1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
/*
* Copyright (C) 2016-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "WasmMemory.h"
#if ENABLE(WEBASSEMBLY)
#include "Options.h"
#include "WasmFaultSignalHandler.h"
#include "WasmInstance.h"
#include <wtf/CheckedArithmetic.h>
#include <wtf/DataLog.h>
#include <wtf/Gigacage.h>
#include <wtf/Lock.h>
#include <wtf/Platform.h>
#include <wtf/PrintStream.h>
#include <wtf/RAMSize.h>
#include <wtf/SafeStrerror.h>
#include <wtf/StdSet.h>
#include <wtf/Vector.h>
#include <cstring>
#include <limits>
#include <mutex>
namespace JSC { namespace Wasm {
// FIXME: We could be smarter about memset / mmap / madvise. https://bugs.webkit.org/show_bug.cgi?id=170343
// FIXME: Give up some of the cached fast memories if the GC determines it's easy to get them back, and they haven't been used in a while. https://bugs.webkit.org/show_bug.cgi?id=170773
// FIXME: Limit slow memory size. https://bugs.webkit.org/show_bug.cgi?id=170825
namespace {
constexpr bool verbose = false;
NEVER_INLINE NO_RETURN_DUE_TO_CRASH void webAssemblyCouldntGetFastMemory() { CRASH(); }
struct MemoryResult {
enum Kind {
Success,
SuccessAndNotifyMemoryPressure,
SyncTryToReclaimMemory
};
static const char* toString(Kind kind)
{
switch (kind) {
case Success:
return "Success";
case SuccessAndNotifyMemoryPressure:
return "SuccessAndNotifyMemoryPressure";
case SyncTryToReclaimMemory:
return "SyncTryToReclaimMemory";
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
MemoryResult() { }
MemoryResult(void* basePtr, Kind kind)
: basePtr(basePtr)
, kind(kind)
{
}
void dump(PrintStream& out) const
{
out.print("{basePtr = ", RawPointer(basePtr), ", kind = ", toString(kind), "}");
}
void* basePtr;
Kind kind;
};
class MemoryManager {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(MemoryManager);
public:
MemoryManager() = default;
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
MemoryResult tryAllocateFastMemory()
{
MemoryResult result = [&] {
Locker locker { m_lock };
if (m_fastMemories.size() >= m_maxFastMemoryCount)
return MemoryResult(nullptr, MemoryResult::SyncTryToReclaimMemory);
void* result = Gigacage::tryAllocateZeroedVirtualPages(Gigacage::Primitive, Memory::fastMappedBytes());
if (!result)
return MemoryResult(nullptr, MemoryResult::SyncTryToReclaimMemory);
m_fastMemories.append(result);
return MemoryResult(
result,
m_fastMemories.size() >= m_maxFastMemoryCount / 2 ? MemoryResult::SuccessAndNotifyMemoryPressure : MemoryResult::Success);
}();
dataLogLnIf(Options::logWebAssemblyMemory(), "Allocated virtual: ", result, "; state: ", *this);
return result;
}
void freeFastMemory(void* basePtr)
{
{
Locker locker { m_lock };
Gigacage::freeVirtualPages(Gigacage::Primitive, basePtr, Memory::fastMappedBytes());
m_fastMemories.removeFirst(basePtr);
}
dataLogLnIf(Options::logWebAssemblyMemory(), "Freed virtual; state: ", *this);
}
#endif
MemoryResult tryAllocateGrowableBoundsCheckingMemory(size_t mappedCapacity)
{
MemoryResult result = [&] {
Locker locker { m_lock };
void* result = Gigacage::tryAllocateZeroedVirtualPages(Gigacage::Primitive, mappedCapacity);
if (!result)
return MemoryResult(nullptr, MemoryResult::SyncTryToReclaimMemory);
m_growableBoundsCheckingMemories.insert(std::make_pair(bitwise_cast<uintptr_t>(result), mappedCapacity));
return MemoryResult(result, MemoryResult::Success);
}();
dataLogLnIf(Options::logWebAssemblyMemory(), "Allocated virtual: ", result, "; state: ", *this);
return result;
}
void freeGrowableBoundsCheckingMemory(void* basePtr, size_t mappedCapacity)
{
{
Locker locker { m_lock };
Gigacage::freeVirtualPages(Gigacage::Primitive, basePtr, mappedCapacity);
m_growableBoundsCheckingMemories.erase(std::make_pair(bitwise_cast<uintptr_t>(basePtr), mappedCapacity));
}
dataLogLnIf(Options::logWebAssemblyMemory(), "Freed virtual; state: ", *this);
}
bool isInGrowableOrFastMemory(void* address)
{
// NOTE: This can be called from a signal handler, but only after we proved that we're in JIT code or WasmLLInt code.
Locker locker { m_lock };
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
for (void* memory : m_fastMemories) {
char* start = static_cast<char*>(memory);
if (start <= address && address <= start + Memory::fastMappedBytes())
return true;
}
#endif
uintptr_t addressValue = bitwise_cast<uintptr_t>(address);
auto iterator = std::upper_bound(m_growableBoundsCheckingMemories.begin(), m_growableBoundsCheckingMemories.end(), std::make_pair(addressValue, 0),
[](std::pair<uintptr_t, size_t> a, std::pair<uintptr_t, size_t> b) {
return (a.first + a.second) < (b.first + b.second);
});
if (iterator != m_growableBoundsCheckingMemories.end()) {
// Since we never have overlapped range in m_growableBoundsCheckingMemories, just checking one lower-bound range is enough.
if (iterator->first <= addressValue && addressValue < (iterator->first + iterator->second))
return true;
}
return false;
}
// We allow people to "commit" more wasm memory than there is on the system since most of the time
// people don't actually write to most of that memory. There is some chance that this gets us
// JetSammed but that's possible anyway.
inline size_t memoryLimit() const
{
if (productOverflows<size_t>(ramSize(), 3))
return std::numeric_limits<size_t>::max();
return ramSize() * 3;
}
// FIXME: Ideally, bmalloc would have this kind of mechanism. Then, we would just forward to that
// mechanism here.
MemoryResult::Kind tryAllocatePhysicalBytes(size_t bytes)
{
MemoryResult::Kind result = [&] {
Locker locker { m_lock };
if (m_physicalBytes + bytes > memoryLimit())
return MemoryResult::SyncTryToReclaimMemory;
m_physicalBytes += bytes;
if (m_physicalBytes >= memoryLimit() / 2)
return MemoryResult::SuccessAndNotifyMemoryPressure;
return MemoryResult::Success;
}();
dataLogLnIf(Options::logWebAssemblyMemory(), "Allocated physical: ", bytes, ", ", MemoryResult::toString(result), "; state: ", *this);
return result;
}
void freePhysicalBytes(size_t bytes)
{
{
Locker locker { m_lock };
m_physicalBytes -= bytes;
}
dataLogLnIf(Options::logWebAssemblyMemory(), "Freed physical: ", bytes, "; state: ", *this);
}
void dump(PrintStream& out) const
{
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
out.print("fast memories = ", m_fastMemories.size(), "/", m_maxFastMemoryCount, ", bytes = ", m_physicalBytes, "/", memoryLimit());
#else
out.print("fast memories = N.A., bytes = ", m_physicalBytes, "/", memoryLimit());
#endif
}
private:
Lock m_lock;
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
unsigned m_maxFastMemoryCount { Options::maxNumWebAssemblyFastMemories() };
Vector<void*> m_fastMemories;
#endif
StdSet<std::pair<uintptr_t, size_t>> m_growableBoundsCheckingMemories;
size_t m_physicalBytes { 0 };
};
static MemoryManager& memoryManager()
{
static std::once_flag onceFlag;
static MemoryManager* manager;
std::call_once(
onceFlag,
[] {
manager = new MemoryManager();
});
return *manager;
}
template<typename Func>
bool tryAllocate(VM& vm, const Func& allocate)
{
unsigned numTries = 2;
bool done = false;
for (unsigned i = 0; i < numTries && !done; ++i) {
switch (allocate()) {
case MemoryResult::Success:
done = true;
break;
case MemoryResult::SuccessAndNotifyMemoryPressure:
vm.heap.collectAsync(CollectionScope::Full);
done = true;
break;
case MemoryResult::SyncTryToReclaimMemory:
if (i + 1 == numTries)
break;
vm.heap.collectSync(CollectionScope::Full);
break;
}
}
return done;
}
} // anonymous namespace
MemoryHandle::MemoryHandle(void* memory, size_t size, size_t mappedCapacity, PageCount initial, PageCount maximum, MemorySharingMode sharingMode, MemoryMode mode)
: m_sharingMode(sharingMode)
, m_mode(mode)
, m_memory(memory, mappedCapacity)
, m_size(size)
, m_mappedCapacity(mappedCapacity)
, m_initial(initial)
, m_maximum(maximum)
{
if (sharingMode == MemorySharingMode::Default && mode == MemoryMode::BoundsChecking)
ASSERT(mappedCapacity == size);
else
activateSignalingMemory();
}
MemoryHandle::~MemoryHandle()
{
if (m_memory) {
void* memory = this->memory();
memoryManager().freePhysicalBytes(m_size);
switch (m_mode) {
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
case MemoryMode::Signaling:
if (mprotect(memory, Memory::fastMappedBytes(), PROT_READ | PROT_WRITE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
memoryManager().freeFastMemory(memory);
break;
#endif
case MemoryMode::BoundsChecking: {
switch (m_sharingMode) {
case MemorySharingMode::Default:
Gigacage::freeVirtualPages(Gigacage::Primitive, memory, m_size);
break;
case MemorySharingMode::Shared: {
if (mprotect(memory, m_mappedCapacity, PROT_READ | PROT_WRITE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
memoryManager().freeGrowableBoundsCheckingMemory(memory, m_mappedCapacity);
break;
}
}
break;
}
}
}
}
// FIXME: ARM64E clang has a bug and inlining this function makes optimizer run forever.
// For now, putting NEVER_INLINE to suppress inlining of this.
NEVER_INLINE void* MemoryHandle::memory() const
{
ASSERT(m_memory.getMayBeNull(m_mappedCapacity) == m_memory.getUnsafe());
return m_memory.getMayBeNull(m_mappedCapacity);
}
Memory::Memory()
: m_handle(adoptRef(*new MemoryHandle(nullptr, 0, 0, PageCount(0), PageCount(0), MemorySharingMode::Default, MemoryMode::BoundsChecking)))
{
}
Memory::Memory(PageCount initial, PageCount maximum, MemorySharingMode sharingMode, WTF::Function<void(GrowSuccess, PageCount, PageCount)>&& growSuccessCallback)
: m_handle(adoptRef(*new MemoryHandle(nullptr, 0, 0, initial, maximum, sharingMode, MemoryMode::BoundsChecking)))
, m_growSuccessCallback(WTFMove(growSuccessCallback))
{
ASSERT(!initial.bytes());
ASSERT(mode() == MemoryMode::BoundsChecking);
dataLogLnIf(verbose, "Memory::Memory allocating ", *this);
ASSERT(!memory());
}
Memory::Memory(Ref<MemoryHandle>&& handle, WTF::Function<void(GrowSuccess, PageCount, PageCount)>&& growSuccessCallback)
: m_handle(WTFMove(handle))
, m_growSuccessCallback(WTFMove(growSuccessCallback))
{
dataLogLnIf(verbose, "Memory::Memory allocating ", *this);
}
Ref<Memory> Memory::create()
{
return adoptRef(*new Memory());
}
Ref<Memory> Memory::create(Ref<MemoryHandle>&& handle, WTF::Function<void(GrowSuccess, PageCount, PageCount)>&& growSuccessCallback)
{
return adoptRef(*new Memory(WTFMove(handle), WTFMove(growSuccessCallback)));
}
RefPtr<Memory> Memory::tryCreate(VM& vm, PageCount initial, PageCount maximum, MemorySharingMode sharingMode, WTF::Function<void(GrowSuccess, PageCount, PageCount)>&& growSuccessCallback)
{
ASSERT(initial);
RELEASE_ASSERT(!maximum || maximum >= initial); // This should be guaranteed by our caller.
const uint64_t initialBytes = initial.bytes();
const uint64_t maximumBytes = maximum ? maximum.bytes() : 0;
if (initialBytes > MAX_ARRAY_BUFFER_SIZE)
return nullptr; // Client will throw OOMError.
#if USE(JSVALUE32_64)
if (maximumBytes > MAX_ARRAY_BUFFER_SIZE)
return nullptr; // Client will throw OOMError.
#endif
if (maximum && !maximumBytes) {
// User specified a zero maximum, initial size must also be zero.
RELEASE_ASSERT(!initialBytes);
return adoptRef(new Memory(initial, maximum, sharingMode, WTFMove(growSuccessCallback)));
}
bool done = tryAllocate(vm,
[&] () -> MemoryResult::Kind {
return memoryManager().tryAllocatePhysicalBytes(initialBytes);
});
if (!done)
return nullptr;
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
char* fastMemory = nullptr;
if (Options::useWebAssemblyFastMemory()) {
tryAllocate(vm,
[&] () -> MemoryResult::Kind {
auto result = memoryManager().tryAllocateFastMemory();
fastMemory = bitwise_cast<char*>(result.basePtr);
return result.kind;
});
}
if (fastMemory) {
if (mprotect(fastMemory + initialBytes, Memory::fastMappedBytes() - initialBytes, PROT_NONE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
return Memory::create(adoptRef(*new MemoryHandle(fastMemory, initialBytes, Memory::fastMappedBytes(), initial, maximum, sharingMode, MemoryMode::Signaling)), WTFMove(growSuccessCallback));
}
#endif
if (UNLIKELY(Options::crashIfWebAssemblyCantFastMemory()))
webAssemblyCouldntGetFastMemory();
switch (sharingMode) {
case MemorySharingMode::Default: {
if (!initialBytes)
return adoptRef(new Memory(initial, maximum, sharingMode, WTFMove(growSuccessCallback)));
void* slowMemory = Gigacage::tryAllocateZeroedVirtualPages(Gigacage::Primitive, initialBytes);
if (!slowMemory) {
memoryManager().freePhysicalBytes(initialBytes);
return nullptr;
}
return Memory::create(adoptRef(*new MemoryHandle(slowMemory, initialBytes, initialBytes, initial, maximum, sharingMode, MemoryMode::BoundsChecking)), WTFMove(growSuccessCallback));
}
case MemorySharingMode::Shared: {
char* slowMemory = nullptr;
tryAllocate(vm,
[&] () -> MemoryResult::Kind {
auto result = memoryManager().tryAllocateGrowableBoundsCheckingMemory(maximumBytes);
slowMemory = bitwise_cast<char*>(result.basePtr);
return result.kind;
});
if (!slowMemory) {
memoryManager().freePhysicalBytes(initialBytes);
return nullptr;
}
if (mprotect(slowMemory + initialBytes, maximumBytes - initialBytes, PROT_NONE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
return Memory::create(adoptRef(*new MemoryHandle(slowMemory, initialBytes, maximumBytes, initial, maximum, sharingMode, MemoryMode::BoundsChecking)), WTFMove(growSuccessCallback));
}
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
Memory::~Memory() = default;
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
size_t Memory::fastMappedRedzoneBytes()
{
return static_cast<size_t>(PageCount::pageSize) * Options::webAssemblyFastMemoryRedzonePages();
}
size_t Memory::fastMappedBytes()
{
static_assert(sizeof(uint64_t) == sizeof(size_t), "We rely on allowing the maximum size of Memory we map to be 2^32 + redzone which is larger than fits in a 32-bit integer that we'd pass to mprotect if this didn't hold.");
return (static_cast<size_t>(1) << 32) + fastMappedRedzoneBytes();
}
#endif
bool Memory::addressIsInGrowableOrFastMemory(void* address)
{
return memoryManager().isInGrowableOrFastMemory(address);
}
Expected<PageCount, Memory::GrowFailReason> Memory::growShared(VM& vm, PageCount delta)
{
#if !ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
// Shared memory requires signaling memory which is not available on ARMv7 or others
// yet. In order to get more of the test suite to run, we can still use
// a shared mmeory by using bounds checking, but we cannot grow it safely
// in case it's used by multiple threads. Once the signal handler are
// available, this can be relaxed.
return makeUnexpected(GrowFailReason::GrowSharedUnavailable);
#endif
Wasm::PageCount oldPageCount;
Wasm::PageCount newPageCount;
auto result = ([&]() -> Expected<PageCount, Memory::GrowFailReason> {
Locker locker { m_handle->lock() };
oldPageCount = sizeInPages();
newPageCount = oldPageCount + delta;
if (!newPageCount || !newPageCount.isValid())
return makeUnexpected(GrowFailReason::InvalidGrowSize);
if (newPageCount.bytes() > MAX_ARRAY_BUFFER_SIZE)
return makeUnexpected(GrowFailReason::OutOfMemory);
if (!delta.pageCount())
return oldPageCount;
dataLogLnIf(verbose, "Memory::grow(", delta, ") to ", newPageCount, " from ", *this);
RELEASE_ASSERT(newPageCount > PageCount::fromBytes(size()));
if (maximum() && newPageCount > maximum())
return makeUnexpected(GrowFailReason::WouldExceedMaximum);
size_t desiredSize = newPageCount.bytes();
RELEASE_ASSERT(desiredSize <= MAX_ARRAY_BUFFER_SIZE);
RELEASE_ASSERT(desiredSize > size());
// If the memory is MemorySharingMode::Shared, we already allocated enough virtual address space even if the memory is bound-checking mode. We perform mprotect to extend.
size_t extraBytes = desiredSize - size();
RELEASE_ASSERT(extraBytes);
bool allocationSuccess = tryAllocate(vm,
[&] () -> MemoryResult::Kind {
return memoryManager().tryAllocatePhysicalBytes(extraBytes);
});
if (!allocationSuccess)
return makeUnexpected(GrowFailReason::OutOfMemory);
void* memory = this->memory();
RELEASE_ASSERT(memory);
// Signaling memory must have been pre-allocated virtually.
uint8_t* startAddress = static_cast<uint8_t*>(memory) + size();
dataLogLnIf(verbose, "Marking WebAssembly memory's ", RawPointer(memory), " as read+write in range [", RawPointer(startAddress), ", ", RawPointer(startAddress + extraBytes), ")");
if (mprotect(startAddress, extraBytes, PROT_READ | PROT_WRITE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
m_handle->growToSize(desiredSize);
return oldPageCount;
}());
if (result) {
m_growSuccessCallback(GrowSuccessTag, oldPageCount, newPageCount);
// Update cache for instance
for (auto& instance : m_instances) {
if (instance.get() != nullptr)
instance.get()->updateCachedMemory();
}
}
return result;
}
Expected<PageCount, Memory::GrowFailReason> Memory::grow(VM& vm, PageCount delta)
{
if (!delta.isValid())
return makeUnexpected(GrowFailReason::InvalidDelta);
if (sharingMode() == MemorySharingMode::Shared)
return growShared(vm, delta);
const Wasm::PageCount oldPageCount = sizeInPages();
const Wasm::PageCount newPageCount = oldPageCount + delta;
if (!newPageCount || !newPageCount.isValid())
return makeUnexpected(GrowFailReason::InvalidGrowSize);
if (newPageCount.bytes() > MAX_ARRAY_BUFFER_SIZE)
return makeUnexpected(GrowFailReason::OutOfMemory);
auto success = [&] () {
m_growSuccessCallback(GrowSuccessTag, oldPageCount, newPageCount);
// Update cache for instance
for (auto& instance : m_instances) {
if (instance.get() != nullptr)
instance.get()->updateCachedMemory();
}
return oldPageCount;
};
if (delta.pageCount() == 0)
return success();
dataLogLnIf(verbose, "Memory::grow(", delta, ") to ", newPageCount, " from ", *this);
RELEASE_ASSERT(newPageCount > PageCount::fromBytes(size()));
if (maximum() && newPageCount > maximum())
return makeUnexpected(GrowFailReason::WouldExceedMaximum);
size_t desiredSize = newPageCount.bytes();
RELEASE_ASSERT(desiredSize <= MAX_ARRAY_BUFFER_SIZE);
RELEASE_ASSERT(desiredSize > size());
switch (mode()) {
case MemoryMode::BoundsChecking: {
bool allocationSuccess = tryAllocate(vm,
[&] () -> MemoryResult::Kind {
return memoryManager().tryAllocatePhysicalBytes(desiredSize);
});
if (!allocationSuccess)
return makeUnexpected(GrowFailReason::OutOfMemory);
RELEASE_ASSERT(maximum().bytes() != 0);
void* newMemory = Gigacage::tryAllocateZeroedVirtualPages(Gigacage::Primitive, desiredSize);
if (!newMemory)
return makeUnexpected(GrowFailReason::OutOfMemory);
memcpy(newMemory, memory(), size());
auto newHandle = adoptRef(*new MemoryHandle(newMemory, desiredSize, desiredSize, initial(), maximum(), sharingMode(), MemoryMode::BoundsChecking));
m_handle = WTFMove(newHandle);
ASSERT(memory() == newMemory);
return success();
}
#if ENABLE(WEBASSEMBLY_SIGNALING_MEMORY)
case MemoryMode::Signaling: {
size_t extraBytes = desiredSize - size();
RELEASE_ASSERT(extraBytes);
bool allocationSuccess = tryAllocate(vm,
[&] () -> MemoryResult::Kind {
return memoryManager().tryAllocatePhysicalBytes(extraBytes);
});
if (!allocationSuccess)
return makeUnexpected(GrowFailReason::OutOfMemory);
void* memory = this->memory();
RELEASE_ASSERT(memory);
// Signaling memory must have been pre-allocated virtually.
uint8_t* startAddress = static_cast<uint8_t*>(memory) + size();
dataLogLnIf(verbose, "Marking WebAssembly memory's ", RawPointer(memory), " as read+write in range [", RawPointer(startAddress), ", ", RawPointer(startAddress + extraBytes), ")");
if (mprotect(startAddress, extraBytes, PROT_READ | PROT_WRITE)) {
dataLog("mprotect failed: ", safeStrerror(errno).data(), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
m_handle->growToSize(desiredSize);
return success();
}
#endif
}
RELEASE_ASSERT_NOT_REACHED();
return oldPageCount;
}
bool Memory::fill(uint32_t offset, uint8_t targetValue, uint32_t count)
{
if (sumOverflows<uint32_t>(offset, count))
return false;
if (offset + count > m_handle->size())
return false;
memset(reinterpret_cast<uint8_t*>(memory()) + offset, targetValue, count);
return true;
}
bool Memory::copy(uint32_t dstAddress, uint32_t srcAddress, uint32_t count)
{
if (sumOverflows<uint32_t>(dstAddress, count) || sumOverflows<uint32_t>(srcAddress, count))
return false;
const uint32_t lastDstAddress = dstAddress + count;
const uint32_t lastSrcAddress = srcAddress + count;
if (lastDstAddress > size() || lastSrcAddress > size())
return false;
if (!count)
return true;
uint8_t* base = reinterpret_cast<uint8_t*>(memory());
// Source and destination areas might overlap, so using memmove.
memmove(base + dstAddress, base + srcAddress, count);
return true;
}
bool Memory::init(uint32_t offset, const uint8_t* data, uint32_t length)
{
if (sumOverflows<uint32_t>(offset, length))
return false;
if (offset + length > m_handle->size())
return false;
if (!length)
return true;
memcpy(reinterpret_cast<uint8_t*>(memory()) + offset, data, length);
return true;
}
void Memory::registerInstance(Instance* instance)
{
size_t count = m_instances.size();
for (size_t index = 0; index < count; index++) {
if (m_instances.at(index).get() == nullptr) {
m_instances.at(index) = *instance;
return;
}
}
m_instances.append(*instance);
}
void Memory::dump(PrintStream& out) const
{
auto handle = m_handle.copyRef();
out.print("Memory at ", RawPointer(handle->memory()), ", size ", handle->size(), "B capacity ", handle->mappedCapacity(), "B, initial ", handle->initial(), " maximum ", handle->maximum(), " mode ", makeString(handle->mode()), " sharingMode ", makeString(handle->sharingMode()));
}
} // namespace JSC
} // namespace Wasm
#endif // ENABLE(WEBASSEMBLY)
|