File: AirAllocateRegistersByGreedy.cpp

package info (click to toggle)
wpewebkit 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 421,720 kB
  • sloc: cpp: 3,670,389; javascript: 194,411; ansic: 165,592; python: 46,476; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; java: 1,993; sh: 1,948; lex: 1,327; pascal: 366; makefile: 85
file content (1975 lines) | stat: -rw-r--r-- 80,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
/*
 * Copyright (C) 2024-2025 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "AirAllocateRegistersByGreedy.h"

#if ENABLE(B3_JIT)

#include "AirArgInlines.h"
#include "AirCode.h"
#include "AirFixSpillsAfterTerminals.h"
#include "AirPhaseInsertionSet.h"
#include "AirInstInlines.h"
#include "AirLiveness.h"
#include "AirPadInterference.h"
#include "AirPhaseScope.h"
#include "AirRegLiveness.h"
#include "AirTmpMap.h"
#include "AirTmpWidthInlines.h"
#include "AirUseCounts.h"
#include <wtf/IterationStatus.h>
#include <wtf/ListDump.h>
#include <wtf/PriorityQueue.h>
#include <wtf/Range.h>

WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN

namespace JSC { namespace B3 { namespace Air {

namespace Greedy {

// Experiments
static constexpr bool eagerGroups = true;
static constexpr bool eagerGroupsSplitFully = false;
static constexpr bool eagerGroupsExhaustiveSearch = false;

// Quickly filters out short ranges from live range splitting consideration.
static constexpr size_t splitMinRangeSize = 8;

static constexpr float unspillableCost = std::numeric_limits<float>::infinity();
static constexpr float fastTmpSpillCost = std::numeric_limits<float>::max();
static_assert(unspillableCost > fastTmpSpillCost);

// Phase constants used for the PhaseInsertionSet. Ensures that the fixup and spill/fill instructions
// inserted in a particular gap ends up in the correct order.
static constexpr unsigned spillStore = 0;
static constexpr unsigned splitMoveTo = 1;
static constexpr unsigned splitMoveFrom = 2;
static constexpr unsigned spillLoad = 3;

static bool verbose() { return Options::airGreedyRegAllocVerbose(); }

// Terminology / core data-structures:
//
// Point: a position within the IR stream. There are two points associated with each
// instruction: early and late. The early point for an instruction occurs immediately
// before the instruction and the late occurs immediately following. Early use/defs
// for that instruction are modeled as occurring at the early point whereas late use/defs
// are modeled as occurring at the late point. The late point for an instruction and
// early point for the subsequent instruction are distinct in order to avoid false
// conflicts, e.g. when a late use is followed by an early def.
//
// Interval: contiguous set of points, represented by a half open interval [begin, end).
//
// LiveRange: a set of intervals, usually used to model the liveness of a particular Tmp.
// In this implementation, Intervals of a LiveRange must be non-overlapping and
// non-contigous (if contigous, they should have been merged), and stored in sorted order.
//
// RegisterRange: a set of intervals, usually used to model assignments to a particular
// register at each Point. Each Interval of a RegisterRange is associated with a single
// Tmp, which may be a register Tmp (to represent fixed register lifetime and clobbers) or
// a Tmp that is currently assigned to this register. This structure models which Tmp occupies
// the register at each Point. Tmps and their associated Intervals can be assigned and
// evicted to/from the RegisterRange as the register allocation algorithm progresses.
//
// Algorithm:
//
// 1. Initialization:
//   a. Define where Points are located in the IR.
//   b. Run liveness analysis and build a LiveRange for each Tmp (including fixed registers).
//   c. Run analysis to determine the cost to spill each Tmp.
//   d. Build metadata related to Tmp coalescing. Eagerly group Tmps that can be coalesced.
// 2. Register allocation:
//   a. Process each Tmp in order of priority. Priority is mostly related to the "stage" of the
//      Tmp, whether a Tmp has a preferred register, and the size of a Tmp's LiveRange. The idea
//      is to fit the most constrained Tmps first, and let the smaller and less constrained ranges
//      fit into the remaining gaps.
//   b. Each Tmp is driven through a state machine (see Stage enum), where the further a Tmp
//      progresses, the more aggressive we try to fit it somewhere.
//     - First, simply try to find space where the LiveRange can fit in a RegisterRange.
//     - If that's not successful, we may evict LiveRanges in favor of a LiveRange with higher
//       spill cost. The evicted LiveRanges will requeued for further processing.
//     - If that's not successful, we may split up eagerly coalesced Tmps and process each
//       subgroup individually. We also try other forms of splitting LiveRanges, which will
//       produce new Tmps/LiveRanges, some of which may be assignable to registers.
//     - Finally, if all else fails, the Tmp is spilled and new Tmps for the spill/fill fixups
//       are queued for processing.
// 3. Finalization: fixup IR code is inserted to handle Tmps' split ranges and spills.
//
// Note that stack slots are allocated during a subsequent compiler phase.

using Point = size_t;
using Interval = WTF::Range<Point>;

class LiveRange {
public:
    LiveRange() = default;

    inline void validate()
    {
#if ASSERT_ENABLED
        size_t size = 0;
        Interval* prevInterval = nullptr;
        for (auto& interval : m_intervals) {
            ASSERT(interval.begin() < interval.end());
            ASSERT(!prevInterval || prevInterval->end() < interval.begin());
            size += interval.distance();
            prevInterval = &interval;
        }
        ASSERT(size == m_size);
#endif
    }

    // interval must come before all the intervals already in this LiveRange.
    void prepend(Interval interval)
    {
        ASSERT(interval);
        if (m_intervals.isEmpty() || interval.end() < m_intervals.first().begin())
            m_intervals.prepend(interval);
        else {
            ASSERT(interval.end() == m_intervals.first().begin());
            m_intervals.first() |= interval;
        }
        m_size += interval.distance();
        validate();
    }

    // interval must come after all the intervals already in this LiveRange.
    void append(Interval interval)
    {
        ASSERT(interval);
        if (m_intervals.isEmpty() || m_intervals.last().end() < interval.begin())
            m_intervals.append(interval);
        else {
            ASSERT(m_intervals.last().end() == interval.begin());
            m_intervals.last() |= interval;
        }
        m_size += interval.distance();
        validate();
    }

    void crossBasicBlockBoundary()
    {
        m_crossesBasicBlockBoundary = true;
    }

    bool isLocal() const
    {
        return !m_crossesBasicBlockBoundary && m_intervals.size() <= 1;
    }

    const Deque<Interval>& intervals() const
    {
        return m_intervals;
    }

    size_t size()
    {
        return m_size;
    }

    bool overlaps(LiveRange& other)
    {
        auto otherIter = other.intervals().begin();
        auto otherEnd = other.intervals().end();
        for (auto interval : intervals()) {
            while (otherIter != otherEnd && otherIter->end() <= interval.begin())
                ++otherIter; // otherIter was entirely before interval
            if (otherIter == otherEnd)
                return false;
            // Either otherIter overlaps interval or otherIter is entirely after interval.
            if (otherIter->begin() < interval.end())
                return true;
        }
        return false;
    }

    static LiveRange merge(const LiveRange& a, const LiveRange& b)
    {
        auto getEarliestAndAdvance = [](auto& aIter, const auto aEnd, auto& bIter, const auto bEnd) {
            auto postInc = [](auto& iter) {
                Interval interval = *iter;
                ++iter;
                return interval;
            };
            ASSERT(aIter != aEnd || bIter != bEnd);
            if (aIter == aEnd)
                return postInc(bIter);
            if (bIter == bEnd)
                return postInc(aIter);
            if (aIter->begin() < bIter->begin())
                return postInc(aIter);
            return postInc(bIter);
        };

        LiveRange result;
        auto aIter = a.intervals().begin();
        auto aEnd = a.intervals().end();
        auto bIter = b.intervals().begin();
        auto bEnd = b.intervals().end();

        Interval current = { };
        while (aIter != aEnd || bIter != bEnd) {
            Interval next = getEarliestAndAdvance(aIter, aEnd, bIter, bEnd);
            if (current.overlaps(next)) {
                current |= next;
                continue;
            }
            if (current)
                result.append(current);
            current = next;
        }
        if (current)
            result.append(current);
        result.validate();
        return result;
    }

    static LiveRange subtract(const LiveRange& a, const LiveRange& b)
    {
        LiveRange result;
        auto aIter = a.intervals().begin();
        auto bIter = b.intervals().begin();

        if (aIter == a.intervals().end())
            return result;
        Interval interval = *aIter;
        ++aIter;

        while (true) {
            // Skip over intervals in b that come before the current interval of a.
            while (bIter != b.intervals().end() && bIter->end() <= interval.begin())
                ++bIter;

            if (bIter != b.intervals().end() && bIter->overlaps(interval)) {
                // Overlap: Split the interval into 0, 1 or 2 intervals.
                if (interval.begin() < bIter->begin())
                    result.append({ interval.begin(), bIter->begin() });
                if (bIter->end() < interval.end()) {
                    // Process remaining portion of the interval.
                    interval = { bIter->end(), interval.end() };
                    continue;
                }
            } else {
                // No overlap: include entire interval in result.
                result.append(interval);
            }
            // Finished processing interval of a; move on to the next.
            if (aIter == a.intervals().end())
                break;
            interval = *aIter;
            ++aIter;
        }
        result.validate();
        return result;
    }

    void dump(PrintStream& out) const
    {
        WTF::CommaPrinter comma;
        out.print("{ ");
        for (auto& interval : intervals())
            out.print(comma, interval);
        out.print(" }[", m_size, "]");
        if (isLocal())
            out.print("(local)");
    }

private:
    Deque<Interval> m_intervals;
    size_t m_size { 0 }; // Sum of the distances over m_intervals
    bool m_crossesBasicBlockBoundary { false };
};

enum class Stage {
    New,
    Unspillable,
    TryAllocate,
    TrySplit,
    Spill,
    MaxInQueue = Spill,
    Assigned,
    Coalesced,
    Spilled,
    Replaced,
};

class TmpPriority {
private:
    // Priority is encoded into a 64-bit unsigned integer for fast comparison.
    static constexpr size_t stageBits = 3;
    static_assert(static_cast<uint64_t>(Stage::MaxInQueue) < (1ULL << stageBits));
    static constexpr size_t stageShift = 64 - stageBits;

    static constexpr size_t maybeCoalescableBits = 1;
    static constexpr size_t maybeCoalescableShift = stageShift - maybeCoalescableBits;

    static constexpr size_t isGlobalBits = 1;
    static constexpr size_t isGlobalShift = maybeCoalescableShift - isGlobalBits;

    static constexpr size_t rangeSizeBits = 39;
    static constexpr size_t rangeSizeShift = isGlobalShift - rangeSizeBits;

    static constexpr size_t tmpIndexBits = 20;
    static constexpr size_t tmpIndexShift = rangeSizeShift - tmpIndexBits;
    static_assert(!tmpIndexShift);

    inline void packPriority(uint64_t val, size_t numBits, size_t shift, bool reverse)
    {
        const uint64_t mask = (1ull << numBits) - 1;
        val &= mask;
        if (reverse)
            val = mask - val;
        m_priority |= val << shift;
    }

public:
    TmpPriority(Tmp tmp, Stage stage, size_t rangeSizeOrStart, bool maybeCoalescable, bool isGlobal)
        : m_tmp(tmp)
    {
        ASSERT(!tmp.isReg());
        ASSERT(stage <= Stage::MaxInQueue);
        // Earlier stages are higher priority.
        packPriority(static_cast<uint64_t>(stage), stageBits, stageShift, true);
        packPriority(maybeCoalescable, maybeCoalescableBits, maybeCoalescableShift, false);
        packPriority(isGlobal, isGlobalBits, isGlobalShift, false);
        // If range is global, then rangeSizeOrStart is size, and larger ranges are higher priority.
        // If range is local, then rangeSizeOrStart is start, and earlier ranges are higher priority.
        packPriority(rangeSizeOrStart, rangeSizeBits, rangeSizeShift, !isGlobal);
        // Make a strict total order for determinism.
        packPriority(tmp.tmpIndex(), tmpIndexBits, tmpIndexShift, true);
    }

    Tmp tmp() { return m_tmp; }

    Stage stage() const
    {
        const uint64_t mask = (1 << stageBits) - 1;
        uint64_t stageReversed = m_priority >> stageShift;
        stageReversed &= mask;
        return static_cast<Stage>(mask - stageReversed);
    }

    void dump(PrintStream& out) const
    {
        out.print("<", m_tmp, ", ", WTF::RawHex(m_priority), ">");
    }

    static bool isHigherPriority(const TmpPriority& left, const TmpPriority& right)
    {
        return left.m_priority > right.m_priority;
    }

private:
    Tmp m_tmp;
    uint64_t m_priority { 0 };
};

class RegisterRange {
public:
    RegisterRange() = default;

    struct AllocatedInterval {
        Tmp tmp;
        Interval interval;

        bool operator<(const AllocatedInterval& other) const
        {
            return this->interval.end() < other.interval.end();
        }

        void dump(PrintStream& out) const
        {
            out.print("{ ", tmp, " ", interval, " }");
        }
    };

    using AllocatedIntervalSet = StdSet<AllocatedInterval>;

    void add(Tmp tmp, LiveRange& range)
    {
        ASSERT(!hasConflict(range)); // Can't add overlapping LiveRanges
        for (auto& interval : range.intervals()) {
            ASSERT(interval != Interval()); // Strict ordering requires no empty intervals.
            m_allocations.insert({ tmp, interval });
        }
    }

    void evict(Tmp tmp, LiveRange& range)
    {
        for (auto& interval : range.intervals()) {
            auto r = m_allocations.erase({ tmp, interval });
            ASSERT_UNUSED(r, r == 1);
        }
    }

    bool hasConflict(LiveRange& range)
    {
        bool hasConflict = false;
        forEachConflict(range, [&](auto&) -> IterationStatus {
            hasConflict = true;
            return IterationStatus::Done;
        });
        return hasConflict;
    }

    // func is called with each (Tmp, Interval) pair (i.e. AllocatedInterval) of this
    // RegisterRange that overlaps with the given LiveRange 'range'.
    //
    // func is allowed to modify this RegisterRange, e.g. by calling evict().
    // func must not modify 'range' for the duration of this forEachConflict invocation.
    template<typename Func>
    void forEachConflict(const LiveRange& range, const Func& func)
    {
        auto rangeIter = range.intervals().begin();
        auto rangeEnd = range.intervals().end();

        if (rangeIter == rangeEnd)
            return;
        Point nextSearch = rangeIter->begin();

        while (true) {
            AllocatedInterval conflict;
            {
                auto conflictIter = findFirstIntervalEndingAfter(nextSearch);
                if (conflictIter == m_allocations.end())
                    return; // End of 'm_allocations', so no more potential conflicts
                if (rangeIter->end() <= conflictIter->interval.begin()) {
                    // No more conflicts with this 'range' interval. Move on to the next interval in 'range'.
                    if (++rangeIter == rangeEnd)
                        return; // End of 'range', so no more potential conflicts
                    // Start searching for conflicts of the next 'range' interval.
                    nextSearch = rangeIter->begin();
                    continue;
                }
                // Found a conflict. There may be additional conflicts of this 'range' interval, so advance
                // the search position beyond this conflict but don't advance the 'range' interval.
                conflict = *conflictIter;
                nextSearch = conflictIter->interval.end();
            }
            // 'func' can invalidate iterators of 'm_allocations'.
            if (func(conflict) == IterationStatus::Done)
                return;
        }
    }

    void dump(PrintStream& out) const
    {
        CommaPrinter comma;
        out.print("[");
        for (auto& alloc : m_allocations) {
            out.print(comma);
            out.print(alloc);
        }
        out.print("]");
    }

private:
    AllocatedIntervalSet::iterator findFirstIntervalEndingAfter(Point point)
    {
        Interval query(point);
        // pos can be 0, yet we can't express a non-empty interval with end==0, so instead of looking
        // for the first interval ending after pos we find the first interval ending at or after pos+1.
        ASSERT(query.end() == point + 1);
        auto iter = m_allocations.lower_bound({ Tmp(), query });
        ASSERT(iter == m_allocations.end() || iter->interval.end() > point);
        return iter;
    }

    AllocatedIntervalSet m_allocations;
};

// Auxillary register allocator data per Tmp.
struct TmpData {
    struct CoalescableWith {
        void dump(PrintStream& out) const
        {
            out.print("(", tmp, ", ", weight, ")");
        }

        Tmp tmp;
        float weight;
    };

    void dump(PrintStream& out) const
    {
        out.print("{stage = ", stage, " liveRange = ", liveRange, ", preferredReg = ", preferredReg,
            ", coalescables = ", listDump(coalescables), ", subGroup0 = ", subGroup0, ", subGroup1 = ", subGroup1,
            ", spillCost = ", spillCost, ", assigned = ", assigned, ", spilled = ", pointerDump(spillSlot), ", splitMetadataIndex = ", splitMetadataIndex, "}");
    }

    bool isGroup()
    {
        ASSERT(!subGroup0 == !subGroup1);
        return !!subGroup0;
    }

    void validate()
    {
        ASSERT(!(spillSlot && assigned));
        ASSERT(!!assigned == (stage == Stage::Assigned));
        ASSERT_IMPLIES(spillSlot, stage == Stage::Spilled);
        ASSERT_IMPLIES(spillSlot, spillCost != unspillableCost);
        ASSERT_IMPLIES(spillSlot, !isGroup()); // Should have been split
        ASSERT_IMPLIES(!spillCost, !liveRange.size());
        ASSERT_IMPLIES(assigned, !parentGroup); // Only top-most should be assigned
        ASSERT_IMPLIES(coalescables.size(), !isGroup()); // Only bottom-most should have coalescables
    }

    Stage stage { Stage::New };
    LiveRange liveRange;
    float spillCost { 0.0f };
    Reg preferredReg;
    Vector<CoalescableWith> coalescables;
    Tmp parentGroup;
    Tmp subGroup0, subGroup1;
    size_t splitMetadataIndex { 0 };

    Reg assigned;
    StackSlot* spillSlot { nullptr };
};

// SplitMetadata tracks a Tmp that is split and the new Tmps that are used to carry the value
// across the "gaps".
struct SplitMetadata {
    void dump(PrintStream& out) const
    {
        out.print(originalTmp, " : { ", listDump(gapTmps), " } ");
    }

    Tmp originalTmp;
    Vector<Tmp> gapTmps;
};

class GreedyAllocator {
public:
    GreedyAllocator(Code& code)
        : m_code(code)
        , m_blockToHeadPoint(code.size())
        , m_tailPoints(code.size())
        , m_map(code)
        , m_splitMetadata(1) // Sacrifice index 0.
        , m_regRanges(Reg::maxIndex() + 1)
        , m_insertionSets(code.size())
        , m_useCounts(m_code)
        , m_tmpWidth(m_code)
    {
    }

    void run()
    {
        // FIXME: reconsider use of padIntereference, https://bugs.webkit.org/show_bug.cgi?id=288122
        padInterference(m_code);
        buildRegisterSets();
        buildIndices();
        buildLiveRanges();
        initSpillCosts<GP>();
        initSpillCosts<FP>();
        finalizeGroups<GP>();
        finalizeGroups<FP>();

        allocateRegisters<GP>();
        allocateRegisters<FP>();

        insertFixupCode();

        validateAssignments<GP>();
        validateAssignments<FP>();

        assignRegisters();
        fixSpillsAfterTerminals(m_code);
    }

private:
    static constexpr Point pointsPerInst = 2;

    void buildRegisterSets()
    {
        forEachBank([&] (Bank bank) {
            m_allowedRegistersInPriorityOrder[bank] = m_code.regsInPriorityOrder(bank);
            for (Reg r : m_allowedRegistersInPriorityOrder[bank])
                m_allAllowedRegisters.add(r, IgnoreVectors);
        });
        m_allAllowedRegistersWholeWidth = m_allAllowedRegisters.toRegisterSet().includeWholeRegisterWidth();
    }

    void buildIndices()
    {
        Point headPosition = 0;
        Point tailPosition = 0;
        for (size_t i = 0; i < m_code.size(); i++) {
            BasicBlock* block = m_code[i];
            if (!block) {
                m_tailPoints[i] = tailPosition;
                continue;
            }
            // Two points per instruction: early and late.
            tailPosition = headPosition + 2 * block->size() - 1;
            m_blockToHeadPoint[block] = headPosition;
            m_tailPoints[i] = tailPosition;
            headPosition += block->size() * pointsPerInst;
        }
    }

    BasicBlock* findBlockContainingPoint(Point point)
    {
        auto iter = std::lower_bound(m_tailPoints.begin(), m_tailPoints.end(), point);
        ASSERT(iter != m_tailPoints.end()); // Should ask only about legal instruction boundaries.
        size_t blockIndex = std::distance(m_tailPoints.begin(), iter);
        BasicBlock* block = m_code[blockIndex];
        ASSERT(positionOfHead(block) <= point && point <= positionOfTail(block));
        return block;
    }

    Point positionOfHead(BasicBlock* block)
    {
        return m_blockToHeadPoint[block];
    }

    Point positionOfTail(BasicBlock* block)
    {
        return positionOfHead(block) + block->size() * pointsPerInst - 1;
    }

    static size_t instIndex(Point positionOfHead, Point point)
    {
        return (point - positionOfHead) / pointsPerInst;
    }

    static Point positionOfEarly(Interval interval)
    {
        return interval.begin() & ~static_cast<Point>(1);
    }

    static Interval earlyInterval(Point positionOfEarly)
    {
        ASSERT(!(positionOfEarly & 1));
        return Interval(positionOfEarly);
    }

    static Interval lateInterval(Point positionOfEarly)
    {
        ASSERT(!(positionOfEarly & 1));
        return Interval(positionOfEarly + 1);
    }

    static Interval earlyAndLateInterval(Point positionOfEarly)
    {
        return earlyInterval(positionOfEarly) | lateInterval(positionOfEarly);
    }

    static Interval interval(Point positionOfEarly, Arg::Timing timing)
    {
        switch (timing) {
        case Arg::OnlyEarly:
            return earlyInterval(positionOfEarly);
        case Arg::OnlyLate:
            return lateInterval(positionOfEarly);
        case Arg::EarlyAndLate:
            return earlyAndLateInterval(positionOfEarly);
        }
        ASSERT_NOT_REACHED();
        return Interval();
    }

    static Interval intervalForSpill(Point positionOfEarly, Arg::Role role)
    {
        Arg::Timing timing = Arg::timing(role);
        switch (timing) {
        case Arg::OnlyEarly:
            if (Arg::isAnyDef(role))
                return earlyAndLateInterval(positionOfEarly); // We have a spill store after this insn.
            return earlyInterval(positionOfEarly);
        case Arg::OnlyLate:
            if (Arg::isAnyUse(role))
                return earlyAndLateInterval(positionOfEarly); // We had a spill load before this insn.
            return lateInterval(positionOfEarly);
        case Arg::EarlyAndLate:
            return earlyAndLateInterval(positionOfEarly);
        }
        ASSERT_NOT_REACHED();
        return Interval();
    }

    Tmp groupForTmp(Tmp tmp)
    {
        while (Tmp parent = m_map[tmp].parentGroup)
            tmp = parent;
        return tmp;
    }

    Reg assignedReg(Tmp tmp)
    {
        return m_map[groupForTmp(tmp)].assigned;
    }

    StackSlot* spillSlot(Tmp tmp)
    {
        return m_map[groupForTmp(tmp)].spillSlot;
    }

    float adjustedBlockFrequency(BasicBlock* block)
    {
        float freq = block->frequency();
        if (UNLIKELY(!m_fastBlocks.saw(block)))
            freq *= Options::rareBlockPenalty();
        return freq;
    }

    // Debug code to verify that the results of register allocation and finalization fixup is valid.
    // That is, no two Tmps simultaneously alive share the same register (unless they were coalesced).
    template<Bank bank>
    void validateAssignments()
    {
        if (!Options::airValidateGreedRegAlloc())
            return;
        bool anyFailures = false;

        auto fail = [&](BasicBlock* block, Tmp a, Tmp b) {
            dataLogLn("AIR GREEDY REGISTER ALLOCATION VALIDATION FAILURE");
            dataLogLn("   In BB", *block);
            dataLogLn("     tmp = ", a, " : ", m_map[a]);
            dataLogLn("     tmp = ", b, " : ", m_map[b]);
            anyFailures = true;
        };

        auto checkConflicts = [&](BasicBlock* block, const typename TmpLiveness<bank>::LocalCalc& localCalc) {
            for (Tmp a : localCalc.live()) {
                Tmp aGrp = groupForTmp(a);
                Reg aReg = assignedReg(a);
                if (!aReg)
                    continue;
                for (Tmp b : localCalc.live()) {
                    Tmp bGrp = groupForTmp(b);
                    Reg bReg = assignedReg(b);
                    if (aGrp == bGrp) {
                        // Coalesced a & b so they better have the same register.
                        if (aReg != bReg)
                            fail(block, a, b);
                    } else {
                        // a & b interfere so b must either have been spilled or assigned a different register.
                        if (!bReg)
                            continue;
                        if (aReg == bReg)
                            fail(block, a, b);
                    }
                }
            }
        };

        TmpLiveness<bank> liveness(m_code);
        for (BasicBlock* block : m_code) {
            typename TmpLiveness<bank>::LocalCalc localCalc(liveness, block);
            for (unsigned instIndex = block->size(); instIndex--;) {
                checkConflicts(block, localCalc);
                localCalc.execute(instIndex);
            }
            checkConflicts(block, localCalc);
        }
        if (anyFailures) {
            dataLogLn("IR:");
            dataLogLn(m_code);
            RELEASE_ASSERT_NOT_REACHED();
        }
    }

    void buildLiveRanges()
    {
        CompilerTimingScope timingScope("Air"_s, "GreedyRegAlloc::buildLiveRanges"_s);
        UnifiedTmpLiveness liveness(m_code);
        TmpMap<Interval> activeIntervals(m_code);

        // Find non-rare blocks.
        m_fastBlocks.push(m_code[0]);
        while (BasicBlock* block = m_fastBlocks.pop()) {
            for (FrequentedBlock& successor : block->successors()) {
                if (!successor.isRare())
                    m_fastBlocks.push(successor.block());
            }
        }

        // addMaybeCoalescable is used during the first pass to collect all potentially
        // coalescables pairs. i.e. pairs of Tmps 'a' and 'b' such that there exists a
        // 'Move a, b' instruction. These pairs will be pruned after liveness analysis
        // based on conflicting defs. We do this rather than simply requiring that the
        // LiveRanges of coalescable tmps do not overlap so that we can handle Tmp copies, e.g.:
        //
        //   Move a, b
        //   Use a
        //   Use b
        //
        // The LiveRanges of a and b overlap, but the move is still coalescable (unless there
        // is a non-coalescable-move def of 'a' or 'b' during the lifetime of the other).
        auto addMaybeCoalescable = [&](Tmp a, Tmp b, BasicBlock* block) {
            if (a == b)
                return;
            TmpData& tmpData = m_map[a];
            float freq = adjustedBlockFrequency(block);
            for (auto& with : tmpData.coalescables) {
                if (with.tmp == b) {
                    with.weight += freq;
                    return;
                }
            }
            tmpData.coalescables.append({ b, freq });
        };

        auto coalescableMoveSrc = [&](Inst& inst) {
            return mayBeCoalescable(inst) ? inst.args[0].tmp() : Tmp();
        };

        auto isLiveAt = [&](Tmp tmp, Point point) {
            if (activeIntervals[tmp])
                return true;
            // Tmp may have had a dead def at point (e.g. clobber).
            auto& intervals = m_map[tmp].liveRange.intervals();
            if (intervals.isEmpty())
                return false;
            return intervals.first().contains(point);
        };

        // Remove def from any coalescable pair of a live tmp. We now know from liveness analysis
        // that these pairs are not coalescable.
        auto pruneCoalescable = [&](Inst& inst, Tmp def, Point point) {
            TmpData& defData = m_map[def];
            if (!defData.coalescables.size())
                return;
            Tmp movSrc = coalescableMoveSrc(inst);
            dataLogLnIf(verbose(), "Checking affinity ", inst, " def=", def, " movSrc=", movSrc);
            defData.coalescables.removeAllMatching([&](TmpData::CoalescableWith& with) {
                ASSERT(with.tmp != def);
                if (with.tmp != movSrc && isLiveAt(with.tmp, point)) {
                    dataLogLnIf(verbose(), "Pruning affinity ", def, " ", with.tmp);
                    m_map[with.tmp].coalescables.removeAllMatching([def](TmpData::CoalescableWith& with) {
                        return with.tmp == def;
                    });
                    return true;
                }
                return false;
            });
        };

        auto closeInterval = [&](Tmp tmp) {
            ASSERT(activeIntervals[tmp] != Interval());
            m_map[tmp].liveRange.prepend(activeIntervals[tmp]);
            activeIntervals[tmp] = Interval();
        };

        // First pass: collect all the potential coalescable pairs of Tmps.
        for (BasicBlock* block : m_code) {
            if (!block)
                continue;
            for (Inst& inst : block->insts()) {
                if (mayBeCoalescable(inst)) {
                    ASSERT(inst.args.size() == 2);
                    if (inst.args[0].isReg() || inst.args[1].isReg()) {
                        unsigned regIdx = inst.args[0].isReg() ? 0 : 1;
                        Reg reg = inst.args[regIdx].reg();
                        if (m_allAllowedRegisters.contains(reg, IgnoreVectors)) {
                            Tmp other = inst.args[regIdx ^ 1].tmp();
                            if (!m_map[other].preferredReg)
                                m_map[other].preferredReg = inst.args[regIdx].reg();
                        }
                    } else {
                        ASSERT(inst.args[0].isTmp() && inst.args[1].isTmp());
                        addMaybeCoalescable(inst.args[0].tmp(), inst.args[1].tmp(), block);
                        addMaybeCoalescable(inst.args[1].tmp(), inst.args[0].tmp(), block);
                    }
                }
            }
        }

        // Second pass: Run liveness analysis and build the LiveRange for each Tmp. Also,
        // prune conflicts from the coalescables.
        BasicBlock* blockAfter = nullptr;
        Vector<Tmp, 8> earlyUses, earlyDefs, lateUses, lateDefs;
        for (size_t blockIndex = m_code.size(); blockIndex--;) {
            BasicBlock* block = m_code[blockIndex];
            if (!block)
                continue;

            Point positionOfHead = this->positionOfHead(block);
            Point positionOfTail = this->positionOfTail(block);
            if (verbose()) {
                dataLog("At BB", pointerDump(block), "\n");
                dataLog("  positionOfHead = ", positionOfHead, "\n");
                dataLog("  positionOfTail = ", positionOfTail, "\n");
            }

            for (Tmp tmp : liveness.liveAtTail(block))
                activeIntervals[tmp] |= Interval(positionOfTail); // FIXME: could just set interval start

            if (blockAfter) {
                for (Tmp tmp : liveness.liveAtHead(blockAfter)) {
                    if (activeIntervals[tmp].contains(positionOfTail))
                        m_map[tmp].liveRange.crossBasicBlockBoundary();
                    else {
                        // If tmp was live at the head of the next block but no longer live, close
                        // the current interval.
                        ASSERT(activeIntervals[tmp].begin() == this->positionOfHead(blockAfter));
                        closeInterval(tmp);
                    }
                }
            }

            for (unsigned instIndex = block->size(); instIndex--;) {
                Inst& inst = block->at(instIndex);
                Point positionOfEarly = positionOfHead + instIndex * pointsPerInst;

                lateUses.shrink(0);
                lateDefs.shrink(0);
                earlyUses.shrink(0);
                earlyDefs.shrink(0);
                inst.forEachTmp([&](Tmp& tmp, Arg::Role role, Bank, Width) {
                    if (Arg::isLateUse(role))
                        lateUses.append(tmp);
                    if (Arg::isLateDef(role))
                        lateDefs.append(tmp);
                    if (Arg::isEarlyUse(role))
                        earlyUses.append(tmp);
                    if (Arg::isEarlyDef(role))
                        earlyDefs.append(tmp);
                });
                for (Tmp tmp : lateUses)
                    activeIntervals[tmp] |= lateInterval(positionOfEarly);
                for (Tmp tmp : lateDefs) {
                    activeIntervals[tmp] |= lateInterval(positionOfEarly);
                    closeInterval(tmp);
                    pruneCoalescable(inst, tmp, positionOfEarly + 1);
                }
                for (Tmp tmp : earlyUses)
                    activeIntervals[tmp] |= earlyInterval(positionOfEarly);
                for (Tmp tmp : earlyDefs) {
                    activeIntervals[tmp] |= earlyInterval(positionOfEarly);
                    closeInterval(tmp);
                    pruneCoalescable(inst, tmp, positionOfEarly);
                }
                if (inst.kind.opcode == Patch) {
                    auto clobberReg = [&](Reg reg, Interval interval) {
                        Tmp tmp = Tmp(reg);
                        bool isAlive = !!activeIntervals[tmp];
                        activeIntervals[tmp] |= interval;
                        if (!isAlive)
                            closeInterval(tmp);
                    };
                    inst.extraClobberedRegs().forEachWithWidthAndPreserved(
                        [&](Reg reg, Width, PreservedWidth) {
                            clobberReg(reg, lateInterval(positionOfEarly));
                        });
                    inst.extraEarlyClobberedRegs().forEachWithWidthAndPreserved(
                        [&](Reg reg, Width, PreservedWidth) {
                            clobberReg(reg, earlyInterval(positionOfEarly));
                        });
                }

            }
            for (Tmp tmp : liveness.liveAtHead(block))
                activeIntervals[tmp] |= Interval(positionOfHead);

            blockAfter = block;
        }
        if (blockAfter) {
            for (Tmp tmp : liveness.liveAtHead(blockAfter)) {
                ASSERT(activeIntervals[tmp].begin() == this->positionOfHead(blockAfter));
                closeInterval(tmp);
            }
        }

#if ASSERT_ENABLED
        m_code.forEachTmp([&](Tmp tmp) {
            ASSERT(!activeIntervals[tmp]);
        });
#endif
        if (verbose()) {
            dataLog("Intervals:\n");
            auto dumpRegTmpData = [&](Reg r) {
                TmpData& tmpData = m_map[Tmp(r)];
                if (tmpData.liveRange.size())
                    dataLog("    ", r, ": ", m_map[Tmp(r)], "\n");
            };
            for (Reg r : m_allowedRegistersInPriorityOrder[GP])
                dumpRegTmpData(r);
            for (Reg r : m_allowedRegistersInPriorityOrder[FP])
                dumpRegTmpData(r);
            m_code.forEachTmp([&](Tmp tmp) {
                dataLog("    ", tmp, ": ", m_map[tmp], "\n");
            });
        }
    }

    template<typename Func>
    IterationStatus forEachTmpInGroup(Tmp grp, const Func& func)
    {
        TmpData& data = m_map[grp];
        if (!data.isGroup())
            return func(grp);
        ASSERT(data.subGroup0 && data.subGroup1);
        if (forEachTmpInGroup(data.subGroup0, func) == IterationStatus::Done)
            return IterationStatus::Done;
        return forEachTmpInGroup(data.subGroup1, func);
    }

    template <Bank bank>
    void finalizeGroups()
    {
        CompilerTimingScope timingScope("Air"_s, "GreedyRegAlloc::finalizeGroups"_s);

        struct Move {
            Tmp tmp0, tmp1;
            float weight;

            void dump(PrintStream& out) const
            {
                out.print(tmp0, ", ", tmp1, " ", weight);
            }
        };
        Vector<Move> moves;

        m_code.forEachTmp<bank>([&](Tmp tmp) {
            ASSERT(!tmp.isReg());
            TmpData& data = m_map[tmp];
            std::sort(data.coalescables.begin(), data.coalescables.end(),
                [this] (const auto& a, const auto& b) -> bool {
                    if (a.weight != b.weight)
                        return a.weight > b.weight;
                    // Favor coalescing shorter live ranges.
                    auto aSize = m_map[a.tmp].liveRange.size();
                    auto bSize = m_map[b.tmp].liveRange.size();
                    if (aSize != bSize)
                        return aSize < bSize;
                    return a.tmp.tmpIndex(bank) < b.tmp.tmpIndex(bank);
            });

            if (!eagerGroups)
                return;

            for (auto& with : m_map[tmp].coalescables) {
                if (tmp.tmpIndex(bank) < with.tmp.tmpIndex(bank))
                    moves.append({ tmp, with.tmp, with.weight });
            }
        });

        ASSERT_IMPLIES(!eagerGroups, moves.isEmpty());
        std::sort(moves.begin(), moves.end(),
            [](Move& a, Move& b) -> bool {
                if (a.weight != b.weight)
                    return a.weight > b.weight;
                if (a.tmp0.tmpIndex(bank) != b.tmp1.tmpIndex(bank))
                    return a.tmp0.tmpIndex(bank) < a.tmp0.tmpIndex(bank);
                ASSERT(a.tmp1.tmpIndex(bank) != b.tmp1.tmpIndex(bank));
                return a.tmp1.tmpIndex(bank) < b.tmp1.tmpIndex(bank);
            });

        auto hasConflict = [this](Tmp group0, Tmp group1) {
            bool conflicts = false;
            forEachTmpInGroup(group0, [&](Tmp tmp0) {
                ASSERT(!conflicts);
                TmpData& data0 = m_map[tmp0];
                ASSERT(!data0.subGroup0 && !data0.subGroup1);
                forEachTmpInGroup(group1, [&](Tmp tmp1) {
                    ASSERT(!conflicts);
                    ASSERT(tmp0 != tmp1);
                    TmpData& data1 = m_map[tmp1];
                    if (!data0.coalescables.containsIf([tmp1](auto& with) { return with.tmp == tmp1; })
                        && data0.liveRange.overlaps(data1.liveRange)) {
                        conflicts = true;
                        return IterationStatus::Done;
                    }
                    return IterationStatus::Continue;
                });
                return conflicts ? IterationStatus::Done : IterationStatus::Continue;
            });
            return conflicts;
        };

        auto addSubGroup = [this](Tmp group, TmpData& groupData, Tmp& subGroupField, Tmp subGroup) {
            TmpData& subGroupData = m_map[subGroup];
            subGroupField = subGroup;
            subGroupData.parentGroup = group;
            subGroupData.stage = Stage::Coalesced;

            groupData.liveRange = LiveRange::merge(groupData.liveRange, subGroupData.liveRange);
            groupData.spillCost += subGroupData.spillCost;
            if (!groupData.preferredReg)
                groupData.preferredReg = subGroupData.preferredReg;

            Width defWidth, useWidth;
            defWidth = std::max(m_tmpWidth.defWidth(group), m_tmpWidth.defWidth(subGroup));
            useWidth = std::max(m_tmpWidth.useWidth(group), m_tmpWidth.useWidth(subGroup));
            m_tmpWidth.setWidths(group, useWidth, defWidth);
        };

        for (Move& move : moves) {
            dataLogLnIf(verbose(), "Processing move: ", move);
            Tmp group0 = groupForTmp(move.tmp0);
            Tmp group1 = groupForTmp(move.tmp1);
            if (group0 == group1) {
                dataLogLnIf(verbose(), "Already grouped transitively into ", group0);
                continue;
            }
            if (!hasConflict(group0, group1)) {
                Tmp newGrp = m_code.newTmp(bank);
                TmpData newGrpData;
                m_tmpWidth.setWidths(newGrp, Width8, Width8);

                addSubGroup(newGrp, newGrpData, newGrpData.subGroup0, group0);
                addSubGroup(newGrp, newGrpData, newGrpData.subGroup1, group1);
                newGrpData.validate();
                m_map.append(newGrp, newGrpData);
                dataLogLnIf(verbose(), "Created group ", newGrp, ": ", m_map[newGrp]);
            }
        }
        if (verbose()) {
            m_code.forEachTmp<bank>([&](Tmp tmp) {
                TmpData& data = m_map[tmp];
                if (!data.parentGroup && data.isGroup()) {
                    dataLog("Group: ", tmp, " = { ");
                    CommaPrinter comma;
                    forEachTmpInGroup(tmp, [&comma](Tmp member) {
                        dataLog(comma, member);
                        return IterationStatus::Continue;
                    });
                    dataLogLn(" }");
                }
            });
        }
    }

    template<Bank bank>
    void initSpillCosts()
    {
        CompilerTimingScope timingScope("Air"_s, "GreedyRegAlloc::initSpillCosts"_s);

        for (Reg reg : m_allowedRegistersInPriorityOrder[bank])
            m_map[Tmp(reg)].spillCost = unspillableCost;

        // FIXME: tmps alive only in one gap should be unspillable.
        m_code.forEachTmp<bank>([&](Tmp tmp) {
            ASSERT(tmp.bank() == bank);
            ASSERT(!tmp.isReg());
            auto index = AbsoluteTmpMapper<bank>::absoluteIndex(tmp);
            float spillCost = m_useCounts.numWarmUsesAndDefs<bank>(index);
            if (bank == GP && m_useCounts.isConstDef<GP>(index))
                spillCost /= 2; // Can rematerialize rather than spill in many cases.
            ASSERT(m_map[tmp].spillCost == 0.0f);
            m_map[tmp].spillCost = spillCost;
        });
        m_code.forEachFastTmp([&](Tmp tmp) {
            if (tmp.bank() != bank)
                return;
            m_map[tmp].spillCost = fastTmpSpillCost;
            dataLogLnIf(verbose(), "FastTmp: ", tmp);
        });
    }

    // newTmp creates and returns a new tmp that can hold the values of 'from'.
    // Note that all TmpData references invalidated since it may expand/realloc the TmpData map.
    Tmp newTmp(Tmp from, float spillCost, Interval interval)
    {
        Tmp tmp = m_code.newTmp(from.bank());
        m_tmpWidth.setWidths(tmp, m_tmpWidth.useWidth(from), m_tmpWidth.defWidth(from));

        m_map.append(tmp, TmpData());
        TmpData& tmpData = m_map[tmp];
        tmpData.liveRange.prepend(interval);
        tmpData.spillCost = spillCost;
        tmpData.validate();
        return tmp;
    }

    Tmp addSpillTmpWithInterval(Tmp spilledTmp, Interval interval)
    {
        Tmp tmp = newTmp(spilledTmp, unspillableCost, interval);
        dataLogLnIf(verbose(), "New spill for ", spilledTmp, " tmp: ", tmp, ": ", m_map[tmp]);
        setStageAndEnqueue(tmp, m_map[tmp], Stage::Unspillable);
        return tmp;
    }

    void dumpRegRanges(Bank bank)
    {
        for (Reg r : m_allowedRegistersInPriorityOrder[bank])
            dataLogLn("   regRanges[", r, "]: ", m_regRanges[r]);
    }

    void setStageAndEnqueue(Tmp tmp, TmpData& tmpData, Stage stage)
    {
        ASSERT(!tmp.isReg());
        ASSERT(stage == Stage::Unspillable || stage == Stage::TryAllocate || stage == Stage::TrySplit || stage == Stage::Spill);
        ASSERT_IMPLIES(!tmpData.spillCost, !tmpData.liveRange.size());
        ASSERT(!tmpData.parentGroup); // Group member should not be enquened
        ASSERT_IMPLIES(!eagerGroups, !tmpData.isGroup());
        tmpData.validate();

        tmpData.stage = stage;
        size_t rangeSizeOrStart = tmpData.liveRange.size();
        if (tmpData.liveRange.isLocal())
            rangeSizeOrStart = tmpData.liveRange.intervals().first().begin();

        m_queue.enqueue({ tmp, stage, rangeSizeOrStart, tmpData.preferredReg || tmpData.coalescables.size(), !tmpData.liveRange.isLocal() });
        dataLogLnIf(verbose(), "Enqueued (", stage, ") ", tmp);
    }

    template <Bank bank>
    void allocateRegisters()
    {
        CompilerTimingScope timingScope("Air"_s, "GreedyRegAlloc::allocateRegisters"_s);

        for (Reg reg : m_allowedRegistersInPriorityOrder[bank])
            assign(Tmp(reg), m_map[Tmp(reg)], reg);

        m_code.forEachTmp<bank>([&](Tmp tmp) {
            ASSERT(!tmp.isReg());
            TmpData& tmpData = m_map[tmp];
            if (tmpData.parentGroup) {
                ASSERT(eagerGroups);
                return;
            }
            if (tmpData.liveRange.intervals().isEmpty())
                return;
            setStageAndEnqueue(tmp, tmpData, Stage::TryAllocate);
        });

        do {
            while (!m_queue.isEmpty()) {
                auto entry = m_queue.dequeue();
                Tmp tmp = entry.tmp();
                ASSERT(tmp && tmp.bank() == bank);
                TmpData& tmpData = m_map[tmp];
                if (verbose()) {
                    dataLogLn("Pop: ", entry, " tmp: ", tmpData);
                    dumpRegRanges(bank);
                }
                if (tmpData.stage == Stage::Replaced)
                    continue; // Tmp no longer relevant
                if (tryAllocate<bank>(tmp, tmpData))
                    continue;
                if (tmpData.stage != Stage::TrySplit && tryEvict<bank>(tmp, tmpData))
                    continue;

                ASSERT(&tmpData == &m_map[tmp]); // Verify m_map hasn't been resized on this path
                switch (tmpData.stage) {
                case Stage::TryAllocate: {
                    // If we couldn't allocate tmp, allow it to split next time.
                    Stage nextStage = Stage::TrySplit;
                    // If we already know splitting won't be profitable, skip it.
                    if (!tmpData.isGroup() && tmpData.liveRange.size() < splitMinRangeSize)
                        nextStage = Stage::Spill;
                    setStageAndEnqueue(tmp, tmpData, nextStage);
                    continue;
                }
                case Stage::TrySplit:
                    if (!trySplit<bank>(tmp, tmpData))
                        setStageAndEnqueue(tmp, tmpData, Stage::Spill);
                    continue;
                case Stage::Spill:
                    ASSERT(queueContainsOnlySpills()); // FIXME: remove
                    spill(tmp, tmpData);
                    continue;
                case Stage::Unspillable:
                    // Unspillables must have been allocated during tryAllocate or tryEvict.
                case Stage::New:
                case Stage::Assigned:
                case Stage::Spilled:
                case Stage::Coalesced:
                case Stage::Replaced:
                    dataLogLn("Invalid stage tmp = ", tmp, " tmpData = ", tmpData);
                    // Tmps in these stages should not have been enqueued.
                    RELEASE_ASSERT_NOT_REACHED();
                }
                RELEASE_ASSERT_NOT_REACHED();
            }
            if (m_didSpill) {
                emitSpillCodeAndEnqueueNewTmps<bank>();
                m_didSpill = false;
            }
            // Process the spill/fill tmps,
        } while (!m_queue.isEmpty());
    }

    template <Bank bank>
    bool tryAllocate(Tmp tmp, TmpData& tmpData)
    {
        ASSERT(&m_map[tmp] == &tmpData);
        ASSERT(!assignedReg(tmp));
        ASSERT(!tmpData.parentGroup);

        auto tryAllocateToReg = [&](Reg r) {
            LiveRange& liveRange = tmpData.liveRange;
            RegisterRange& regRanges = m_regRanges[r];
            if (!regRanges.hasConflict(liveRange)) {
                assign(tmp, tmpData, r);
                return true;
            }
            return false;
        };

        ScalarRegisterSet alreadyAttempted;
        if (eagerGroupsExhaustiveSearch) {
            // FIXME: this will check coalescables within the group, which is wasteful and common.
            // But without doing this, we won't try to coalescables between partially split groups.
            IterationStatus status = forEachTmpInGroup(tmp, [&](Tmp member) {
                for (auto& with : m_map[member].coalescables) {
                    Reg r = assignedReg(with.tmp);
                    if (r) {
                        if (tryAllocateToReg(r))
                            return IterationStatus::Done;
                        alreadyAttempted.add(r, IgnoreVectors);
                    }
                }
                return IterationStatus::Continue;
            });
            if (status == IterationStatus::Done) {
                ASSERT(tmpData.assigned);
                return true;
            }
        } else {
            for (auto& with : tmpData.coalescables) {
                Reg r = m_map[with.tmp].assigned;
                if (r) {
                    if (tryAllocateToReg(r))
                        return true;
                    alreadyAttempted.add(r, IgnoreVectors);
                }
            }
        }
        ASSERT(!tmpData.assigned);

        if (tmpData.preferredReg) {
            if (tryAllocateToReg(tmpData.preferredReg))
                return true;
            alreadyAttempted.add(tmpData.preferredReg, IgnoreVectors);
        }
        for (Reg r : m_allowedRegistersInPriorityOrder[bank]) {
            if (alreadyAttempted.contains(r, IgnoreVectors))
                continue;
            if (tryAllocateToReg(r))
                return true;
        }
        return false;
    }

    template <Bank bank>
    bool tryEvict(Tmp tmp, TmpData& tmpData)
    {
        ASSERT(&m_map[tmp] == &tmpData);
        ASSERT(tmp.bank() == bank);

        Reg bestEvictReg;
        float minSpillCost = unspillableCost;
        BitVector visited(m_code.numTmps(bank));
        LiveRange& liveRange = tmpData.liveRange;
        for (Reg r : m_allowedRegistersInPriorityOrder[bank]) {
            float conflictsSpillCost = 0.0f;
            visited.clearAll();
            m_regRanges[r].forEachConflict(liveRange,
                [&](auto& conflict) -> IterationStatus {
                    if (conflict.tmp.isReg()) {
                        // Conflicts with a fixed register use/def, cannot evict.
                        conflictsSpillCost = unspillableCost;
                        return IterationStatus::Done;
                    }
                    unsigned conflictTmpIndex = conflict.tmp.tmpIndex(bank);
                    if (visited.quickGet(conflictTmpIndex))
                        return IterationStatus::Continue;
                    visited.quickSet(conflictTmpIndex);
                    auto cost = m_map[conflict.tmp].spillCost;
                    if (cost == unspillableCost) {
                        conflictsSpillCost = unspillableCost;
                        return IterationStatus::Done;
                    }
                    conflictsSpillCost += cost;
                    return conflictsSpillCost >= minSpillCost ? IterationStatus::Done : IterationStatus::Continue;
            });
            if (conflictsSpillCost < minSpillCost) {
                minSpillCost = conflictsSpillCost;
                bestEvictReg = r;
            }
        }
        if (minSpillCost >= tmpData.spillCost) {
            // If 'tmp' was unspillable, we better have found at least one suitable register.
            RELEASE_ASSERT(tmpData.spillCost != unspillableCost);
            return false;
        }
        // It's cheaper to spill all the already-assigned conflicting tmps, so evict them in favor of assigning 'tmp'.
        m_regRanges[bestEvictReg].forEachConflict(liveRange,
            [&](auto& conflict) -> IterationStatus {
                TmpData& conflictData = m_map[conflict.tmp];
                evict(conflict.tmp, conflictData, bestEvictReg);
                setStageAndEnqueue(conflict.tmp, conflictData, Stage::TryAllocate);
                return IterationStatus::Continue;
            });
        assign(tmp, tmpData, bestEvictReg);
        return true;
    }

    void assign(Tmp tmp, TmpData& tmpData, Reg reg)
    {
        m_regRanges[reg].add(tmp, tmpData.liveRange);
        ASSERT(tmpData.stage != Stage::Assigned && tmpData.stage != Stage::Spilled);
        tmpData.stage = Stage::Assigned;
        tmpData.assigned = reg;
        dataLogLnIf(verbose(), "Assigned ", tmp, " to ", reg);
        tmpData.validate();
    }

    void evict(Tmp tmp, TmpData& tmpData, Reg reg)
    {
        ASSERT(tmpData.stage == Stage::Assigned);
        ASSERT(tmpData.spillCost != unspillableCost);
        ASSERT(tmpData.assigned == reg);
        m_regRanges[reg].evict(tmp, tmpData.liveRange);
        tmpData.stage = Stage::New;
        tmpData.assigned = Reg();
        dataLogLnIf(verbose(), "Evicted ", tmp, " from ", reg);
        tmpData.validate();
    }

    template<Bank bank>
    bool trySplit(Tmp tmp, TmpData& tmpData)
    {
        ASSERT(tmpData.spillCost != unspillableCost); // Should have evicted.
        if (trySplitGroup(tmp, tmpData))
            return true;
        return trySplitAroundClobbers<bank>(tmp, tmpData);
    }

    bool trySplitGroup(Tmp tmp, TmpData& tmpData)
    {
        if (!tmpData.isGroup())
            return false;
        ASSERT(eagerGroups);
        auto enqueueSubgroup = [&](Tmp subGrp) {
            m_map[subGrp].parentGroup = Tmp();
            setStageAndEnqueue(subGrp, m_map[subGrp], Stage::TryAllocate);
        };
        if (eagerGroupsSplitFully) {
            forEachTmpInGroup(tmp, [&](Tmp member) {
                enqueueSubgroup(member);
                return IterationStatus::Continue;
            });
        } else {
            enqueueSubgroup(tmpData.subGroup0);
            enqueueSubgroup(tmpData.subGroup1);
        }
        tmpData.stage = Stage::Replaced;
        dataLogLnIf(verbose(), "Split (group) ", tmp);
        tmpData.validate();
        return true;
    }

    template<Bank bank>
    bool trySplitAroundClobbers(Tmp tmp, TmpData& tmpData)
    {
        if (tmpData.splitMetadataIndex)
            return false; // Already split around clobbers
        if (tmpData.liveRange.size() < splitMinRangeSize)
            return false; // Not enough instructions to be worthwhile

        auto instUsesOrDefsTmp = [](Inst& inst, Tmp tmp) {
            bool result = false;
            inst.forEachTmpFast([&](Tmp useOrDef) {
                result |= useOrDef == tmp;
            });
            return result;
        };

        Reg bestSplitReg;
        float minSplitCost = unspillableCost;
        for (Reg r : m_allowedRegistersInPriorityOrder[bank]) {
            float splitCost = 0.0f;
            m_regRanges[r].forEachConflict(tmpData.liveRange,
                [&](auto& conflict) -> IterationStatus {
                    if (conflict.tmp.isReg() && conflict.interval.distance() == 1) {
                        // Block freq * rare block penalty
                        BasicBlock* block = findBlockContainingPoint(conflict.interval.begin());
                        unsigned instIndex = this->instIndex(positionOfHead(block), conflict.interval.begin());
                        Inst& inst = block->at(instIndex);
                        if (instUsesOrDefsTmp(inst, tmp)) {
                            // If the inst that clobbers regs also use/def the tmp trying to be split, then
                            // can't split the tmp around this clobber.
                            // FIXME: could allow uses, but then we'd have to make split tmp conflict with any
                            // spill tmps used by this instruction, so unclear if that's better.
                            splitCost = unspillableCost;
                            return IterationStatus::Done;
                        }
                        // Times 2 for 'MOV tmp, gapTmp' and 'MOV gapTmp, tmp'
                        splitCost += adjustedBlockFrequency(block) * 2;
                        return IterationStatus::Continue;
                    }
                    // Conflicts with another Tmp already assigned to this register so splitting around the clobbers won't help.
                    splitCost = unspillableCost;
                    return IterationStatus::Done;
                });
            if (splitCost < minSplitCost) {
                minSplitCost = splitCost;
                bestSplitReg = r;
            }
        }
        ASSERT(tmpData.spillCost != unspillableCost); // Should have evicted.
        if (minSplitCost >= unspillableCost)
            return false; // Other conflicts exist, so splitting is not productive
        // Multiplier of 0 means split around clobbers at every opportunity. The higher the multiplier,
        // the less often the split will be applied (i.e. treats splitting as more costly).
        if (minSplitCost * Options::airGreedyRegAllocSplitMultiplier() >= tmpData.spillCost)
            return false; // Better to spill than to split

        LiveRange holeRange;
        m_regRanges[bestSplitReg].forEachConflict(tmpData.liveRange,
            [&](auto& conflict) -> IterationStatus {
                ASSERT(conflict.tmp.isReg() && conflict.interval.distance() == 1);
                // Punched hole should always include the instructions late interval so the
                // split tmp won't be modeled as conflicting with late defs.
                Interval hole = conflict.interval | lateInterval(positionOfEarly(conflict.interval));
                ASSERT(hole.distance() == 1 || hole.distance() == 2);
                holeRange.append(hole);
                return IterationStatus::Continue;
            });

        tmpData.liveRange = LiveRange::subtract(tmpData.liveRange, holeRange);
        tmpData.splitMetadataIndex = m_splitMetadata.size();
        setStageAndEnqueue(tmp, tmpData, Stage::TryAllocate);

        SplitMetadata metadata;
        metadata.originalTmp = tmp;
        // Create tmps to carry the value across register clobbering instructions. These tmps
        // might spill or be assigned another register.
        for (Interval hole : holeRange.intervals()) {
            BasicBlock* block = findBlockContainingPoint(hole.begin());
            float freq = 2 * adjustedBlockFrequency(block);
            // padInterference() ensures this.
            // FIXME: reconsider that, see https://bugs.webkit.org/show_bug.cgi?id=288122
            ASSERT(hole.begin() > positionOfHead(block));
            // Model gapTmp interference with any other tmp split at this location by starting
            // the gapTmp's range one position before the hole. Otherwise, the same register
            // may be chosen for the gapTmp and another splitTmp, which wouldn't be valid
            // since there could be a cycle among the set of fixup Move instructions.
            // An alternative would be to use the Shuffle opcode (which can handle that
            // rotation of register assignments) but that would trigger an extra liveness
            // analysis (see lowerAfterRegAlloc()), and that's unlikely to be worth it.
            Interval gapInterval = hole | Interval(hole.begin() - 1);
            Tmp gapTmp = newTmp(tmp, freq, gapInterval);
            metadata.gapTmps.append(gapTmp);
            setStageAndEnqueue(gapTmp, m_map[gapTmp], Stage::TryAllocate);
        }
        dataLogLnIf(verbose(), "Split (clobbers): reg = ", bestSplitReg, " spillCost = ", m_map[tmp].spillCost, " splitCost = ", minSplitCost, " split tmp = ", metadata);
        m_splitMetadata.append(WTFMove(metadata));
        return true;
    }

    static unsigned stackSlotMinimumWidth(Width width)
    {
        if (width <= Width32)
            return 4;
        if (width <= Width64)
            return 8;
        ASSERT(width == Width128);
        return 16;
    }

    void spill(Tmp tmp, TmpData& tmpData)
    {
        RELEASE_ASSERT(tmpData.spillCost != unspillableCost);
        ASSERT(tmpData.assigned == Reg());
        ASSERT(!tmpData.isGroup()); // Should have been split
        tmpData.stage = Stage::Spilled;

        dataLogLnIf(verbose(), "Spilled ", tmp);
        if (tmpData.splitMetadataIndex) {
            // Splitting didn't prevent originalTmp from spilling after all, so no point assigning
            // registers or stack slots to the gap tmps for this split.
            dataLogLnIf(verbose(), "   evicting tmps created during split");
            auto& metadata = m_splitMetadata[tmpData.splitMetadataIndex];
            ASSERT(metadata.originalTmp == tmp);
            for (Tmp gapTmp : metadata.gapTmps) {
                Reg reg = m_map[gapTmp].assigned;
                if (reg)
                    evict(gapTmp, m_map[gapTmp], reg);
                m_map[gapTmp].stage = Stage::Replaced;
            }
        }
        // Batch the generation of spill/fill tmps so that we can limit traversals of the code while
        // not tracking each tmp's use/defs explicitly.
        m_didSpill = true;
        tmpData.validate();
    }

    bool queueContainsOnlySpills()
    {
        for (auto& elem : m_queue) {
            if (elem.stage() != Stage::Spill)
                return false;
        }
        return true;
    }

    Opcode moveOpcode(Tmp tmp)
    {
        Opcode move = Oops;
        Width width = m_tmpWidth.requiredWidth(tmp);
        switch (stackSlotMinimumWidth(width)) {
        case 4:
            move = tmp.bank() == GP ? Move32 : MoveFloat;
            break;
        case 8:
            move = tmp.bank() == GP ? Move : MoveDouble;
            break;
        case 16:
            ASSERT(tmp.bank() == FP);
            move = MoveVector;
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        return move;
    }

    template <Bank bank>
    void emitSpillCodeAndEnqueueNewTmps()
    {
        m_code.forEachTmp<bank>([&](Tmp tmp) {
            TmpData& tmpData = m_map[tmp];
            if (tmpData.stage == Stage::Spilled && !tmpData.spillSlot)
                tmpData.spillSlot = m_code.addStackSlot(stackSlotMinimumWidth(m_tmpWidth.requiredWidth(tmp)), StackSlotKind::Spill);
        });
        for (BasicBlock* block : m_code) {
            Point positionOfHead = this->positionOfHead(block);
            for (unsigned instIndex = 0; instIndex < block->size(); ++instIndex) {
                Inst& inst = block->at(instIndex);
                unsigned indexOfEarly = positionOfHead + instIndex * 2;

                // The TmpWidth analysis will say that a Move only stores 32 bits into the destination,
                // if the source only had 32 bits worth of non-zero bits. Same for the source: it will
                // only claim to read 32 bits from the source if only 32 bits of the destination are
                // read. Note that we only apply this logic if this turns into a load or store, since
                // Move is the canonical way to move data between GPRs.
                bool canUseMove32IfDidSpill = false;
                bool didSpill = false;
                bool needScratch = false;
                Tmp scratchForTmp;
                if (bank == GP && inst.kind.opcode == Move) {
                    if ((inst.args[0].isTmp() && m_tmpWidth.width(inst.args[0].tmp()) <= Width32)
                        || (inst.args[1].isTmp() && m_tmpWidth.width(inst.args[1].tmp()) <= Width32))
                        canUseMove32IfDidSpill = true;
                }

                // Try to replace the register use by memory use when possible.
                inst.forEachArg(
                    [&] (Arg& arg, Arg::Role role, Bank argBank, Width width) {
                        if (!arg.isTmp())
                            return;
                        if (argBank != bank)
                            return;
                        if (arg.isReg())
                            return;

                        StackSlot* spilled = spillSlot(arg.tmp());
                        if (!spilled)
                            return;
                        bool needScratchIfSpilledInPlace = false;
                        if (!inst.admitsStack(arg)) {
                            switch (inst.kind.opcode) {
                            case Move:
                            case MoveDouble:
                            case MoveFloat:
                            case Move32: {
                                unsigned argIndex = &arg - &inst.args[0];
                                unsigned otherArgIndex = argIndex ^ 1;
                                Arg otherArg = inst.args[otherArgIndex];
                                if (inst.args.size() == 2
                                    && otherArg.isStack()
                                    && otherArg.stackSlot()->isSpill()) {
                                    needScratchIfSpilledInPlace = true;
                                    break;
                                }
                                return;
                            }
                            default:
                                return;
                            }
                        }
                        // If the Tmp holds a constant then we want to rematerialize its
                        // value rather than loading it from the stack. In order for that
                        // optimization to kick in, we need to avoid placing the Tmp's stack
                        // address into the instruction.
                        if (!Arg::isColdUse(role) && m_useCounts.isConstDef<bank>(AbsoluteTmpMapper<bank>::absoluteIndex(arg.tmp())))
                            return;

                        Width spillWidth = m_tmpWidth.requiredWidth(arg.tmp());
                        if (Arg::isAnyDef(role) && width < spillWidth) {
                            // Either there are users of this tmp who will use more than width,
                            // or there are producers who will produce more than width non-zero
                            // bits.
                            // FIXME: It's not clear why we should have to return here. We have
                            // a ZDef fixup in allocateStack. And if this isn't a ZDef, then it
                            // doesn't seem like it matters what happens to the high bits. Note
                            // that this isn't the case where we're storing more than what the
                            // spill slot can hold - we already got that covered because we
                            // stretch the spill slot on demand. One possibility is that it's ZDefs of
                            // smaller width than 32-bit.
                            // https://bugs.webkit.org/show_bug.cgi?id=169823
                            return;
                        }
                        ASSERT(inst.kind.opcode == Move || !(Arg::isAnyUse(role) && width > spillWidth));
                        if (spillWidth != Width32)
                            canUseMove32IfDidSpill = false;

                        spilled->ensureSize(canUseMove32IfDidSpill ? 4 : bytesForWidth(width));
                        didSpill = true;
                        if (needScratchIfSpilledInPlace) {
                            needScratch = true;
                            scratchForTmp = arg.tmp();
                        }
                        arg = Arg::stack(spilled);
                    });

                if (didSpill && canUseMove32IfDidSpill)
                    inst.kind.opcode = Move32;

                if (needScratch) {
                    ASSERT(scratchForTmp != Tmp());
                    Tmp tmp = addSpillTmpWithInterval(scratchForTmp, intervalForSpill(indexOfEarly, Arg::Scratch));
                    inst.args.append(tmp);
                    RELEASE_ASSERT(inst.args.size() == 3);
                    // WTF::Liveness and Air::LivenessAdapter do not handle a late-def/use followed by early-def
                    // correctly. While this register allocator does handle it correctly (since it models distinct
                    // late and early points between instructions (i.e. intervalForSpill() won't overlap for different
                    // scratch Tmps)), insert a Nop so that subsequent liveness analysis correctly compute lifetime interference
                    // when there are back-to-back Move spill-spill-scratch instructions (scratch is early-def, late-use).
                    // See https://bugs.webkit.org/show_bug.cgi?id=163548#c2 for more info.
                    // FIXME: reconsider this, https://bugs.webkit.org/show_bug.cgi?id=288122
                    m_insertionSets[block].insert(instIndex, spillLoad, Nop, inst.origin);
                    continue;
                }

                // For every other case, add Load/Store as needed.
                inst.forEachTmp([&] (Tmp& tmp, Arg::Role role, Bank argBank, Width) {
                    if (tmp.isReg() || argBank != bank)
                        return;
                    StackSlot* spilled = spillSlot(tmp);
                    if (!spilled)
                        return;

                    Opcode move = moveOpcode(tmp);
                    auto oldTmp = tmp;
                    tmp = addSpillTmpWithInterval(tmp, intervalForSpill(indexOfEarly, role));
                    if (role == Arg::Scratch)
                        return;

                    Arg arg = Arg::stack(spilled);
                    if (Arg::isAnyUse(role)) {
                        auto tryRematerialize = [&]() {
                            if constexpr (bank == GP) {
                                auto oldIndex = AbsoluteTmpMapper<bank>::absoluteIndex(oldTmp);
                                if (m_useCounts.isConstDef<bank>(oldIndex)) {
                                    int64_t value = m_useCounts.constant<bank>(oldIndex);
                                    if (Arg::isValidImmForm(value) && isValidForm(Move, Arg::Imm, Arg::Tmp)) {
                                        m_insertionSets[block].insert(instIndex, spillLoad, Move, inst.origin, Arg::imm(value), tmp);
                                        dataLogLnIf(verbose(), "Rematerialized (imm) ", oldTmp, ": ", tmp, " <- ", WTF::RawHex(value));
                                        return true;
                                    }
                                    if (isValidForm(Move, Arg::BigImm, Arg::Tmp)) {
                                        m_insertionSets[block].insert(instIndex, spillLoad, Move, inst.origin, Arg::bigImm(value), tmp);
                                        dataLogLnIf(verbose(), "Rematerialized (bigImm) ", oldTmp, ": ", tmp, " <- ", WTF::RawHex(value));
                                        return true;
                                    }
                                }
                            }
                            return false;
                        };

                        if (!tryRematerialize())
                            m_insertionSets[block].insert(instIndex, spillLoad, move, inst.origin, arg, tmp);
                    }
                    if (Arg::isAnyDef(role))
                        m_insertionSets[block].insert(instIndex + 1, spillStore, move, inst.origin, tmp, arg);
                });
                ASSERT(inst.isValidForm());
            }
        }
    }

    void insertFixupCode()
    {
        for (auto& metadata : m_splitMetadata) {
            if (!metadata.originalTmp)
                continue;
            if (spillSlot(metadata.originalTmp))
                continue; // If spilled, better to not split after all. See spill().
            ASSERT(assignedReg(metadata.originalTmp));
            // Emit moves to and from the gapTmps (or stack stot) that fill the split holes.
            for (Tmp gapTmp : metadata.gapTmps) {
                TmpData& gapData = m_map[gapTmp];
                for (auto& interval : gapData.liveRange.intervals()) {
                    ASSERT(interval.distance() == 2);
                    Point lastPoint = interval.end() - 1;
                    BasicBlock* block = findBlockContainingPoint(lastPoint);
                    unsigned instIndex = this->instIndex(positionOfHead(block), lastPoint);
                    Inst& inst = block->at(instIndex);

                    Arg arg = gapTmp;
                    StackSlot* spilled = spillSlot(gapTmp);
                    if (spilled)
                        arg = Arg::stack(spilled);
                    Opcode move = moveOpcode(gapTmp);
                    m_insertionSets[block].insert(instIndex, splitMoveFrom, move, inst.origin, metadata.originalTmp, arg);
                    m_insertionSets[block].insert(instIndex + 1, splitMoveTo, move, inst.origin, arg, metadata.originalTmp);
                    dataLogLnIf(verbose(), "Inserted Moves around clobber tmp=", metadata.originalTmp, " gapTmp=", gapTmp, " gapReg = ", assignedReg(gapTmp), " block=", *block, " index=", instIndex, " inst = ", inst);
                }
            }
        }

        for (BasicBlock* block : m_code)
            m_insertionSets[block].execute(block);
    }

    bool mayBeCoalescable(Inst& inst)
    {
        switch (inst.kind.opcode) {
        case Move:
        case Move32:
        case MoveFloat:
        case MoveDouble:
        case MoveVector:
            break;
        default:
            return false;
        }

        // Avoid the three-argument coalescable spill moves.
        if (inst.args.size() != 2)
            return false;

        if (!inst.args[0].isTmp() || !inst.args[1].isTmp())
            return false;

        // We can coalesce a Move32 so long as either of the following holds:
        // - The input is already zero-filled.
        // - The output only cares about the low 32 bits.
        //
        // Note that the input property requires an analysis over ZDef's, so it's only valid so long
        // as the input gets a register. We don't know if the input gets a register, but we do know
        // that if it doesn't get a register then we will still emit this Move32.
        if (inst.kind.opcode == Move32 && !is32Bit() && m_tmpWidth.defWidth(inst.args[0].tmp()) > Width32)
            return false;
        return true;
    }

    void assignRegisters()
    {
        CompilerTimingScope timingScope("Air"_s, "GreedyRegAlloc::assignRegisters"_s);

        if (verbose()) {
            dataLog("About to assign registers. State of all tmps:\n");
            m_code.forEachTmp(
                [&] (Tmp tmp) {
                    dataLog("    ", tmp, ": ", m_map[tmp], "\n");
                });
            dataLog("IR:\n");
            dataLog(m_code);
        }

        for (BasicBlock* block : m_code) {
            for (Inst& inst : *block) {
                bool mayBeCoalescable = this->mayBeCoalescable(inst);
                dataLogLnIf(verbose(), "At: ", inst, mayBeCoalescable ? " [coalescable]" : "");

                if constexpr (isX86_64()) {
                    // Move32 is cheaper if we know that it's equivalent to a Move in x86_64. It's
                    // equivalent if the destination's high bits are not observable or if the source's high
                    // bits are all zero.
                    if (inst.kind.opcode == Move && inst.args[0].isTmp() && inst.args[1].isTmp()) {
                        if (m_tmpWidth.useWidth(inst.args[1].tmp()) <= Width32 || m_tmpWidth.defWidth(inst.args[0].tmp()) <= Width32)
                            inst.kind.opcode = Move32;
                    }
                }
                if constexpr (isARM64()) {
                    // On the other hand, on ARM64, Move is cheaper than Move32. We would like to use Move instead of Move32.
                    // Move32 on ARM64 is explicitly selected in B3LowerToAir for ZExt32 for example. But using ZDef information
                    // here can optimize it from Move32 to Move.
                    if (inst.kind.opcode == Move32 && inst.args[0].isTmp() && inst.args[1].isTmp()) {
                        if (m_tmpWidth.defWidth(inst.args[0].tmp()) <= Width32)
                            inst.kind.opcode = Move;
                    }
                }

                inst.forEachTmpFast([&](Tmp& tmp) {
                    if (tmp.isReg())
                        return;
                    Reg reg = assignedReg(tmp);
                    if (!reg) {
                        dataLog("Failed to allocate reg for: ", tmp, "\n");
                        RELEASE_ASSERT_NOT_REACHED();
                    }
                    tmp = Tmp(reg);
                });
                ASSERT(inst.isValidForm());

                if (mayBeCoalescable && inst.args[0].isTmp() && inst.args[1].isTmp()
                    && inst.args[0].tmp() == inst.args[1].tmp())
                    inst = Inst();
            }
            // Remove all the useless moves we created in this block.
            block->insts().removeAllMatching([&] (const Inst& inst) {
                return !inst;
            });
        }
    }

    Code& m_code;
    Vector<Reg> m_allowedRegistersInPriorityOrder[numBanks];
    ScalarRegisterSet m_allAllowedRegisters;
    RegisterSet m_allAllowedRegistersWholeWidth;
    IndexMap<BasicBlock*, Point> m_blockToHeadPoint;
    Vector<Point> m_tailPoints;
    TmpMap<TmpData> m_map;
    Vector<SplitMetadata> m_splitMetadata;
    IndexMap<Reg, RegisterRange> m_regRanges;
    PriorityQueue<TmpPriority, TmpPriority::isHigherPriority> m_queue;
    IndexMap<BasicBlock*, PhaseInsertionSet> m_insertionSets;
    BlockWorklist m_fastBlocks;
    UseCounts m_useCounts;
    TmpWidth m_tmpWidth;
    bool m_didSpill { false };
};

} // namespace JSC::B3::Air::Greedy

void allocateRegistersByGreedy(Code& code)
{
    RELEASE_ASSERT(!code.usesSIMD());
    PhaseScope phaseScope(code, "allocateRegistersAndStackByGreedy"_s);
    dataLogIf(Greedy::verbose(), "Air before greedy register allocation:\n", code);
    Greedy::GreedyAllocator allocator(code);
    allocator.run();
    dataLogIf(Greedy::verbose(), "Air after greedy register allocation:\n", code);
}

} } } // namespace JSC::B3::Air

WTF_ALLOW_UNSAFE_BUFFER_USAGE_END

#endif // ENABLE(B3_JIT)