1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#ifndef DFT_PREDICTION_ALGORITHM_H
#define DFT_PREDICTION_ALGORITHM_H
#include "banddata.h"
#include "matrix2x2.h"
#include "polarization.h"
#include "uvector.h"
#include "wsclean/imagebufferallocator.h"
#include "lofar/lbeamevaluator.h"
#include <cmath>
#include <vector>
#include <complex>
/**
* Structure:
* - PredictionImage: images[4] -- collects the model images.
* - PredictionInput: components[nComponents] -- made from image, used as input for prediction.
* - PredictionComponent: l, m, flux[nChannel x 4], antennaBeamValues[nAntenna] (these are updated per timestep)
* - DFTAntennaInfo: beamValuesPerChannel[nChannel] of Matrix2x2
*/
class DFTAntennaInfo
{
public:
const MC2x2& BeamValue(size_t channelIndex) const { return _beamValuesPerChannel[channelIndex]; }
MC2x2& BeamValue(size_t channelIndex) { return _beamValuesPerChannel[channelIndex]; }
std::vector<MC2x2>::iterator begin() { return _beamValuesPerChannel.begin(); }
std::vector<MC2x2>::iterator end() { return _beamValuesPerChannel.end(); }
size_t ChannelCount() const { return _beamValuesPerChannel.size(); }
void InitializeChannelBuffers(size_t channelCount) { _beamValuesPerChannel.resize(channelCount); }
void SetUnitaryBeam() {
for(MC2x2& m : _beamValuesPerChannel)
m = MC2x2::Unity();
}
private:
std::vector<MC2x2> _beamValuesPerChannel;
};
class DFTPredictionComponent
{
public:
DFTPredictionComponent() :
_ra(0.0), _dec(0.0), _l(0.0), _m(0.0), _lmSqrt(0.0),
_isGaussian(false)
{ }
DFTPredictionComponent(double ra, double dec, double l, double m, std::complex<double> fluxLinear[4], size_t channelCount) :
_ra(ra), _dec(dec), _l(l), _m(m), _lmSqrt(sqrt(1.0 - l*l - m*m)),
_isGaussian(false),
_flux(channelCount)
{
for(size_t ch=0; ch!=channelCount; ++ch)
{
for(size_t p=0; p!=4; ++p) _flux[ch][p] = fluxLinear[p];
}
}
void SetPosition(double ra, double dec, double l, double m)
{
_ra = ra; _dec = dec;
_l = l; _m = m;
_lmSqrt = sqrt(1.0 - l*l - m*m);
}
void SetGaussianInfo(double positionAngle, double major, double minor)
{
initializeGaussian(positionAngle, major, minor);
}
void SetChannelCount(size_t channelCount) { _flux.resize(channelCount); }
void SetFlux(const std::vector<MC2x2>& fluxPerChannel)
{
_flux = fluxPerChannel;
}
double L() const { return _l; }
double M() const { return _m; }
double RA() const { return _ra; }
double Dec() const { return _dec; }
double LMSqrt() const { return _lmSqrt; }
bool IsGaussian() const { return _isGaussian; }
const double* GausTransformationMatrix() const { return _gausTransf; }
const DFTAntennaInfo& AntennaInfo(size_t antennaIndex) const { return _beamValuesPerAntenna[antennaIndex]; }
DFTAntennaInfo& AntennaInfo(size_t antennaIndex) { return _beamValuesPerAntenna[antennaIndex]; }
MC2x2& LinearFlux(size_t channelIndex) { return _flux[channelIndex]; }
const MC2x2& LinearFlux(size_t channelIndex) const { return _flux[channelIndex]; }
size_t AntennaCount() const { return _beamValuesPerAntenna.size(); }
void InitializeBeamBuffers(size_t antennaCount, size_t channelCount)
{
_beamValuesPerAntenna.resize(antennaCount);
for(std::vector<DFTAntennaInfo>::iterator a = _beamValuesPerAntenna.begin(); a!=_beamValuesPerAntenna.end(); ++a)
a->InitializeChannelBuffers(channelCount);
}
void SetUnitaryBeam() {
for(std::vector<DFTAntennaInfo>::iterator a = _beamValuesPerAntenna.begin(); a!=_beamValuesPerAntenna.end(); ++a)
a->SetUnitaryBeam();
}
private:
void initializeGaussian(double positionAngle, double majorAxis, double minorAxis)
{
// Using the FWHM formula for a Gaussian:
double sigmaMaj = majorAxis / (2.0L * sqrtl(2.0L * logl(2.0L)));
double sigmaMin = minorAxis / (2.0L * sqrtl(2.0L * logl(2.0L)));
// Position angle is angle from North:
// (TODO this and next statements can be optimized to remove add)
double
paSin = std::sin(positionAngle+0.5*M_PI),
paCos = std::cos(positionAngle+0.5*M_PI);
// Make rotation matrix
long double transf[4];
transf[0] = paCos;
transf[1] = -paSin;
transf[2] = paSin;
transf[3] = paCos;
// Multiply with scaling matrix to make variance 1.
// sigmamaj/min are multiplications and include pi^2 factor, because the sigma
// of the Fourier transform of a Gaus is 1/sigma of the normal Gaus and has a sqrt(2 pi^2) factor.
_gausTransf[0] = transf[0] * sigmaMaj * M_PI * sqrt(2.0);
_gausTransf[1] = transf[1] * sigmaMaj * M_PI * sqrt(2.0);
_gausTransf[2] = transf[2] * sigmaMin * M_PI * sqrt(2.0);
_gausTransf[3] = transf[3] * sigmaMin * M_PI * sqrt(2.0);
_isGaussian = true;
}
double _ra, _dec, _l, _m, _lmSqrt;
bool _isGaussian;
double _gausTransf[4];
std::vector<MC2x2> _flux;
std::vector<DFTAntennaInfo> _beamValuesPerAntenna;
};
class DFTPredictionInput
{
public:
typedef std::vector<DFTPredictionComponent>::iterator iterator;
typedef std::vector<DFTPredictionComponent>::const_iterator const_iterator;
DFTPredictionInput() { }
void InitializeFromModel(const class Model& model, long double phaseCentreRA, long double phaseCentreDec, const BandData& band);
void AddComponent(const DFTPredictionComponent& component)
{
_components.emplace_back(component);
}
DFTPredictionComponent& AddComponent()
{
_components.emplace_back();
return _components.back();
}
size_t ComponentCount() const { return _components.size(); }
void InitializeBeamBuffers(size_t antennaCount, size_t channelCount) {
for(iterator c=begin(); c!=end(); ++c)
c->InitializeBeamBuffers(antennaCount, channelCount);
}
void SetUnitaryBeam() {
for(iterator c=begin(); c!=end(); ++c)
c->SetUnitaryBeam();
}
void ConvertApparentToAbsolute(casacore::MeasurementSet& ms);
const_iterator begin() const { return _components.begin(); }
const_iterator end() const { return _components.end(); }
iterator begin() { return _components.begin(); }
iterator end() { return _components.end(); }
private:
std::vector<DFTPredictionComponent> _components;
};
class DFTPredictionImage
{
public:
DFTPredictionImage(size_t width, size_t height, ImageBufferAllocator& allocator);
void Add(PolarizationEnum polarization, const double* image);
void Add(PolarizationEnum polarization, const double* real, const double* imaginary);
void FindComponents(DFTPredictionInput& destination, double phaseCentreRA, double phaseCentreDec, double pixelSizeX, double pixelSizeY, double dl, double dm, size_t channelCount);
private:
size_t _width, _height;
ImageBufferAllocator* _allocator;
ImageBufferAllocator::Ptr _images[4];
std::vector<PolarizationEnum> _pols;
};
class DFTPredictionAlgorithm
{
public:
DFTPredictionAlgorithm(DFTPredictionInput& input, const BandData& band) : _input(input), _band(band), _hasBeam(false)
{ }
void Predict(MC2x2& dest, double u, double v, double w, size_t channelIndex, size_t a1, size_t a2);
void UpdateBeam(LBeamEvaluator& beamEvaluator, size_t startChannel, size_t endChannel);
private:
void predict(MC2x2& dest, double u, double v, double w, size_t channelIndex, size_t a1, size_t a2, const DFTPredictionComponent& component);
DFTPredictionInput& _input;
BandData _band;
bool _hasBeam;
};
#endif
|