable* decrypted_sessions = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free);
    GHashTable* UDP_sessions = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free);
    /* For UDP, we don't have a single connection with both the local and remote address, so we'll need a mapping of IDs to local address
     * So we can build the connection objects.
     */
    GHashTable* UDP_connection_ids_to_remote_address = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free);

    int json_packets_ht_index = 0;
    const int json_array_len = json_get_array_len(json_events);
    jsmntok_t* event_entry = json_get_array_index(json_events, 0);
    for (int i = 0; i < json_array_len && event_entry != NULL; i++, event_entry = json_get_next_object(event_entry))
    {
        if (event_entry->type != JSMN_OBJECT){
            ws_debug("Skipping non-object at index %i", i);
            continue;
        }
        int64_t type_val = 0;
        if (json_get_int(filebuf, event_entry, "type", &type_val)){
            ws_debug("Processing event %d type: %" PRIi64, i, type_val);
        } else {
            ws_warning("Failed to read the event's 'type'");
            continue;
        }

        /* Now that we've confirmed that this is an event with a type,
           let's confirm it's of interest and then we can parse that event type
        */
        /* Events of interest must have a source ID: */
        jsmntok_t* source_entry = json_get_object(filebuf, event_entry, "source");
        if (source_entry == NULL) {
           continue;
        }
        int64_t event_id = 0;
        if (!json_get_int(filebuf, source_entry, "id", &event_id)){
           continue;
        }

        const char* timestamp_str = json_get_string(filebuf, event_entry, "time");
        if (timestamp_str == NULL){
            continue;
        }
        uint64_t timestamp = g_ascii_strtoll(timestamp_str, NULL, 10);

        if (type_val == netlog_event_constants.TCP_CONNECT) {
            /* There can be multiple TCP_CONNECT lines - we cheat by
            only storing the final one which includes both the local and remote addresses */
            jsmntok_t* params_entry = json_get_object(filebuf, event_entry, "params");
            if (params_entry == NULL)
                continue;
            const char* local_address_str = json_get_string(filebuf, params_entry, "local_address");
            const char* remote_address_str = json_get_string(filebuf, params_entry, "remote_address");
            if (remote_address_str == NULL || local_address_str == NULL)
                continue;

            IP_Port local_address, remote_address;
            if (!parse_address_port(local_address_str, &local_address)){
                continue;
            }
            if (!parse_address_port(remote_address_str, &remote_address)){
                continue;
            }
            /* Now we have both the local and remote IPs and ports. Store them in a session! */
            TransportSession* session = create_transport_session(&local_address, &remote_address, TransportProtocol_TCP);
            if (session == NULL){
                continue;
            }
            g_hash_table_insert(TCP_sessions, GINT_TO_POINTER(event_id), session);

            /* Create a second session for the TLS traffic */
            TransportSession* decrypted_session = create_transport_session(&local_address, &remote_address, TransportProtocol_TCP);
            if (decrypted_session == NULL){
                continue;
            }
            /* Override the dest port to avoid messing up reassembly */
            decrypted_session->server_port = DECRYPTED_TRAFFIC_PORT;
            g_hash_table_insert(decrypted_sessions, GINT_TO_POINTER(event_id), decrypted_session);
        } else if (type_val == netlog_event_constants.SOCKET_BYTES_RECEIVED) {
            /* Now we need to save the packet metadata */
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, TCP_sessions, event_id, TrafficDirection_STC);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.SOCKET_BYTES_SENT) {
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, TCP_sessions, event_id, TrafficDirection_CTS);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.SOCKET_CLOSED) {
            /* We could, but don't bother creating the FINs, similar to how we skip SYNs*/
        } else if (type_val == netlog_event_constants.SSL_SOCKET_BYTES_RECEIVED) {
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, decrypted_sessions, event_id, TrafficDirection_STC);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.SSL_SOCKET_BYTES_SENT) {
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, decrypted_sessions, event_id, TrafficDirection_CTS);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.UDP_BYTES_RECEIVED) {
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, UDP_sessions, event_id, TrafficDirection_STC);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.UDP_BYTES_SENT) {
            JSONPacket* json_packet = handle_traffic_event(filebuf, event_entry, UDP_sessions, event_id, TrafficDirection_CTS);
            if (!json_packet){
                continue;
            }
            json_packet->session.timestamp = netlog_event_constants.timeTickOffset + timestamp;
            g_hash_table_insert(json_packets_ht, GINT_TO_POINTER(json_packets_ht_index), json_packet);
            json_packets_ht_index++;
        } else if (type_val == netlog_event_constants.UDP_CONNECT) {
            /* Unlike TCP which has both sides in a single event, UDP does not, so we need
             * to store the first half of the connection as a separate entity here. */
            jsmntok_t* params_entry = json_get_object(filebuf, event_entry, "params");
            if (params_entry == NULL)
                continue;
            const char* remote_address = json_get_string(filebuf, params_entry, "address");
            if (remote_address == NULL)
                continue;
            IP_Port* server_ip = g_new0(IP_Port, 1);
            if (!server_ip){
                continue;
            }
            if (!parse_address_port(remote_address, server_ip)){
                g_free(server_ip);
                continue;
            }
            g_hash_table_insert(UDP_connection_ids_to_remote_address, GINT_TO_POINTER(event_id), server_ip);

        } else if (type_val == netlog_event_constants.UDP_LOCAL_ADDRESS) {
            /* Builds a UDP session with the data from UDP_CONNECT */
            const IP_Port *remote_address_ptr = g_hash_table_lookup(UDP_connection_ids_to_remote_address, GINT_TO_POINTER(event_id));
            if (!remote_address_ptr){
                continue;
            }

            /* Read the local_address from JSON */
            jsmntok_t* params_entry = json_get_object(filebuf, event_entry, "params");
            if (params_entry == NULL)
                continue;
            const char* local_address_str = json_get_string(filebuf, params_entry, "address");
            if (local_address_str == NULL)
                continue;
            /* Parse the address into an IP and port */
            IP_Port local_address;
            if (!parse_address_port(local_address_str, &local_address)){
                continue;
            }

            /* Now we have both the local and remote IPs and ports. Store them in a session! */
            TransportSession* session = create_transport_session(&local_address, remote_address_ptr, TransportProtocol_UDP);
            if (session == NULL){
                continue;
            }
            g_hash_table_insert(UDP_sessions, GINT_TO_POINTER(event_id), session);
        } else {
            /* This is expected and we can ignore these */
        }
    }
    /* Clean up after ourselves */
    g_hash_table_destroy(TCP_sessions);
    g_hash_table_destroy(decrypted_sessions);
    g_hash_table_destroy(UDP_sessions);
    g_hash_table_destroy(UDP_connection_ids_to_remote_address);
    return true;
}

/**
 * Parses the entire NetLog JSON file from `fh` and stores the packets in json_packets_ht.
 * Returns true on success, false on failure.
 */
static bool netlog_parse_entirety(wtap *wth, FILE_T fh, int *err, char **err_info, GHashTable *json_packets_ht)
{
    int64_t file_size;

    if ((file_size = wtap_file_size(wth, err)) == -1)
        return false;

    if (file_size > MAX_FILE_SIZE) {
        /* Avoid allocating space for an immensely-large file. */
        *err = WTAP_ERR_BAD_FILE;
        *err_info = ws_strdup_printf("%s: File has %" PRId64 "-byte packet, bigger than maximum of %u",
                wtap_encap_name(wth->file_encap), file_size, MAX_FILE_SIZE);
        return false;
    }

    uint8_t* filebuf = (uint8_t*)g_malloc(file_size);
    if (!filebuf)
        return false;

    /* Read the entire file into memory */
    int bytes_read = file_read(filebuf, (unsigned int) file_size, fh);

    if (bytes_read < 0) {
        /* Read error. */
        *err = file_error(fh, err_info);
        g_free(filebuf);
        return false;
    }
    if (bytes_read == 0) {
        /* empty file, not *anybody's* */
        g_free(filebuf);
        return false;
    }

    int num_tokens = json_parse_len(filebuf, bytes_read, NULL, 0);
    if (num_tokens < 0) {
        g_free(filebuf);
        return false;
    }

    jsmntok_t* json_tokens = g_new0(jsmntok_t, num_tokens);
    if (!json_tokens) {
        g_free(filebuf);
        return false;
    }

    if (json_parse_len(filebuf, bytes_read, json_tokens, num_tokens) < 0){
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }

    /*
     * We now have a fully parsed JSON object. Let's start extracting some data!
     * First (root) object is an Object (dictionary), which is an unordered collection of key-value pairs, enclosed in curly braces
    */
    jsmntok_t* root_json_token = json_tokens;

    NetLogEventConstants netlog_event_constants = {0};
    if (!parse_log_event_constants(filebuf, root_json_token, &netlog_event_constants)) {
        ws_debug("Failed to parse one or more netlog event constants.");
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }

    /* At this point, we have all of the constants needed within 'json_logevent_constants'
       We can now begin parsing the events to extract the data!
    */
    jsmntok_t* json_events = json_get_array(filebuf, root_json_token, "events");

    if (!parse_json_events(filebuf, netlog_event_constants, json_events, json_packets_ht)){
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }

    if (g_hash_table_size(json_packets_ht) == 0){
        /* Might be a NetLog capture without any data. Skip it so it can be parsed by the JSON parser. */
        g_free(json_tokens);
        g_free(filebuf);
        return false;
    }

    g_free(json_tokens);
    g_free(filebuf);
    return true;
}

/* Read the next packet */
static bool netlog_read(wtap* wth, wtap_rec* rec, int* err, char** err_info, int64_t* data_offset)
{
    /* Release the data, one packet at a time: */
    NetLogState* netlog_state = wth->priv;

    if (!netlog_read_packet(wth, rec, netlog_state->json_packets_ht, netlog_state->idx, err, err_info, wth->fh)) {
        return false;
    }

    *data_offset = netlog_state->idx;
    netlog_state->idx += 1;

    return true;
}

/* Read the packet at the specified offset (effectively, the index) */
static bool netlog_seek_read(wtap* wth, int64_t seek_off, wtap_rec* rec, int* err, char** err_info)
{
    /* Release the requested packet */
    NetLogState* netlog_state = wth->priv;
    if (!netlog_read_packet(wth, rec, netlog_state->json_packets_ht, (int)seek_off, err, err_info, wth->random_fh)) {
        return false;
    }

    return true;
}

/* close handler to free any persistent data */
static void netlog_close(wtap* wth) {
    if (wth->priv != NULL) {
        NetLogState* netlog_state = wth->priv;
        g_hash_table_destroy(netlog_state->json_packets_ht);
    }
}

/**
 * Called to determine if a file matches this handler.
 * Returns WTAP_OPEN_MINE if the provided file is a NetLog file.
 *
 * Note: Allocates memory for a netlog_state and stores it as wth->priv.
 */
wtap_open_return_val netlog_open(wtap* wth, int* err, char** err_info)
{
    /**
     * Parsing JSON is very slow. To avoid parsing the entire
     * file multiple times, store the cached result.
     */
    NetLogState* netlog_state = g_new0(NetLogState, 1);
    if (!netlog_state) {
        return WTAP_OPEN_ERROR;
    }
    /* Mapping of 'offset' (index) to json data */
    netlog_state->json_packets_ht = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, g_free);
    /* Parse and store the packets for future use: */
    if (!netlog_parse_entirety(wth, wth->fh, err, err_info, netlog_state->json_packets_ht)) {
        g_hash_table_destroy(netlog_state->json_packets_ht);
        g_free(netlog_state);
        return WTAP_OPEN_NOT_MINE;
    }

    if (file_seek(wth->fh, 0, SEEK_SET, err) == -1) {
        g_hash_table_destroy(netlog_state->json_packets_ht);
        g_free(netlog_state);
        return WTAP_OPEN_ERROR;
    }

    wth->priv = netlog_state;
    wth->file_type_subtype = netlog_file_type_subtype;
    wth->file_encap = WTAP_ENCAP_RAW_IP;
    wth->file_tsprec = WTAP_TSPREC_MSEC;
    wth->subtype_read = netlog_read;
    wth->subtype_seek_read = netlog_seek_read;
    wth->subtype_close = netlog_close;
    wth->snapshot_length = 0;
    return WTAP_OPEN_MINE;
}

static const struct supported_block_type netlog_blocks_supported[] = {
    /* We support packet blocks, with no comments or other options. */
    { WTAP_BLOCK_PACKET, ONE_BLOCK_SUPPORTED, NO_OPTIONS_SUPPORTED }
};

static const struct file_type_subtype_info netlog_info = {
    "NetLog", "netlog", "json", NULL,
    false, BLOCKS_SUPPORTED(netlog_blocks_supported),
    NULL, NULL, NULL
};

void register_netlog(void)
{
    netlog_file_type_subtype = wtap_register_file_type_subtype(&netlog_info);

    /*
     * Register name for backwards compatibility with the
     * wtap_filetypes table in Lua.
     */
    wtap_register_backwards_compatibility_lua_name("netlog",
        netlog_file_type_subtype);
}

/*
 * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
 *
 * Local variables:
 * c-basic-offset: 4
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * vi: set shiftwidth=4 tabstop=8 expandtab:
 * :indentSize=4:tabSize=8:noTabs=true:
 */