1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/************************************************************
* HMMER - Biological sequence analysis with profile-HMMs
* Copyright (C) 1992-1997 Sean R. Eddy
*
* This source code is distributed under the terms of the
* GNU General Public License. See the files COPYING and
* GNULICENSE for details.
*
************************************************************/
/* alphabet.c
* Configuration of the global symbol alphabet information.
*/
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "config.h"
#include "structs.h"
#include "funcs.h"
#include "squid.h"
#ifdef MEMDEBUG
#include "dbmalloc.h"
#endif
static void set_degenerate(char iupac, char *syms);
/* Function: DetermineAlphabet()
*
* Purpose: From a set of sequences (raw or aligned), make a good
* guess whether they're Nucleic, Amino, or something
* else, and set alphabet accordingly.
*
* If Alphabet_type is already set, that means our
* autodetection was overridden from the command line,
* and we just set the other globals accordingly.
*/
void
DetermineAlphabet(char **rseqs, int nseq)
{
int idx;
int other, nucleic, amino;
/* Autodetection of alphabet type.
*/
other = nucleic = amino = 0;
for (idx = 0; idx < nseq; idx++) {
switch (Seqtype(rseqs[idx])) {
case kRNA: nucleic++; break;
case kDNA: nucleic++; break;
case kAmino: amino++; break;
case kOtherSeq: other++; break;
default: Die("No such alphabet type");
}
}
if (nucleic == nseq) Alphabet_type = hmmNUCLEIC;
else if (amino == nseq) Alphabet_type = hmmAMINO;
else if (nucleic > amino && nucleic > other) {
Warn("Looks like nucleic acid sequence, hope that's right");
Alphabet_type = hmmNUCLEIC;
}
else if (amino > nucleic && amino > other) {
Warn("Looks like amino acid sequence, hope that's right");
Alphabet_type = hmmAMINO;
}
else Die("Sorry, I can't tell if that's protein or DNA");
/* Now set up the alphabet.
*/
SetAlphabet(Alphabet_type);
}
/* Function: SetAlphabet()
*
* Purpose: Set the alphabet globals, given an alphabet type
* of either hmmAMINO or hmmNUCLEIC.
*/
void
SetAlphabet(int type)
{
int x;
switch(type) { /* Alphabet is not a string - careful! */
case hmmAMINO:
Alphabet_type = type;
/* Bug fix folded in from sean folded in from HMMER 2.3.1 */
strcpy(Alphabet, "ACDEFGHIKLMNPQRSTVWYBZX");
Alphabet_size = 20;
Alphabet_iupac = 23;
for (x = 0; x < Alphabet_iupac; x++) {
memset(Degenerate[x], 0, Alphabet_size);
}
for (x = 0; x < Alphabet_size; x++) {
Degenerate[x][x] = 1;
DegenCount[x] = 1;
}
set_degenerate('B', "ND");
set_degenerate('Z', "QE");
set_degenerate('X', Alphabet);
break;
case hmmNUCLEIC:
Alphabet_type = type;
strncpy(Alphabet, "ACGTUNRYMKSWHBVDX", 17);
Alphabet_size = 4;
Alphabet_iupac = 17;
for (x = 0; x < Alphabet_iupac; x++) {
memset(Degenerate[x], 0, Alphabet_size);
}
for (x = 0; x < Alphabet_size; x++) {
Degenerate[x][x] = 1;
DegenCount[x] = 1;
}
set_degenerate('U', "T");
set_degenerate('N', Alphabet);
set_degenerate('X', Alphabet);
set_degenerate('R', "AG");
set_degenerate('Y', "CT");
set_degenerate('M', "AC");
set_degenerate('K', "GT");
set_degenerate('S', "CG");
set_degenerate('W', "AT");
set_degenerate('H', "ACT");
set_degenerate('B', "CGT");
set_degenerate('V', "ACG");
set_degenerate('D', "AGT");
break;
default: Die("No support for non-nucleic or protein alphabets");
}
}
/* Function: SymbolIndex()
*
* Purpose: Convert a symbol to its index in Alphabet[].
* Bogus characters are converted to 'X'.
* More robust than the SYMIDX() macro but
* presumably slower.
*/
int
SymbolIndex(char sym)
{
char *s;
return ((s = strchr(Alphabet, toupper(sym))) == NULL) ?
Alphabet_iupac-1 : s - Alphabet;
}
/* Function: DigitizeSequence()
*
* Purpose: Internal representation of a sequence in HMMER is
* as a char array. 1..L are the indices
* of seq symbols in Alphabet[]. 0,L+1 are sentinel
* bytes, set to be Alphabet_iupac -- i.e. one more
* than the maximum allowed index.
*
* Assumes that 'X', the fully degenerate character,
* is the last character in the allowed alphabet.
*
* Args: seq - sequence to be digitized (0..L-1)
* L - length of sequence
*
* Return: digitized sequence, dsq.
* dsq is allocated here and must be free'd by caller.
*/
char *
DigitizeSequence(char *seq, int L)
{
char *dsq;
int i;
dsq = MallocOrDie (sizeof(char) * (L+2));
dsq[0] = dsq[L+1] = (char) Alphabet_iupac;
for (i = 1; i <= L; i++)
dsq[i] = SymbolIndex(seq[i-1]);
return dsq;
}
/* Function: DedigitizeSequence()
* Date: SRE, Tue Dec 16 10:39:19 1997 [StL]
*
* Purpose: Returns a 0..L-1 character string, converting the
* dsq back to the real alphabet.
*/
char *
DedigitizeSequence(char *dsq, int L)
{
char *seq;
int i;
seq = MallocOrDie(sizeof(char) * (L+1));
for (i = 0; i < L; i++)
seq[i] = Alphabet[(int) dsq[i+1]];
seq[L] = '\0';
return seq;
}
/* Function: DigitizeAlignment()
*
* Purpose: Given an alignment, return digitized unaligned
* sequence array. (Tracebacks are always relative
* to digitized unaligned seqs, even if they are
* faked from an existing alignment in modelmakers.c.)
*
* Args: aseqs - alignment to digitize
* ainfo - optional info on alignment
* ret_dsqs - RETURN: array of digitized unaligned sequences
*
* Return: (void)
* dsqs is alloced here. Free2DArray(dseqs, nseq).
*/
void
DigitizeAlignment(char **aseqs, AINFO *ainfo, char ***ret_dsqs)
{
char **dsq;
int idx; /* counter for sequences */
int dpos; /* position in digitized seq */
int apos; /* position in aligned seq */
dsq = (char **) MallocOrDie (sizeof(char *) * ainfo->nseq);
for (idx = 0; idx < ainfo->nseq; idx++) {
dsq[idx] = (char *) MallocOrDie (sizeof(char) * (ainfo->alen+2));
dsq[idx][0] = (char) Alphabet_iupac; /* sentinel byte at start */
for (apos = 0, dpos = 1; apos < ainfo->alen; apos++) {
if (! isgap(aseqs[idx][apos])) /* skip gaps */
dsq[idx][dpos++] = SymbolIndex(aseqs[idx][apos]);
}
dsq[idx][dpos] = (char) Alphabet_iupac; /* sentinel byte at end */
if (! ainfo->sqinfo[idx].flags & SQINFO_LEN) {
ainfo->sqinfo[idx].len = dpos - 1;
ainfo->sqinfo[idx].flags |= SQINFO_LEN;
}
}
*ret_dsqs = dsq;
}
/* Function: P7CountSymbol()
*
* Purpose: Given a possibly degenerate symbol code, increment
* a symbol counter array (generally an emission
* probability vector in counts form) appropriately.
*
* Args: counters: vector to count into. [0..Alphabet_size-1]
* symidx: symbol index to count: [0..Alphabet_iupac-1]
* wt: weight to use for the count; often 1.0
*
* Return: (void)
*/
void
P7CountSymbol(float *counters, char symidx, float wt)
{
int x;
if (symidx < Alphabet_size)
counters[symidx] += wt;
else
for (x = 0; x < Alphabet_size; x++) {
if (Degenerate[(int) symidx][x])
counters[x] += wt / (float) DegenCount[(int) symidx];
}
}
/* Function: DefaultGeneticCode()
*
* Purpose: Configure aacode, mapping triplets to amino acids.
* Triplet index: AAA = 0, AAC = 1, ... UUU = 63.
* AA index: alphabetical: A=0,C=1... Y=19
* Stop codon: -1.
* Uses the stdcode1[] global translation table from SQUID.
*
* Args: aacode - preallocated 0.63 array for genetic code
*
* Return: (void)
*/
void
DefaultGeneticCode(int *aacode)
{
int x;
for (x = 0; x < 64; x++) {
if (*(stdcode1[x]) == '*') aacode[x] = -1;
else aacode[x] = SYMIDX(*(stdcode1[x]));
}
}
/* Function: DefaultCodonBias()
*
* Purpose: Configure a codonbias table, mapping triplets to
* probability of using the triplet for the amino acid
* it represents: P(triplet | aa).
* The default is to assume codons are used equiprobably.
*
* Args: codebias: 0..63 array of P(triplet|aa), preallocated.
*
* Return: (void)
*/
void
DefaultCodonBias(float *codebias)
{
codebias[0] = 1./2.; /* AAA Lys 2 */
codebias[1] = 1./2.; /* AAC Asn 2 */
codebias[2] = 1./2.; /* AAG Lys 2 */
codebias[3] = 1./2.; /* AAU Asn 2 */
codebias[4] = 1./4.; /* ACA Thr 4 */
codebias[5] = 1./4.; /* ACC Thr 4 */
codebias[6] = 1./4.; /* ACG Thr 4 */
codebias[7] = 1./4.; /* ACU Thr 4 */
codebias[8] = 1./6.; /* AGA Ser 6 */
codebias[9] = 1./6.; /* AGC Arg 6 */
codebias[10] = 1./6.; /* AGG Ser 6 */
codebias[11] = 1./6.; /* AGU Arg 6 */
codebias[12] = 1./3.; /* AUA Ile 3 */
codebias[13] = 1./3.; /* AUC Ile 3 */
codebias[14] = 1.; /* AUG Met 1 */
codebias[15] = 1./3.; /* AUU Ile 3 */
codebias[16] = 1./2.; /* CAA Gln 2 */
codebias[17] = 1./2.; /* CAC His 2 */
codebias[18] = 1./2.; /* CAG Gln 2 */
codebias[19] = 1./2.; /* CAU His 2 */
codebias[20] = 1./4.; /* CCA Pro 4 */
codebias[21] = 1./4.; /* CCC Pro 4 */
codebias[22] = 1./4.; /* CCG Pro 4 */
codebias[23] = 1./4.; /* CCU Pro 4 */
codebias[24] = 1./6.; /* CGA Arg 6 */
codebias[25] = 1./6.; /* CGC Arg 6 */
codebias[26] = 1./6.; /* CGG Arg 6 */
codebias[27] = 1./6.; /* CGU Arg 6 */
codebias[28] = 1./6.; /* CUA Leu 6 */
codebias[29] = 1./6.; /* CUC Leu 6 */
codebias[30] = 1./6.; /* CUG Leu 6 */
codebias[31] = 1./6.; /* CUU Leu 6 */
codebias[32] = 1./2.; /* GAA Glu 2 */
codebias[33] = 1./2.; /* GAC Asp 2 */
codebias[34] = 1./2.; /* GAG Glu 2 */
codebias[35] = 1./2.; /* GAU Asp 2 */
codebias[36] = 1./4.; /* GCA Ala 4 */
codebias[37] = 1./4.; /* GCC Ala 4 */
codebias[38] = 1./4.; /* GCG Ala 4 */
codebias[39] = 1./4.; /* GCU Ala 4 */
codebias[40] = 1./4.; /* GGA Gly 4 */
codebias[41] = 1./4.; /* GGC Gly 4 */
codebias[42] = 1./4.; /* GGG Gly 4 */
codebias[43] = 1./4.; /* GGU Gly 4 */
codebias[44] = 1./4.; /* GUA Val 4 */
codebias[45] = 1./4.; /* GUC Val 4 */
codebias[46] = 1./4.; /* GUG Val 4 */
codebias[47] = 1./4.; /* GUU Val 4 */
codebias[48] = 0.; /* UAA och - */
codebias[49] = 1./2.; /* UAC Tyr 2 */
codebias[50] = 0.; /* UAG amb - */
codebias[51] = 1./2.; /* UAU Tyr 2 */
codebias[52] = 1./6.; /* UCA Ser 6 */
codebias[53] = 1./6.; /* UCC Ser 6 */
codebias[54] = 1./6.; /* UCG Ser 6 */
codebias[55] = 1./6.; /* UCU Ser 6 */
codebias[56] = 0.; /* UGA opa - */
codebias[57] = 1./2.; /* UGC Cys 2 */
codebias[58] = 1.; /* UGG Trp 1 */
codebias[59] = 1./2.; /* UGU Cys 2 */
codebias[60] = 1./6.; /* UUA Leu 6 */
codebias[61] = 1./2.; /* UUC Phe 2 */
codebias[62] = 1./6.; /* UUG Leu 6 */
codebias[63] = 1./2.; /* UUU Phe 2 */
}
/* Function: set_degenerate()
*
* Purpose: convenience function for setting up
* Degenerate[][] global for the alphabet.
*/
static void
set_degenerate(char iupac, char *syms)
{
DegenCount[strchr(Alphabet,iupac)-Alphabet] = strlen(syms);
while (*syms) {
Degenerate[strchr(Alphabet,iupac)-Alphabet]
[strchr(Alphabet,*syms)-Alphabet] = 1;
syms++;
}
}
|