1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "TestUtilities.h"
#include <WebCore/Color.h>
#include <WebCore/GraphicsContext.h>
#include <WebCore/ImageBuffer.h>
#include <WebCore/PixelBuffer.h>
#include <cmath>
#include <wtf/MemoryFootprint.h>
namespace TestWebKitAPI {
using namespace WebCore;
static ::testing::AssertionResult imageBufferPixelIs(Color expected, ImageBuffer& imageBuffer, int x, int y)
{
PixelBufferFormat format { AlphaPremultiplication::Unpremultiplied, PixelFormat::RGBA8, DestinationColorSpace::SRGB() };
auto frontPixelBuffer = imageBuffer.getPixelBuffer(format, { x, y, 1, 1 });
auto got = Color { SRGBA<uint8_t> { frontPixelBuffer->item(0), frontPixelBuffer->item(1), frontPixelBuffer->item(2), frontPixelBuffer->item(3) } };
if (got != expected)
return ::testing::AssertionFailure() << "color is not expected at (" << x << ", " << y << "). Got: " << got << ", expected: " << expected << ".";
return ::testing::AssertionSuccess();
}
namespace {
struct TestPattern {
FloatRect unitRect;
Color color;
};
}
static TestPattern g_testPattern[] = {
{ { 0.0f, 0.0f, 0.5f, 0.5f }, Color::magenta },
{ { 0.5f, 0.0f, 0.5f, 0.5f }, Color::yellow },
{ { 0.0f, 0.5f, 0.5f, 0.5f }, Color::lightGray },
{ { 0.5f, 0.5f, 0.5f, 0.5f }, Color::transparentBlack },
};
static ::testing::AssertionResult hasTestPattern(ImageBuffer& buffer)
{
// Test pattern draws fractional pixels when deviceScaleFactor is < 1.
// For now, account this by sampling somewhere where the fractional pixels
// are guaranteed to not exist (4 logical pixels inwards of the pattern
// borders).
static constexpr float fuzz = 4.0f;
for (auto pattern : g_testPattern) {
auto rect = pattern.unitRect;
rect.scale(buffer.logicalSize());
rect = enclosingIntRect(rect);
auto p1 = rect.minXMinYCorner();
p1.move(fuzz, fuzz);
auto result = imageBufferPixelIs(pattern.color, buffer, p1.x(), p1.y());
if (!result)
return result;
p1 = rect.maxXMaxYCorner();
p1.move(-fuzz, -fuzz);
result = imageBufferPixelIs(pattern.color, buffer, p1.x() - 1, p1.y() - 1);
if (!result)
return result;
}
return ::testing::AssertionSuccess();
}
static void drawTestPattern(ImageBuffer& buffer)
{
for (auto pattern : g_testPattern) {
auto rect = pattern.unitRect;
rect.scale(buffer.logicalSize());
rect = enclosingIntRect(rect);
buffer.context().fillRect(rect, pattern.color);
}
}
// Tests that the specialized image buffer constructors construct the expected type of object.
// Test passes if the test compiles, there was a bug where the code wouldn't compile.
TEST(ImageBufferTests, ImageBufferSubTypeCreateCreatesSubtypes)
{
auto colorSpace = DestinationColorSpace::SRGB();
auto pixelFormat = PixelFormat::BGRA8;
FloatSize size { 1.f, 1.f };
float scale = 1.f;
RefPtr<ImageBuffer> unaccelerated = ImageBuffer::create(size, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat);
RefPtr<ImageBuffer> accelerated = ImageBuffer::create(size, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated });
RefPtr<ImageBuffer> displayListAccelerated = ImageBuffer::create(size, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::UseDisplayList });
RefPtr<ImageBuffer> displayListUnaccelerated = ImageBuffer::create(size, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated, ImageBufferOptions::UseDisplayList });
EXPECT_NE(nullptr, accelerated);
EXPECT_NE(nullptr, unaccelerated);
EXPECT_NE(nullptr, displayListAccelerated);
EXPECT_NE(nullptr, displayListUnaccelerated);
}
TEST(ImageBufferTests, ImageBufferSubPixelDrawing)
{
auto colorSpace = DestinationColorSpace::SRGB();
auto pixelFormat = PixelFormat::BGRA8;
FloatSize logicalSize { 392, 44 };
float scale = 1.91326535;
auto frontImageBuffer = ImageBuffer::create(logicalSize, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated });
auto backImageBuffer = ImageBuffer::create(logicalSize, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated });
auto strokeRect = FloatRect { { }, logicalSize };
strokeRect.inflate(-0.5);
auto fillRect = strokeRect;
fillRect.inflate(-1);
auto& frontContext = frontImageBuffer->context();
auto& backContext = backImageBuffer->context();
frontContext.setShouldAntialias(false);
backContext.setShouldAntialias(false);
frontContext.setStrokeColor(Color::red);
frontContext.strokeRect(strokeRect, 1);
frontContext.fillRect(fillRect, Color::green);
for (int i = 0; i < 1000; ++i) {
backContext.drawImageBuffer(*frontImageBuffer, WebCore::FloatPoint { }, { WebCore::CompositeOperator::Copy });
frontContext.drawImageBuffer(*backImageBuffer, WebCore::FloatPoint { }, { WebCore::CompositeOperator::Copy });
}
EXPECT_TRUE(imageBufferPixelIs(Color::green, *frontImageBuffer, fillRect.x() + 1, fillRect.y() + 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *frontImageBuffer, fillRect.maxX() - 1, fillRect.y() + 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *frontImageBuffer, fillRect.x() + 1, fillRect.maxY() - 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *frontImageBuffer, fillRect.maxX() - 1, fillRect.maxY() - 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *backImageBuffer, fillRect.x() + 1, fillRect.y() + 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *backImageBuffer, fillRect.maxX() - 1, fillRect.y() + 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *backImageBuffer, fillRect.x() + 1, fillRect.maxY() - 1));
EXPECT_TRUE(imageBufferPixelIs(Color::green, *backImageBuffer, fillRect.maxX() - 1, fillRect.maxY() - 1));
}
// Test that drawing an accelerated ImageBuffer to an unaccelerated does not store extra
// memory to the accelerated ImageBuffer.
// FIXME: The test is disabled as it appears that WTF::memoryFootprint() is not exact enough to
// test that GraphicsContext::drawImageBitmap() does not keep extra memory around.
// However, if the test is paused at the memory measurement location and the process is inspected
// manually with the memory tools, the footprint is as expected, e.g. drawBitmapImage does not
// persist additional memory.
TEST(ImageBufferTests, DISABLED_DrawImageBufferDoesNotReferenceExtraMemory)
{
auto colorSpace = DestinationColorSpace::SRGB();
auto pixelFormat = PixelFormat::BGRA8;
FloatSize logicalSize { 4096, 4096 };
float scale = 1;
size_t footprintError = 1024 * 1024;
size_t logicalSizeBytes = logicalSize.width() * logicalSize.height() * 4;
// FIXME: Logically this fuzz amount should not exist.
// WTF::memoryFootprint() does not return the same amount of memory as
// the `footprint` command or the leak tools.
// At the time of writing, the bug case would report drawImageBitmap footprint
// as ~130mb, and fixed case would report ~67mb.
size_t drawImageBitmapUnaccountedFootprint = logicalSizeBytes + 3 * 1024 * 1024;
{
// Make potential accelerated drawing backend instantiate roughly the global structures needed for this test.
auto accelerated = ImageBuffer::create(logicalSize, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated });
auto fillRect = FloatRect { { }, logicalSize };
accelerated->context().fillRect(fillRect, Color::green);
EXPECT_TRUE(imageBufferPixelIs(Color::green, *accelerated, fillRect.maxX() - 1, fillRect.maxY() - 1));
}
WTF::releaseFastMallocFreeMemory();
auto initialFootprint = memoryFootprint();
auto lastFootprint = initialFootprint;
EXPECT_GT(lastFootprint, 0u);
auto accelerated = ImageBuffer::create(logicalSize, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat, { ImageBufferOptions::Accelerated });
auto fillRect = FloatRect { { }, logicalSize };
accelerated->context().fillRect(fillRect, Color::green);
accelerated->flushContext();
EXPECT_TRUE(memoryFootprintChangedBy(lastFootprint, logicalSizeBytes, footprintError));
auto unaccelerated = ImageBuffer::create(logicalSize, RenderingPurpose::Unspecified, scale, colorSpace, pixelFormat);
unaccelerated->context().fillRect(fillRect, Color::yellow);
EXPECT_TRUE(imageBufferPixelIs(Color::yellow, *unaccelerated, fillRect.maxX() - 1, fillRect.maxY() - 1));
EXPECT_TRUE(memoryFootprintChangedBy(lastFootprint, logicalSizeBytes, footprintError));
// The purpose of the whole test is to test that drawImageBuffer does not increase
// memory footprint.
unaccelerated->context().drawImageBuffer(*accelerated, FloatRect { { }, logicalSize }, FloatRect { { }, logicalSize }, { WebCore::CompositeOperator::Copy });
EXPECT_TRUE(imageBufferPixelIs(Color::green, *unaccelerated, fillRect.maxX() - 1, fillRect.maxY() - 1));
EXPECT_TRUE(memoryFootprintChangedBy(lastFootprint, 0 + drawImageBitmapUnaccountedFootprint, footprintError));
// sleep(10000); // Enable this to inspect the process manually.
accelerated = nullptr;
unaccelerated = nullptr;
lastFootprint = initialFootprint;
EXPECT_TRUE(memoryFootprintChangedBy(lastFootprint, 0, footprintError));
}
enum class TestImageBufferOptions {
Accelerated, NoOptions
};
void PrintTo(TestImageBufferOptions value, ::std::ostream* o)
{
if (value == TestImageBufferOptions::Accelerated)
*o << "Accelerated";
else if (value == TestImageBufferOptions::NoOptions)
*o << "NoOptions";
else
*o << "Unknown";
}
enum class TestPreserveResolution {
No,
Yes
};
void PrintTo(TestPreserveResolution value, ::std::ostream* o)
{
if (value == TestPreserveResolution::No)
*o << "PreserveResolution_No";
else if (value == TestPreserveResolution::Yes)
*o << "PreserveResolution_Yes";
else
*o << "Unknown";
}
// ImageBuffer test fixture for tests that are variant to the image buffer device scale factor, options and the operation argument of preserving resolution
class PreserveResolutionOperationTest : public testing::TestWithParam<std::tuple<float, TestImageBufferOptions, TestPreserveResolution>> {
public:
float deviceScaleFactor() const { return std::get<0>(GetParam()); }
OptionSet<ImageBufferOptions> imageBufferOptions() const
{
auto testOptions = std::get<1>(GetParam());
if (testOptions == TestImageBufferOptions::Accelerated)
return ImageBufferOptions::Accelerated;
return { };
}
PreserveResolution operationPreserveResolution()
{
if (std::get<2>(GetParam()) == TestPreserveResolution::No)
return PreserveResolution::No;
return PreserveResolution::Yes;
}
};
// Test that ImageBuffer::sinkIntoImage() returns Image that contains the ImageBuffer contents and
// that the returned Image is of expected size.
TEST_P(PreserveResolutionOperationTest, SinkIntoImageWorks)
{
FloatSize testSize { 50, 57 };
auto buffer = ImageBuffer::create(testSize, RenderingPurpose::Unspecified, deviceScaleFactor(), DestinationColorSpace::SRGB(), PixelFormat::BGRA8, imageBufferOptions());
ASSERT_NE(buffer, nullptr);
auto verifyBuffer = ImageBuffer::create(buffer->logicalSize(), RenderingPurpose::Unspecified, 1.f, DestinationColorSpace::SRGB(), PixelFormat::BGRA8);
ASSERT_NE(verifyBuffer, nullptr);
drawTestPattern(*buffer);
auto image = ImageBuffer::sinkIntoImage(WTFMove(buffer), operationPreserveResolution());
ASSERT_NE(image, nullptr);
if (operationPreserveResolution() == PreserveResolution::Yes)
EXPECT_EQ(image->size(), expandedIntSize(testSize.scaled(deviceScaleFactor())));
else
EXPECT_EQ(image->size(), testSize);
verifyBuffer->context().drawImage(*image, FloatRect { { }, verifyBuffer->logicalSize() }, CompositeOperator::Copy);
EXPECT_TRUE(hasTestPattern(*verifyBuffer));
}
INSTANTIATE_TEST_SUITE_P(ImageBufferTests,
PreserveResolutionOperationTest,
testing::Combine(
testing::Values(0.5f, 1.f, 2.f),
testing::Values(TestImageBufferOptions::NoOptions, TestImageBufferOptions::Accelerated),
testing::Values(TestPreserveResolution::No, TestPreserveResolution::Yes)),
TestParametersToStringFormatter());
}
|