1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/*
* Copyright (C) 2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "ArgumentCoders.h"
#include "Connection.h"
#include "Decoder.h"
#include "IPCSemaphore.h"
#include "MessageNames.h"
#include "StreamConnectionBuffer.h"
#include "StreamConnectionEncoder.h"
#include <wtf/MonotonicTime.h>
#include <wtf/Threading.h>
namespace WebKit {
namespace IPCTestingAPI {
class JSIPCStreamClientConnection;
}
}
namespace IPC {
// A message stream is a half-duplex two-way stream of messages to a between the client and the
// server.
//
// StreamClientConnection can send messages and receive synchronous replies
// through this message stream or through IPC::Connection.
//
// The server will receive messages in order _for the destination messages_.
// The whole IPC::Connection message order is not preserved.
//
// The StreamClientConnection trusts the StreamServerConnection.
class StreamClientConnection final {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(StreamClientConnection);
public:
// Creates StreamClientConnection where the out of stream messages and server replies are
// sent through the passed IPC::Connection. The messages from the server are delivered to
// the caller through the passed IPC::Connection.
// Note: This function should be used only in cases where the
// stream server starts listening to messages with new identifiers on the same thread as
// in which the server IPC::Connection dispatch messages. At the time of writing,
// IPC::Connection dispatches messages only in main thread.
StreamClientConnection(Connection&, size_t bufferSize);
struct StreamConnectionWithDedicatedConnection {
std::unique_ptr<StreamClientConnection> streamConnection;
Attachment connectionIdentifier;
// FIXME: Once IPC can treat handles as first class objects, add stream buffer as
// a handle here.
};
// Creates StreamClientConnection where the out of stream messages and server replies are
// sent through a dedidcated, new IPC::Connection. The messages from the server are delivered to
// the caller through the passed IPC::MessageReceiver.
// The caller should send StreamConnectionWithDedicatedConnection::connectionIdentifier and
// StreamClientConnection::streamBuffer() to the server via an existing IPC::Connection.
static StreamConnectionWithDedicatedConnection createWithDedicatedConnection(MessageReceiver&, size_t bufferSize);
~StreamClientConnection();
StreamConnectionBuffer& streamBuffer() { return m_buffer; }
void setSemaphores(IPC::Semaphore&& wakeUp, IPC::Semaphore&& clientWait);
bool hasSemaphores() const { return m_semaphores.has_value(); }
void setMaxBatchSize(unsigned size)
{
m_maxBatchSize = size;
wakeUpServer(WakeUpServer::Yes);
}
void open();
void invalidate();
template<typename T, typename U> bool send(T&& message, ObjectIdentifier<U> destinationID, Timeout);
using SendSyncResult = Connection::SendSyncResult;
template<typename T, typename U>
SendSyncResult sendSync(T&& message, typename T::Reply&&, ObjectIdentifier<U> destinationID, Timeout);
template<typename T, typename U>
bool waitForAndDispatchImmediately(ObjectIdentifier<U> destinationID, Timeout, OptionSet<WaitForOption> = { });
StreamConnectionBuffer& bufferForTesting();
Connection& connectionForTesting();
private:
class DedicatedConnectionClient;
StreamClientConnection(Ref<Connection>&&, size_t bufferSize, std::unique_ptr<DedicatedConnectionClient>&&);
struct Span {
uint8_t* data;
size_t size;
};
static constexpr size_t minimumMessageSize = StreamConnectionEncoder::minimumMessageSize;
static constexpr size_t messageAlignment = StreamConnectionEncoder::messageAlignment;
template<typename T>
bool trySendStream(T& message, Span&);
template<typename T>
std::optional<SendSyncResult> trySendSyncStream(T& message, typename T::Reply&, Timeout, Span&);
bool trySendDestinationIDIfNeeded(uint64_t destinationID, Timeout);
void sendProcessOutOfStreamMessage(Span&&);
std::optional<Span> tryAcquire(Timeout);
std::optional<Span> tryAcquireAll(Timeout);
enum class WakeUpServer : bool {
No,
Yes
};
WakeUpServer release(size_t writeSize);
void wakeUpServerBatched(WakeUpServer);
void wakeUpServer(WakeUpServer);
Span alignedSpan(size_t offset, size_t limit);
size_t size(size_t offset, size_t limit);
size_t wrapOffset(size_t offset) const { return m_buffer.wrapOffset(offset); }
size_t alignOffset(size_t offset) const { return m_buffer.alignOffset<messageAlignment>(offset, minimumMessageSize); }
using ClientOffset = StreamConnectionBuffer::ClientOffset;
Atomic<ClientOffset>& sharedClientOffset() { return m_buffer.clientOffset(); }
using ClientLimit = StreamConnectionBuffer::ServerOffset;
Atomic<ClientLimit>& sharedClientLimit() { return m_buffer.serverOffset(); }
size_t toLimit(ClientLimit) const;
uint8_t* data() const { return m_buffer.data(); }
size_t dataSize() const { return m_buffer.dataSize(); }
Ref<Connection> m_connection;
std::unique_ptr<DedicatedConnectionClient> m_dedicatedConnectionClient;
uint64_t m_currentDestinationID { 0 };
size_t m_clientOffset { 0 };
StreamConnectionBuffer m_buffer;
struct Semaphores {
Semaphore wakeUp;
Semaphore clientWait;
};
std::optional<Semaphores> m_semaphores;
unsigned m_maxBatchSize { 20 }; // Number of messages marked as StreamBatched to accumulate before notifying the server.
unsigned m_batchSize { 0 };
friend class WebKit::IPCTestingAPI::JSIPCStreamClientConnection;
};
template<typename T, typename U>
bool StreamClientConnection::send(T&& message, ObjectIdentifier<U> destinationID, Timeout timeout)
{
static_assert(!T::isSync, "Message is sync!");
if (!trySendDestinationIDIfNeeded(destinationID.toUInt64(), timeout))
return false;
auto span = tryAcquire(timeout);
if (!span)
return false;
if constexpr(T::isStreamEncodable) {
if (trySendStream(message, *span))
return true;
}
sendProcessOutOfStreamMessage(WTFMove(*span));
if (!m_connection->send(WTFMove(message), destinationID, IPC::SendOption::DispatchMessageEvenWhenWaitingForSyncReply))
return false;
return true;
}
template<typename T>
bool StreamClientConnection::trySendStream(T& message, Span& span)
{
StreamConnectionEncoder messageEncoder { T::name(), span.data, span.size };
if (messageEncoder << message.arguments()) {
auto wakeUpResult = release(messageEncoder.size());
if constexpr(T::isStreamBatched)
wakeUpServerBatched(wakeUpResult);
else
wakeUpServer(wakeUpResult);
return true;
}
return false;
}
template<typename T, typename U>
StreamClientConnection::SendSyncResult StreamClientConnection::sendSync(T&& message, typename T::Reply&& reply, ObjectIdentifier<U> destinationID, Timeout timeout)
{
static_assert(T::isSync, "Message is not sync!");
if (!trySendDestinationIDIfNeeded(destinationID.toUInt64(), timeout))
return { };
auto span = tryAcquire(timeout);
if (!span)
return { };
if constexpr(T::isStreamEncodable) {
auto maybeSendResult = trySendSyncStream(message, reply, timeout, *span);
if (maybeSendResult)
return WTFMove(*maybeSendResult);
}
sendProcessOutOfStreamMessage(WTFMove(*span));
return m_connection->sendSync(WTFMove(message), WTFMove(reply), destinationID.toUInt64(), timeout);
}
template<typename T, typename U>
bool StreamClientConnection::waitForAndDispatchImmediately(ObjectIdentifier<U> destinationID, Timeout timeout, OptionSet<WaitForOption> waitForOptions)
{
return m_connection->waitForAndDispatchImmediately<T>(destinationID, timeout, waitForOptions);
}
template<typename T>
std::optional<StreamClientConnection::SendSyncResult> StreamClientConnection::trySendSyncStream(T& message, typename T::Reply& reply, Timeout timeout, Span& span)
{
// In this function, SendSyncResult { } means error happened and caller should stop processing.
// std::nullopt means we couldn't send through the stream, so try sending out of stream.
auto syncRequestID = m_connection->makeSyncRequestID();
if (!m_connection->pushPendingSyncRequestID(syncRequestID))
return SendSyncResult { };
auto result = [&]() -> std::optional<SendSyncResult> {
StreamConnectionEncoder messageEncoder { T::name(), span.data, span.size };
if (!(messageEncoder << syncRequestID << message.arguments()))
return std::nullopt;
auto wakeUpResult = release(messageEncoder.size());
wakeUpServer(wakeUpResult);
if constexpr(T::isReplyStreamEncodable) {
auto replySpan = tryAcquireAll(timeout);
if (!replySpan)
return SendSyncResult { };
auto decoder = std::unique_ptr<Decoder> { new Decoder(replySpan->data, replySpan->size, m_currentDestinationID) };
if (decoder->messageName() != MessageName::ProcessOutOfStreamMessage) {
ASSERT(decoder->messageName() == MessageName::SyncMessageReply);
return decoder;
}
} else
m_clientOffset = 0;
return m_connection->waitForSyncReply(syncRequestID, T::name(), timeout, { });
}();
m_connection->popPendingSyncRequestID(syncRequestID);
if (result && *result) {
auto& decoder = **result;
std::optional<typename T::ReplyArguments> replyArguments;
decoder >> replyArguments;
if (!replyArguments)
return SendSyncResult { };
moveTuple(WTFMove(*replyArguments), reply);
}
return result;
}
inline bool StreamClientConnection::trySendDestinationIDIfNeeded(uint64_t destinationID, Timeout timeout)
{
if (destinationID == m_currentDestinationID)
return true;
auto span = tryAcquire(timeout);
if (!span)
return false;
StreamConnectionEncoder encoder { MessageName::SetStreamDestinationID, span->data, span->size };
if (!(encoder << destinationID)) {
ASSERT_NOT_REACHED(); // Size of the minimum allocation is incorrect. Likely an alignment issue.
return false;
}
auto wakeUpResult = release(encoder.size());
wakeUpServer(wakeUpResult);
m_currentDestinationID = destinationID;
return true;
}
inline void StreamClientConnection::sendProcessOutOfStreamMessage(Span&& span)
{
StreamConnectionEncoder encoder { MessageName::ProcessOutOfStreamMessage, span.data, span.size };
// Not notifying on wake up since the out-of-stream message will do that.
auto result = release(encoder.size());
UNUSED_VARIABLE(result);
m_batchSize = 0;
}
inline std::optional<StreamClientConnection::Span> StreamClientConnection::tryAcquire(Timeout timeout)
{
ClientLimit clientLimit = sharedClientLimit().load(std::memory_order_acquire);
// This would mean we try to send messages after a timeout. It is a programming error.
// Since the value is trusted, we only assert.
ASSERT(clientLimit != ClientLimit::clientIsWaitingTag);
for (;;) {
if (clientLimit != ClientLimit::clientIsWaitingTag) {
auto result = alignedSpan(m_clientOffset, toLimit(clientLimit));
if (result.size >= minimumMessageSize)
return result;
}
if (timeout.didTimeOut())
break;
ClientLimit oldClientLimit = sharedClientLimit().compareExchangeStrong(clientLimit, ClientLimit::clientIsWaitingTag, std::memory_order_acq_rel, std::memory_order_acq_rel);
if (clientLimit == oldClientLimit) {
if (!m_semaphores || !m_semaphores->clientWait.waitFor(timeout))
return std::nullopt;
clientLimit = sharedClientLimit().load(std::memory_order_acquire);
} else
clientLimit = oldClientLimit;
// The alignedSpan uses the minimumMessageSize to calculate the next beginning position in the buffer,
// and not the size. The size might be more or less what is needed, depending on where the reader is.
// If there is no capacity for minimum message size, wait until more is available.
// In the case where clientOffset < clientLimit we can arrive to a situation where
// 0 < result.size < minimumMessageSize.
}
return std::nullopt;
}
inline std::optional<StreamClientConnection::Span> StreamClientConnection::tryAcquireAll(Timeout timeout)
{
// This would mean we try to send messages after a timeout. It is a programming error.
// Since the value is trusted, we only assert.
ASSERT(sharedClientLimit().load(std::memory_order_acquire) != ClientLimit::clientIsWaitingTag);
// The server acknowledges that sync message has been processed by setting clientOffset == clientLimit == 0.
// Wait for this condition, or then the condition where server says that it started to sleep after setting that condition.
// The wait sequence involves two variables, so form a transaction by setting clientLimit == clientIsWaitingTag.
// The transaction is cancelled if the server has already set clientOffset == clientLimit == 0, otherwise it commits.
// If the transaction commits, server is guaranteed to signal.
for (;;) {
ClientLimit clientLimit = sharedClientLimit().exchange(ClientLimit::clientIsWaitingTag, std::memory_order_acq_rel);
ClientOffset clientOffset = sharedClientOffset().load(std::memory_order_acquire);
if (!clientLimit && (clientOffset == ClientOffset::serverIsSleepingTag || !clientOffset))
break;
if (!m_semaphores || !m_semaphores->clientWait.waitFor(timeout))
return std::nullopt;
if (timeout.didTimeOut())
return std::nullopt;
}
// In case the transaction was cancelled, undo the transaction marker.
sharedClientLimit().store(static_cast<ClientLimit>(0), std::memory_order_release);
m_clientOffset = 0;
return alignedSpan(m_clientOffset, 0);
}
inline StreamClientConnection::WakeUpServer StreamClientConnection::release(size_t size)
{
size = std::max(size, minimumMessageSize);
m_clientOffset = wrapOffset(alignOffset(m_clientOffset) + size);
ASSERT(m_clientOffset < dataSize());
// If the server wrote over the clientOffset with serverIsSleepingTag, we know it is sleeping.
ClientOffset oldClientOffset = sharedClientOffset().exchange(static_cast<ClientOffset>(m_clientOffset), std::memory_order_acq_rel);
if (oldClientOffset == ClientOffset::serverIsSleepingTag)
return WakeUpServer::Yes;
ASSERT(!(oldClientOffset & ClientOffset::serverIsSleepingTag));
return WakeUpServer::No;
}
inline StreamClientConnection::Span StreamClientConnection::alignedSpan(size_t offset, size_t limit)
{
ASSERT(offset < dataSize());
ASSERT(limit < dataSize());
size_t aligned = alignOffset(offset);
size_t resultSize = 0;
if (offset < limit) {
if (aligned >= offset && aligned < limit)
resultSize = size(aligned, limit);
} else {
if (aligned >= offset || aligned < limit)
resultSize = size(aligned, limit);
}
return { data() + aligned, resultSize };
}
inline size_t StreamClientConnection::size(size_t offset, size_t limit)
{
if (!limit)
return dataSize() - 1 - offset;
if (limit <= offset)
return dataSize() - offset;
return limit - offset - 1;
}
inline size_t StreamClientConnection::toLimit(ClientLimit clientLimit) const
{
ASSERT(!(clientLimit & ClientLimit::clientIsWaitingTag));
ASSERT(static_cast<size_t>(clientLimit) <= dataSize() - 1);
return static_cast<size_t>(clientLimit);
}
}
|