File: integer.h

package info (click to toggle)
wireshark 4.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 351,352 kB
  • sloc: ansic: 3,102,875; cpp: 129,717; xml: 100,972; python: 56,513; perl: 24,575; sh: 5,874; lex: 4,383; pascal: 4,304; makefile: 166; ruby: 113; objc: 91; tcl: 35
file content (925 lines) | stat: -rw-r--r-- 21,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
/*
 * 128-bit integer type with logic, shifts, arithmetic and bitmanip.
 *
 * Copyright (c) 2016-2023 Michael Clark <michaeljclark@mac.com>
 *
 * SPDX-License-Identifier: ISC
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#pragma once

/* i128_t configuration */

#define I128_USE_BITS
#define I128_USE_TYPES
#define I128_USE_ENDIAN
#define I128_USE_INTRIN
#undef I128_USE_I128
#define I128_USE_INLINE
#undef I128_USE_LIBDIVIDE

#if defined I128_USE_LIBDIVIDE
#include "libdivide.h"
#endif

#if defined I128_USE_BITS
#include "bits.h"
#elif defined __GNUC__
#define clz(x) __extension__ ({ uint n = __builtin_clzll(x); n == 0 ? 64 : n; })
#define ctz(x) __extension__ ({ uint n = __builtin_ctzll(x); n == 0 ? 64 : n; })
#define popcnt(x) __builtin_popcount(x)
#define bswap64(x) __builtin_bswap64(x)
#elif defined _MSC_VER
#include <intrin.h>
#define clz(x) _lzcnt_u64(x)
#define ctz(x) _tzcnt_u64(x)
#define popcnt(x) __popcnt64(x)
#define bswap64(x) _byteswap_uint64(x)
#endif

#if defined I128_USE_TYPES
#include "types.h"
#else
typedef unsigned int uint;
typedef signed char i8;
typedef unsigned char u8;
typedef signed int i32;
typedef unsigned int u32;
typedef signed long long i64;
typedef unsigned long long u64;
#endif

#if defined I128_USE_ENDIAN
#include "endian.h"
#else
#define BYTE_ORDER    1234
#define LITTLE_ENDIAN 1234
#define BIG_ENDIAN    4321
#endif

#if defined I128_USE_INLINE
#define _int_func_ static inline
#else
#define _int_func_
#endif

#if defined __GNUC__
#define i128_unused __attribute__ ((unused))
#else
#define i128_unused
#endif

/* i128_t structure */

typedef struct i128_t i128_t;
struct i128_t
{
    union {
        u64 n[2];
        u8 b[16];
#if defined(__SIZEOF_INT128__)
        __uint128_t m;
#endif
        struct {
#if BYTE_ORDER == LITTLE_ENDIAN
            u64 lo;
            i64 hi;
#endif
#if BYTE_ORDER == BIG_ENDIAN
            i64 hi;
            u64 lo;
#endif
        };
    };
};

/* i128_t interface */

_int_func_ i128_t i128_from_i64(i64 n);
_int_func_ i128_t i128_from_u64(u64 n);
_int_func_ i128_t i128_from_uv64(u64 *v);
_int_func_ i64 i64_from_i128(i128_t n);
_int_func_ u64 u64_from_i128(i128_t n);
_int_func_ u64* uv64_from_i128(i128_t *v);

_int_func_ i128_t i128_not(i128_t u);
_int_func_ i128_t i128_and(i128_t u, i128_t v);
_int_func_ i128_t i128_or(i128_t u, i128_t v);
_int_func_ i128_t i128_xor(i128_t u, i128_t v);
_int_func_ i128_t i128_sll(i128_t u, uint shamt);
_int_func_ i128_t i128_srl(i128_t u, uint shamt);
_int_func_ i128_t i128_sra(i128_t u, uint shamt);

_int_func_ i128_t i128_neg(i128_t u);
_int_func_ i128_t i128_add(i128_t u, i128_t v);
_int_func_ i128_t i128_sub(i128_t u, i128_t v);
_int_func_ i128_t i128_mul(i128_t u, i128_t v);
_int_func_ i128_t i128_mulu(i128_t u, i128_t v);

i128_t i128_div(i128_t u, i128_t v);
i128_t i128_divu(i128_t u, i128_t v);
i128_t i128_rem(i128_t u, i128_t v);
i128_t i128_remu(i128_t u, i128_t v);

static inline i128_t i128_divmod(i128_t u, i128_t v, i128_t *r);
static inline i128_t i128_divmodu(i128_t u, i128_t v, i128_t *r);

_int_func_ int i128_cmp_eq(i128_t u, i128_t v);
_int_func_ int i128_cmp_lt(i128_t u, i128_t v);
_int_func_ int i128_cmp_gt(i128_t u, i128_t v);
_int_func_ int i128_cmp_ltu(i128_t u, i128_t v);
_int_func_ int i128_cmp_gtu(i128_t u, i128_t v);
_int_func_ int i128_cmp_t(i128_t u, i128_t v);
_int_func_ int i128_cmp_tu(i128_t u, i128_t v);

_int_func_ uint i128_ctz(i128_t u);
_int_func_ uint i128_clz(i128_t u);
_int_func_ uint i128_popcnt(i128_t u);
_int_func_ i128_t i128_bswap(i128_t u);
_int_func_ i128_t i128_brev(i128_t u);

/* 64-bit 128-bit compiler intrinsics */

#if !(defined I128_USE_I128 && defined(__SIZEOF_INT128__))

/* 64-bit 128-bit compiler intrinsics forward decls */

static inline i128_t i128_umul_i64_i64(u64 x, u64 y);
static inline u64 i64_umulh_i64_i64(u64 x, u64 y);
static inline u64 i64_udiv_i128_i64(i128_t x, u64 y, u64 *r);
static inline u64 i64_udiv_i128_i128(i128_t u, i128_t v, i128_t *r);

/* i128_umul_i64_i64 */

#if defined I128_USE_INTRIN && defined(__SIZEOF_INT128__)
static inline i128_t i128_umul_i64_i64(u64 x, u64 y)
{
    i128_t r;
    r.m = (__uint128_t)x * (__uint128_t)y;
    return r;
}
#elif defined I128_USE_INTRIN && defined(_MSC_VER) && defined(_M_X64)
static inline i128_t i128_umul_i64_i64(u64 x, u64 y)
{
    i128_t r;
    u64 hi;
    _umul128(x, y, &hi);
    r.lo = x * y;
    r.hi = hi;
    return r;
}
#else
static inline i128_t i128_umul_i64_i64(u64 x, u64 y)
{
    const u64 mask = 0xffffffffll;
    u64 x0 =    x       & mask;
    u64 x1 =    x >> 32 & mask;
    u64 y0 =    y       & mask;
    u64 y1 =    y >> 32 & mask;
    u64 z0 =    x0 * y0;
    u64 z1 =    x1 * y0;
    u64 z2 =    x0 * y1;
    u64 z3 =    x1 * y1;
    u64 z4 =    z1 + (z0 >> 32);
    u64 c1 =    z2 + (z4 & mask);
    u64 hi =    z3 + (z4 >> 32) + (c1 >> 32);
    i128_t r;
    r.lo = x * y;
    r.hi = hi;
    return r;
}
#endif

/* i64_umulh_i64_i64 */

#if defined I128_USE_INTRIN && defined(__SIZEOF_INT128__)
static inline u64 i64_umulh_i64_i64(u64 x, u64 y)
{
    return (u64)(((__uint128_t)x * (__uint128_t)y) >> 64);
}
#elif defined I128_USE_INTRIN && defined(_MSC_VER) && defined(_M_X64)
static inline u64 i64_umulh_i64_i64(u64 x, u64 y)
{
    return __umulh(x, y);
}
#else
static inline u64 i64_umulh_i64_i64(u64 x, u64 y)
{
    const u64 mask = 0xffffffffll;
    u64 x0 =    x       & mask;
    u64 x1 =    x >> 32 & mask;
    u64 y0 =    y       & mask;
    u64 y1 =    y >> 32 & mask;
    u64 z0 =    x0 * y0;
    u64 z1 =    x1 * y0;
    u64 z2 =    x0 * y1;
    u64 z3 =    x1 * y1;
    u64 z4 =    z1 + (z0 >> 32);
    u64 c1 =    z2 + (z4 & mask);
    u64 hi =    z3 + (z4 >> 32) + (c1 >> 32);
    return hi;
}
#endif

/* i64_udiv_i128_i64 */

#if defined I128_USE_INTRIN && defined(_MSC_VER) && defined(_M_X64)
static inline u64 i64_udiv_i128_i64(i128_t x, u64 y, u64 *r)
{
    return _udiv128(x.hi, x.lo, y, r);
}
#elif defined I128_USE_INTRIN && defined(__GNUC__) && defined(__x86_64__)
static inline u64 i64_udiv_i128_i64(i128_t x, u64 y, u64 *r)
{
    u64 q;
    __asm__("divq %[v]" : "=a"(q), "=d"(*r) : [v] "r"(y), "a"(x.lo), "d"(x.hi));
    return q;
}
#else
static inline u64 i64_udiv_i128_i64(i128_t x, u64 y, u64 *r)
{
    // Computes a 128 / 64 -> 64 bit division, with a 64 bit remainder.
    // zlib License: based on https://github.com/ridiculousfish/libdivide

    const u64 b = ((u64)1 << 32);

    u32 q1, q0, den1, den0, num1, num0;
    u64 rem, qhat, rhat, c1, c2;
    int sh;

    // Check for overflow and divide by 0.
    if ((u64)x.hi >= y) {
        if (r != NULL) *r = ~0ull;
        return ~0ull;
    }

    // Determine the normalization factor.
    sh = clz(y);
    y <<= sh;
    x = i128_sll(x, sh);

    // Extract the low digits of the numerator and both digits of the denominator.
    num1 = (u32)(x.lo >> 32);
    num0 = (u32)(x.lo & 0xFFFFFFFFu);
    den1 = (u32)(y >> 32);
    den0 = (u32)(y & 0xFFFFFFFFu);

    // We wish to compute q1 = [n3 n2 n1] / [d1 d0].
    // Estimate q1 as [n3 n2] / [d1], and then correct it.
    // Note while qhat may be 2 digits, q1 is always 1 digit.
    qhat = (u64)x.hi / den1;
    rhat = (u64)x.hi % den1;
    c1 = qhat * den0;
    c2 = rhat * b + num1;
    if (c1 > c2) qhat -= (c1 - c2 > y) ? 2 : 1;
    q1 = (u32)qhat;

    // Compute the true (partial) remainder.
    rem = (u64)x.hi * b + num1 - q1 * y;

    // We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
    // Estimate q0 as [rem1 rem0] / [d1] and correct it.
    qhat = rem / den1;
    rhat = rem % den1;
    c1 = qhat * den0;
    c2 = rhat * b + num0;
    if (c1 > c2) qhat -= (c1 - c2 > y) ? 2 : 1;
    q0 = (u32)qhat;

    // Return remainder if requested.
    if (r != NULL) *r = (rem * b + num0 - q0 * y) >> sh;
    return ((u64)q1 << 32) | q0;
}
#endif

/* i64_udiv_i128_i128 */

static inline u64 i64_udiv_i128_i128(i128_t u, i128_t v, i128_t *r)
{
    // Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
    // zlib License: based on https://github.com/ridiculousfish/libdivide

    // Here v >= 2**64
    // We know that v.hi != 0, so count leading zeros is OK
    // We have 0 <= n <= 63
    uint n = clz(v.hi);

    // Normalize the divisor so its MSB is 1
    i128_t v1t = i128_sll(v, n);
    u64 v1 = v1t.hi;  // i.e. v1 = v1t >> 64

    // To ensure no overflow
    i128_t u1 = i128_srl(u, 1);

    // Get quotient from divide unsigned insn.
    u64 ri;
    u64 q1 = i64_udiv_i128_i64(u1, v1, &ri);

    // Undo normalization and division of u by 2.
    i128_t q0 = i128_from_u64(q1);
    q0 = i128_sll(q0, n);
    q0 = i128_srl(q0, 63);

    // Make q0 correct or too small by 1
    // Equivalent to `if (q0 != 0) q0 = q0 - 1;`
    if (q0.hi != 0 || q0.lo != 0) {
        q0.hi -= (q0.lo == 0);  // borrow
        q0.lo -= 1;
    }

    // Now q0 is correct.
    // Compute q0 * v as q0v
    // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
    // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
    //   (q0.lo * v.hi <<  64) + q0.lo * v.lo)
    // Each term is 128 bit
    // High half of full product (upper 128 bits!) are dropped
    i128_t q0v = i128_from_i64(0);
    q0v.hi = (u64)q0.hi * v.lo + q0.lo * (u64)v.hi + i64_umulh_i64_i64(q0.lo, v.lo);
    q0v.lo = q0.lo * v.lo;

    // Compute u - q0v as u_q0v
    // This is the remainder
    i128_t u_q0v = u;
    u_q0v.hi -= q0v.hi + (u.lo < q0v.lo);  // second term is borrow
    u_q0v.lo -= q0v.lo;

    // Check if u_q0v >= v
    // This checks if our remainder is larger than the divisor
    if (((u64)u_q0v.hi > (u64)v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
        // Increment q0
        q0.lo += 1;
        q0.hi += (q0.lo == 0);  // carry

        // Subtract v from remainder
        u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
        u_q0v.lo -= v.lo;
    }

    r->hi = u_q0v.hi;
    r->lo = u_q0v.lo;

    return q0.lo;
}
#endif

#if defined I128_USE_I128 && defined(__SIZEOF_INT128__)

/* __int128_t implementation */

_int_func_ i128_t i128_from_i64(i64 n)
{
    i128_t x;
    x.m = n;
    return x;
}

_int_func_ i128_t i128_from_u64(u64 n)
{
    i128_t x;
    x.m = n;
    return x;
}

_int_func_ i128_t i128_from_uv64(u64 *v)
{
    i128_t x;
#if BYTE_ORDER == LITTLE_ENDIAN
    x.m = (__uint128_t)v[0] | (__uint128_t)v[1] << 64;
#endif
#if BYTE_ORDER == BIG_ENDIAN
    x.m = (__uint128_t)v[1] | (__uint128_t)v[0] << 64;
#endif
    return x;
}

_int_func_ i128_t i128_not(i128_t u)
{
    i128_t x;
    x.m = ~u.m;
    return x;
}

_int_func_ i128_t i128_and(i128_t u, i128_t v)
{
    i128_t x;
    x.m = u.m & v.m;
    return x;
}

_int_func_ i128_t i128_or(i128_t u, i128_t v)
{
    i128_t x;
    x.m = u.m | v.m;
    return x;
}

_int_func_ i128_t i128_xor(i128_t u, i128_t v)
{
    i128_t x;
    x.m = u.m ^ v.m;
    return x;
}

_int_func_ i128_t i128_sll(i128_t u, uint shamt)
{
    i128_t x;
    x.m = u.m << shamt;
    return x;
}

_int_func_ i128_t i128_srl(i128_t u, uint shamt)
{
    i128_t x;
    x.m = (__uint128_t)u.m >> shamt;
    return x;
}

_int_func_ i128_t i128_sra(i128_t u, uint shamt)
{
    i128_t x;
    x.m = (__int128_t)u.m >> shamt;
    return x;
}

_int_func_ i128_t i128_neg(i128_t u)
{
    i128_t x;
    x.m = -u.m;
    return x;
}

_int_func_ i128_t i128_add(i128_t u, i128_t v)
{
    i128_t x;
    x.m = u.m + v.m;
    return x;
}

_int_func_ i128_t i128_sub(i128_t u, i128_t v)
{
    i128_t x;
    x.m = u.m - v.m;
    return x;
}

_int_func_ i128_t i128_mul(i128_t u, i128_t v)
{
    i128_t x;
    u64 us, vs, rs;

    x = i128_mulu(u, v);
    us = u.hi & (1LL << 63);
    vs = v.hi & (1LL << 63);
    rs =  us ^ vs;
    x.hi = (x.hi & ((1ULL << 63) - 1)) | rs;

    return x;
}

_int_func_ i128_t i128_mulu(i128_t u, i128_t v)
{
    i128_t x;
    x.m = (__uint128_t)u.m * (__uint128_t)v.m;
    return x;
}

_int_func_ i128_t i128_divmodu(i128_t u, i128_t v, i128_t *r)
{
    i128_t q;
    q.m = (__uint128_t)u.m / (__uint128_t)v.m;
    r->m = (__uint128_t)u.m % (__uint128_t)v.m;
    return q;
}

_int_func_ int i128_cmp_eq(i128_t u, i128_t v)
{
    return u.m == v.m;
}

_int_func_ int i128_cmp_lt(i128_t u, i128_t v)
{
    return (__int128_t)u.m < (__int128_t)v.m;
}

_int_func_ int i128_cmp_gt(i128_t u, i128_t v)
{
    return (__int128_t)u.m > (__int128_t)v.m;
}

_int_func_ int i128_cmp_ltu(i128_t u, i128_t v)
{
    return (__uint128_t)u.m < (__uint128_t)v.m;
}

_int_func_ int i128_cmp_gtu(i128_t u, i128_t v)
{
    return (__uint128_t)u.m > (__uint128_t)v.m;
}

_int_func_ int i128_cmp_t(i128_t u, i128_t v)
{
    __int128_t x = u.m - v.m;
    return -(x < 0) + (x > 0);
}

_int_func_ int i128_cmp_tu(i128_t u, i128_t v)
{
    __uint128_t x = u.m - v.m;
    return -(x > u.m) + (x < u.m);
}

#else

/* i128_t 64-bit implementation */

_int_func_ i128_t i128_from_i64(i64 n)
{
    i128_t x;
    x.lo = n;
    x.hi = (n >> 63);
    return x;
}

_int_func_ i128_t i128_from_u64(u64 n)
{
    i128_t x;
    x.lo = n;
    x.hi = 0;
    return x;
}

_int_func_ i128_t i128_from_uv64(u64 *v)
{
    i128_t x;
#if BYTE_ORDER == LITTLE_ENDIAN
    x.lo = v[0];
    x.hi = v[1];
#endif
#if BYTE_ORDER == BIG_ENDIAN
    x.lo = v[1];
    x.hi = v[0];
#endif
    return x;
}

_int_func_ i128_t i128_not(i128_t u)
{
    i128_t x;
    x.lo = ~u.lo;
    x.hi = ~u.hi;
    return x;
}

_int_func_ i128_t i128_and(i128_t u, i128_t v)
{
    i128_t x;
    x.lo = u.lo & v.lo;
    x.hi = u.hi & v.hi;
    return x;
}

_int_func_ i128_t i128_or(i128_t u, i128_t v)
{
    i128_t x;
    x.lo = u.lo | v.lo;
    x.hi = u.hi | v.hi;
    return x;
}

_int_func_ i128_t i128_xor(i128_t u, i128_t v)
{
    i128_t x;
    x.lo = u.lo ^ v.lo;
    x.hi = u.hi ^ v.hi;
    return x;
}

_int_func_ i128_t i128_sll(i128_t u, uint shamt)
{
    i128_t x;
    if (shamt == 0) {
        x.lo = u.lo;
        x.hi = u.hi;
    } else if (shamt < 64) {
        x.lo = (u64)(u.lo << shamt);
        x.hi = (u64)(u.hi << shamt) | ((u64)u.lo >> (64-shamt));
    } else {
        shamt -= 64;
        x.lo = 0;
        x.hi = (u64)(u.lo << shamt);
    }
    return x;
}

_int_func_ i128_t i128_srl(i128_t u, uint shamt)
{
    i128_t x;
    if (shamt == 0) {
        x.lo = u.lo;
        x.hi = u.hi;
    } else if (shamt < 64) {
        x.lo = ((u64)u.lo >> shamt) | ((u64)u.hi << (64-shamt));;
        x.hi = ((u64)u.hi >> shamt);
    } else {
        shamt -= 64;
        x.lo = ((u64)u.hi >> shamt);
        x.hi = 0;
    }
    return x;
}

_int_func_ i128_t i128_sra(i128_t u, uint shamt)
{
    i128_t x;
    if (shamt == 0) {
        x.lo = u.lo;
        x.hi = u.hi;
    } else if (shamt < 64) {
        x.lo = ((u64)u.lo >> shamt) | ((u64)u.hi << (64-shamt));
        x.hi = ((i64)u.hi >> shamt);
    } else {
        shamt -= 64;
        x.lo = ((i64)u.hi >> shamt);
        x.hi = ((i64)u.hi >> 63);
    }
    return x;
}

_int_func_ i128_t i128_neg(i128_t u)
{
    i128_t x;
    x.lo = -(i64)u.lo;
    x.hi = -(i64)u.hi - !!x.lo;
    return x;
}

_int_func_ i128_t i128_add(i128_t u, i128_t v)
{
    i128_t x;
    x.lo = u.lo + v.lo;
    x.hi = u.hi + v.hi + (x.lo < u.lo);
    return x;
}

_int_func_ i128_t i128_sub(i128_t u, i128_t v)
{
    i128_t x;
    x.lo = u.lo - v.lo;
    x.hi = u.hi - v.hi - (x.lo > u.lo);
    return x;
}

_int_func_ i128_t i128_mul(i128_t u, i128_t v)
{
    i128_t x;
    u64 us, vs, rs;

    x = i128_mulu(u, v);
    us = u.hi & (1LL << 63);
    vs = v.hi & (1LL << 63);
    rs =  us ^ vs;
    x.hi = (x.hi & ((1ULL << 63) - 1)) | rs;

    return x;
}

_int_func_ i128_t i128_mulu(i128_t u, i128_t v)
{
    i128_t x;
    u64 x0 = u.lo;
    u64 x1 = u.hi;
    u64 y0 = v.lo;
    u64 y1 = v.hi;
    x = i128_umul_i64_i64(x0, y0);
    x.hi += x0 * y1 + x1 * y0;
    return x;
}

_int_func_ int i128_cmp_eq(i128_t u, i128_t v)
{
    return (u.hi == v.hi && u.lo == v.lo);
}

_int_func_ int i128_cmp_lt(i128_t u, i128_t v)
{
    return ((i64)u.hi < (i64)v.hi || (u.hi == v.hi && u.lo < v.lo));
}

_int_func_ int i128_cmp_gt(i128_t u, i128_t v)
{
    return ((i64)u.hi > (i64)v.hi || (u.hi == v.hi && u.lo > v.lo));
}

_int_func_ int i128_cmp_ltu(i128_t u, i128_t v)
{
    return ((u64)u.hi < (u64)v.hi || (u.hi == v.hi && u.lo < v.lo));
}

_int_func_ int i128_cmp_gtu(i128_t u, i128_t v)
{
    return ((u64)u.hi > (u64)v.hi || (u.hi == v.hi && u.lo > v.lo));
}

_int_func_ int i128_cmp_t(i128_t u, i128_t v)
{
    return ((i64)u.hi > (i64)v.hi || (u.hi == v.hi && u.lo > v.lo))
         - ((i64)u.hi < (i64)v.hi || (u.hi == v.hi && u.lo < v.lo));
}

_int_func_ int i128_cmp_tu(i128_t u, i128_t v)
{
    return ((u64)u.hi > (u64)v.hi || (u.hi == v.hi && u.lo > v.lo))
         - ((u64)u.hi < (u64)v.hi || (u.hi == v.hi && u.lo < v.lo));
}

#endif

/* 128-bit unsigned divmod using optimized intrinsics */

#if !(defined I128_USE_I128 && defined(__SIZEOF_INT128__))
static inline i128_t i128_divmodu(i128_t u, i128_t v, i128_t *r)
{
    i128_t q;

    if (v.hi == 0 && v.lo == 0) {
        q = i128_from_i64(-1);
        *r = u;
    }
    else if (u.hi == 0) {
        if (v.hi == 0) {
            q.hi = 0;
            q.lo = u.lo / v.lo;
            r->hi = 0;
            r->lo = u.lo % v.lo;
        } else {
            q = i128_from_u64(0);
            *r = u;
        }
    }
#if defined I128_USE_LIBDIVIDE
    else if (v.hi == 0) {
        i128_t q;
        r->hi = 0;
        if (u.hi < v.lo) {
            q.hi = 0;
            q.lo = libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, (uint64_t *)&r->lo);
        } else {
            i128_t u2, u3;
            u2 = i128_from_u64(u.hi);
            q.hi = libdivide_128_div_64_to_64(u2.hi, u2.lo, v.lo, (uint64_t *)&u3.hi);
            u3.lo = u.lo;
            q.lo = libdivide_128_div_64_to_64(u3.hi, u3.lo, v.lo, (uint64_t *)&r->lo);
        }
        return q;
    }
    else {
        q.hi = 0;
        q.lo = libdivide_128_div_128_to_64(u.hi, u.lo, v.hi, v.lo,
            (uint64_t*)&r->hi, (uint64_t*)&r->lo);
    }
#else
    else if (v.hi == 0) {
        i128_t q;
        r->hi = 0;
        if ((u64)u.hi < v.lo) {
            q.hi = 0;
            q.lo = i64_udiv_i128_i64(u, v.lo, &r->lo);
        } else {
            i128_t u2, u3;
            u2 = i128_from_u64(u.hi);
            q.hi = i64_udiv_i128_i64(u2, v.lo, (u64*)&u3.hi);
            u3.lo = u.lo;
            q.lo = i64_udiv_i128_i64(u3, v.lo, &r->lo);
        }
        return q;
    }
    else {
        q.hi = 0;
        q.lo = i64_udiv_i128_i128(u, v, r);
    }
#endif

    return q;
}
#endif

/* 128-bit signed divmod layered on unsigned divmod */

static inline i128_t i128_divmod(i128_t u, i128_t v, i128_t *r)
{
    i128_t q, us, vs, rs;

    us = i128_sra(u, 127);
    vs = i128_sra(v, 127);
    rs =  i128_xor(us, vs);
    u = i128_sub(i128_xor(u, us), us);
    v = i128_sub(i128_xor(v, vs), vs);
    q = i128_sub(i128_xor(i128_divmodu(u, v, r), rs), rs);
    *r = i128_sub(i128_xor(*r, us), us);

    return q;
}

i128_t i128_div(i128_t u, i128_t v)
{
    i128_t q, r i128_unused;
    q = i128_divmod(u, v, &r);
    return q;
}

i128_t i128_divu(i128_t u, i128_t v)
{
    i128_t q, r i128_unused;
    q = i128_divmodu(u, v, &r);
    return q;
}

i128_t i128_rem(i128_t u, i128_t v)
{
    i128_t q i128_unused, r;
    q = i128_divmod(u, v, &r);
    return r;
}

i128_t i128_remu(i128_t u, i128_t v)
{
    i128_t q i128_unused, r;
    q = i128_divmodu(u, v, &r);
    return r;
}

/* 128-bit downcasts */

_int_func_ i64 i64_from_i128(i128_t n)
{
    return (i64)n.lo;
}

_int_func_ u64 u64_from_i128(i128_t n)
{
    return (u64)n.lo;
}

_int_func_ u64* uv64_from_i128(i128_t *v)
{
    return v->n;
}

/* 128-bit bitmanip */

_int_func_ uint i128_ctz(i128_t u)
{
    int n = ctz(u.lo);
    if (n == 64) n += ctz(u.hi);
    return n;
}

_int_func_ uint i128_clz(i128_t u)
{
    int n = clz(u.hi);
    if (n == 64) n += clz(u.lo);
    return n;
}

_int_func_ uint i128_popcnt(i128_t u)
{
    return popcnt(u.lo) + popcnt(u.hi);
}

_int_func_ i128_t i128_bswap(i128_t u)
{
    i128_t x;
    x.lo = bswap64(u.hi);
    x.hi = bswap64(u.lo);
    return x;
}

static inline u8 i8_brev(u8 u)
{
    // Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
    // Source: Stanford Bit Twiddling Hacks
    // https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
    return (u8)(((u * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32);
}

_int_func_ i128_t i128_brev(i128_t u)
{
    i128_t r = { 0 };
    for (unsigned i = 0; i < 16; i++) {
        r.b[i] = (u8)i8_brev(u.b[15-i]);
    }
    return r;
}