1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
#include "algorithms/asp_algorithm.h"
#include <memory>
#include <set>
#include <aocommon/image.h>
#include <aocommon/logger.h>
#include <aocommon/optionalnumber.h>
#include <aocommon/units/fluxdensity.h>
#include <schaapcommon/math/convolution.h>
#include <schaapcommon/math/drawgaussian.h>
#include <schaapcommon/math/ellipse.h>
#include <schaapcommon/fitters/gaussianfitter.h>
#include "component_list.h"
#include "math/peak_finder.h"
#include "multiscale/multiscale_transforms.h"
#include "utils/fft_size_calculations.h"
using aocommon::Image;
using aocommon::Logger;
using aocommon::units::FluxDensity;
using schaapcommon::math::Ellipse;
namespace radler::algorithms {
AspAlgorithm::AspAlgorithm(const Settings::Multiscale& settings,
double beam_size, double pixel_scale_x,
double pixel_scale_y)
: settings_(settings),
beam_size_in_pixels_(beam_size / std::max(pixel_scale_x, pixel_scale_y)) {
if (beam_size_in_pixels_ <= 0.0) beam_size_in_pixels_ = 1;
}
DeconvolutionResult AspAlgorithm::ExecuteMajorIteration(
ImageSet& data_image, ImageSet& model_image,
const std::vector<aocommon::Image>& psf_images) {
// The ASP algorithm starts like Multiscale clean: it finds the
// most dominating scale in the same way as multiscale clean. After
// that, it performs a Gaussian fit to the integrated data, at the
// found position. There's some overlap between this code and the
// multiscale code because . Calculating the per frequency/polarization values
// and adding the component to the model is quite differently though.
const size_t width = data_image.Width();
const size_t height = data_image.Height();
if (StopOnNegativeComponents()) SetAllowNegativeComponents(true);
InitializeScales(scale_infos_, beam_size_in_pixels_, std::min(width, height),
settings_.shape, settings_.max_scales, settings_.scale_list,
LogReceiver());
if (!RmsFactorImage().Empty() && (RmsFactorImage().Width() != width ||
RmsFactorImage().Height() != height)) {
throw std::runtime_error("Error in RMS factor image dimensions!");
}
// scratch_a and scratch_b are used by the subminorloop, which convolves the
// images and requires therefore more space. This space depends on the scale,
// so here the required size for the largest scale is calculated.
const size_t scratch_width = utils::GetConvolutionSize(
scale_infos_.back().scale, width, settings_.convolution_padding);
const size_t scratch_height = utils::GetConvolutionSize(
scale_infos_.back().scale, height, settings_.convolution_padding);
Image scratch_a(scratch_width, scratch_height);
Image scratch_b(scratch_width, scratch_height);
Image integrated(width, height);
data_image.GetIntegratedPsf(integrated, psf_images);
Ellipse psf_parameters = schaapcommon::fitters::Fit2DGaussianCentred(
integrated.Data(), width, height, beam_size_in_pixels_);
std::vector<std::vector<Image>> convolved_psfs(data_image.PsfCount());
ConvolvePsfs(convolved_psfs[0], integrated, scratch_a, true, scale_infos_,
beam_size_in_pixels_, settings_.scale_bias, MinorLoopGain(),
settings_.shape, LogReceiver());
// If there's only one, the integrated equals the first, so we can skip this
if (data_image.PsfCount() > 1) {
for (size_t i = 0; i != data_image.PsfCount(); ++i) {
ConvolvePsfs(convolved_psfs[i], psf_images[i], scratch_a, false,
scale_infos_, beam_size_in_pixels_, settings_.scale_bias,
MinorLoopGain(), settings_.shape, LogReceiver());
}
}
multiscale::MultiScaleTransforms ms_transforms(width, height,
settings_.shape);
ThreadedDeconvolutionTools tools;
FindScaleConvolvedMaxima(data_image, integrated, scratch_a, tools);
DeconvolutionResult result;
aocommon::OptionalNumber<size_t> optional_scale_with_peak =
SelectMaximumScale(scale_infos_);
if (!optional_scale_with_peak) {
LogReceiver().Warn << "No peak found during ASP cleaning! Aborting "
"deconvolution.\n";
result.another_iteration_required = false;
return result;
}
size_t scale_with_peak = *optional_scale_with_peak;
bool is_final_threshold = false;
float m_gain_threshold =
std::fabs(scale_infos_[scale_with_peak].max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor) *
(1.0 - MajorLoopGain());
m_gain_threshold = std::max(m_gain_threshold, MajorIterationThreshold());
float first_threshold = m_gain_threshold;
if (Threshold() > first_threshold) {
first_threshold = Threshold();
is_final_threshold = true;
}
LogReceiver().Info
<< "Starting ASP cleaning. Start peak="
<< FluxDensity::ToNiceString(
scale_infos_[scale_with_peak].max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor)
<< ", major iteration threshold="
<< FluxDensity::ToNiceString(first_threshold);
if (is_final_threshold) LogReceiver().Info << " (final)";
LogReceiver().Info << '\n';
ImageSet individually_convolved_images(data_image, width, height);
//
// The minor iteration loop
//
while (IterationNumber() < MaxIterations() &&
std::fabs(scale_infos_[scale_with_peak].max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor) >
first_threshold &&
(!StopOnNegativeComponents() ||
scale_infos_[scale_with_peak].max_unnormalized_image_value >= 0.0)) {
// Create convolved images for this scale
std::vector<Image> transform_list;
transform_list.reserve(data_image.PsfCount() + data_image.Size());
for (size_t i = 0; i != data_image.PsfCount(); ++i) {
transform_list.emplace_back(convolved_psfs[i][scale_with_peak]);
}
for (size_t i = 0; i != data_image.Size(); ++i) {
transform_list.emplace_back(width, height);
std::copy_n(data_image.Data(i), width * height,
transform_list.back().Data());
}
if (scale_infos_[scale_with_peak].scale != 0.0) {
ms_transforms.Transform(transform_list, scratch_a,
scale_infos_[scale_with_peak].scale);
}
for (size_t i = 0; i != data_image.Size(); ++i) {
individually_convolved_images.SetImage(
i, std::move(transform_list[i + data_image.PsfCount()]));
}
//
// The former sub-minor iteration loop for this scale
//
// Find maximum for this scale
individually_convolved_images.GetLinearIntegrated(integrated);
FindPeakDirect(integrated, scratch_a, scale_with_peak);
LogReceiver().Debug << "Scale now "
<< std::fabs(scale_infos_[scale_with_peak]
.max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor)
<< '\n';
SetIterationNumber(IterationNumber() + 1);
FindScaleConvolvedMaxima(data_image, integrated, scratch_a, tools);
optional_scale_with_peak = SelectMaximumScale(scale_infos_);
if (!optional_scale_with_peak) {
LogReceiver().Warn << "No peak found in main loop of ASP "
"cleaning! Aborting deconvolution.\n";
result.another_iteration_required = false;
return result;
}
scale_with_peak = *optional_scale_with_peak;
LogReceiver().Info
<< "Iteration " << IterationNumber() << ", scale "
<< round(scale_infos_[scale_with_peak].scale) << " px : "
<< FluxDensity::ToNiceString(
scale_infos_[scale_with_peak].max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor)
<< " at " << scale_infos_[scale_with_peak].max_image_value_x << ','
<< scale_infos_[scale_with_peak].max_image_value_y << '\n';
if (scale_infos_[scale_with_peak].scale == 0.0) {
const size_t x = scale_infos_[scale_with_peak].max_image_value_x;
const size_t y = scale_infos_[scale_with_peak].max_image_value_y;
DeconvolvePointSource(x, y, data_image, model_image, psf_images);
} else {
DeconvolveGaussian(scale_infos_[scale_with_peak], data_image, model_image,
psf_images, integrated, scratch_a, scratch_b,
psf_parameters);
}
}
const bool max_iter_reached = IterationNumber() >= MaxIterations();
const bool negative_reached =
StopOnNegativeComponents() &&
scale_infos_[scale_with_peak].max_unnormalized_image_value < 0.0;
if (max_iter_reached) {
LogReceiver().Info << "ASP finished because maximum number of "
"iterations was reached.\n";
} else if (negative_reached) {
LogReceiver().Info
<< "ASP finished because a negative component was found.\n";
} else if (is_final_threshold) {
LogReceiver().Info
<< "ASP finished because the final threshold was reached.\n";
} else {
LogReceiver().Info << "ASP minor loop finished, continuing cleaning after "
"inversion/prediction round.\n";
}
result.another_iteration_required =
!max_iter_reached && !is_final_threshold && !negative_reached;
result.final_peak_value =
scale_infos_[scale_with_peak].max_unnormalized_image_value *
scale_infos_[scale_with_peak].bias_factor;
return result;
}
void AspAlgorithm::DeconvolvePointSource(
size_t x, size_t y, ImageSet& data_image, ImageSet& model_image,
const std::vector<aocommon::Image>& psf_images) {
const size_t width = data_image.Width();
const size_t index = x + y * width;
aocommon::UVector<float> component_values(data_image.Size());
for (size_t image_index = 0; image_index != data_image.Size();
++image_index) {
component_values[image_index] = data_image[image_index][index];
}
PerformSpectralFit(component_values.data(), x, y);
for (size_t image_index = 0; image_index != data_image.Size();
++image_index) {
component_values[image_index] *= MinorLoopGain();
model_image.Data(image_index)[index] += component_values[image_index];
}
ThreadedDeconvolutionTools tools;
for (size_t image_index = 0; image_index != data_image.Size();
++image_index) {
const size_t psf_index = data_image.PsfIndex(image_index);
tools.SubtractImage(data_image.Data(image_index), psf_images[psf_index], x,
y, component_values[image_index]);
}
}
void AspAlgorithm::DeconvolveGaussian(
const ScaleInfo& peak_scale, ImageSet& data_image, ImageSet& model_image,
const std::vector<aocommon::Image>& psf_images, Image& integrated,
Image& scratch_a, Image& scratch_b, const Ellipse& psf_parameters) {
const size_t width = data_image.Width();
const size_t height = data_image.Height();
double fit_a =
peak_scale.max_unnormalized_image_value * peak_scale.bias_factor;
double fit_x = peak_scale.max_image_value_x;
double fit_y = peak_scale.max_image_value_y;
Ellipse gaussian{peak_scale.scale, peak_scale.scale, 0.0};
schaapcommon::fitters::Fit2DGaussianFull(
integrated.Data(), width, height, fit_a, fit_x, fit_y, gaussian.major,
gaussian.minor, gaussian.position_angle);
LogReceiver().Info << "x=" << fit_x << ", y=" << fit_y << ", a=" << fit_a
<< ", maj=" << gaussian.major << ", min=" << gaussian.minor
<< ", pa=" << gaussian.position_angle << '\n';
const size_t peak_x = std::clamp<int>(0, width - 1, std::round(fit_x));
const size_t peak_y = std::clamp<int>(0, height - 1, std::round(fit_y));
gaussian =
schaapcommon::fitters::DeconvolveGaussian(gaussian, psf_parameters);
LogReceiver().Info << "x=" << fit_x << ", y=" << fit_y << ", a=" << fit_a
<< ", maj=" << gaussian.major << ", min=" << gaussian.minor
<< ", pa=" << gaussian.position_angle << '\n';
if (!std::isfinite(gaussian.major)) {
// The fitted component is smaller than the PSF. In this case assume it's
// a small structure, so remove the central pixel as if it is a point
// source.
DeconvolvePointSource(peak_x, peak_y, data_image, model_image, psf_images);
return;
}
// TODO minus added to get correct PA, but should not be needed
gaussian.position_angle *= -1.0;
scratch_a = 0.0f;
const size_t n = std::min(width, height);
schaapcommon::math::DrawGaussianToXy(scratch_a.Data(), n, n, n / 2, n / 2,
gaussian, 1.0);
schaapcommon::math::PrepareSmallConvolutionKernel(
scratch_b.Data(), width, height, scratch_a.Data(), n);
Image convolved_psf_image(width, height);
Image convolved_residual_image(width, height);
aocommon::UVector<float> psf_peaks(data_image.PsfCount());
for (size_t psf_index = 0; psf_index != data_image.PsfCount(); ++psf_index) {
// TODO we only need the central value, so we don't need a full fft
// convolution...
convolved_psf_image = psf_images[psf_index];
schaapcommon::math::Convolve(convolved_psf_image.Data(), scratch_b.Data(),
width, height);
const float psf_peak =
convolved_psf_image[width / 2 + (height / 2) * width];
LogReceiver().Debug << "PSF " << psf_index << " peak: " << psf_peak << '\n';
psf_peaks[psf_index] = psf_peak;
}
aocommon::UVector<float> component_values(data_image.Size());
for (size_t image_index = 0; image_index != data_image.Size();
++image_index) {
convolved_residual_image = data_image[image_index];
// TODO also here we don't need full fft convolution
schaapcommon::math::Convolve(convolved_residual_image.Data(),
scratch_b.Data(), width, height);
const float component_peak =
convolved_residual_image[peak_x + peak_y * width];
const size_t psf_index = data_image.PsfIndex(image_index);
LogReceiver().Debug << "Component " << image_index
<< " peak: " << component_peak << '\n';
component_values[image_index] = component_peak / psf_peaks[psf_index];
}
PerformSpectralFit(component_values.data(), peak_x, peak_y);
// The integrated image is no longer used, so use it as scratch space
Image& component_image = integrated;
for (size_t image_index = 0; image_index != model_image.Size();
++image_index) {
// Add component to model images
// TODO we could calculate once and scale it
component_image = 0.0f;
schaapcommon::math::DrawGaussianToXy(
component_image.Data(), width, height, fit_x, fit_y, gaussian,
component_values[image_index] * MinorLoopGain());
model_image.GetView(image_index) += component_image;
// Subtract convolved model from residual
// Get padded kernel in scratch_b
const size_t scratch_width = scratch_a.Width();
const size_t scratch_height = scratch_a.Height();
Image::Untrim(scratch_a.Data(), scratch_width, scratch_height,
psf_images[data_image.PsfIndex(image_index)].Data(), width,
height);
schaapcommon::math::PrepareConvolutionKernel(
scratch_b.Data(), scratch_a.Data(), scratch_width, scratch_height);
// Get padded component image in scratch_a
Image::Untrim(scratch_a.Data(), scratch_width, scratch_height,
component_image.Data(), width, height);
// Convolve and store in scratch_a
schaapcommon::math::Convolve(scratch_a.Data(), scratch_b.Data(),
scratch_width, scratch_height);
// Trim the result into scratch_b
Image::Trim(scratch_b.Data(), width, height, scratch_a.Data(),
scratch_width, scratch_height);
// scratch_b does not have the same size as the data, so can't use Image's
// operator-=.
aocommon::Image data_image_view = data_image.GetView(image_index);
for (size_t i = 0; i != width * height; ++i)
data_image_view[i] -= scratch_b[i];
}
}
void AspAlgorithm::FindScaleConvolvedMaxima(const ImageSet& image_set,
Image& integrated_scratch,
Image& scratch,
ThreadedDeconvolutionTools& tools) {
multiscale::MultiScaleTransforms ms_transforms(
image_set.Width(), image_set.Height(), settings_.shape);
image_set.GetLinearIntegrated(integrated_scratch);
aocommon::UVector<float> transform_scales;
aocommon::UVector<size_t> transform_indices;
std::vector<aocommon::UVector<bool>> transform_scale_masks;
for (size_t scale_index = 0; scale_index != scale_infos_.size();
++scale_index) {
ScaleInfo& scale_entry = scale_infos_[scale_index];
if (scale_entry.scale == 0) {
// Don't convolve scale 0: this is the delta function scale
FindPeakDirect(integrated_scratch, scratch, scale_index);
} else {
transform_scales.push_back(scale_entry.scale);
transform_indices.push_back(scale_index);
}
}
std::vector<ThreadedDeconvolutionTools::PeakData> results;
tools.FindMultiScalePeak(&ms_transforms, integrated_scratch, transform_scales,
results, AllowNegativeComponents(), CleanMask(),
transform_scale_masks, CleanBorderRatio(),
RmsFactorImage(), false);
for (size_t i = 0; i != results.size(); ++i) {
ScaleInfo& scale_entry = scale_infos_[transform_indices[i]];
scale_entry.max_normalized_image_value =
results[i].normalized_value.ValueOr(0.0);
scale_entry.max_unnormalized_image_value =
results[i].unnormalized_value.ValueOr(0.0);
scale_entry.max_image_value_x = results[i].x;
scale_entry.max_image_value_y = results[i].y;
}
}
void AspAlgorithm::FindPeakDirect(const aocommon::Image& image,
aocommon::Image& scratch,
size_t scale_index) {
ScaleInfo& scale_info = scale_infos_[scale_index];
const size_t horizontal_border =
std::round(image.Width() * CleanBorderRatio());
const size_t vertical_border =
std::round(image.Height() * CleanBorderRatio());
const float* actual_image;
if (RmsFactorImage().Empty()) {
actual_image = image.Data();
} else {
for (size_t i = 0; i != image.Size(); ++i)
scratch[i] = image[i] * RmsFactorImage()[i];
actual_image = scratch.Data();
}
aocommon::OptionalNumber<float> max_value;
if (!CleanMask()) {
max_value = math::peak_finder::Find(
actual_image, image.Width(), image.Height(),
scale_info.max_image_value_x, scale_info.max_image_value_y,
AllowNegativeComponents(), 0, image.Height(), horizontal_border,
vertical_border);
} else {
max_value = math::peak_finder::FindWithMask(
actual_image, image.Width(), image.Height(),
scale_info.max_image_value_x, scale_info.max_image_value_y,
AllowNegativeComponents(), 0, image.Height(), CleanMask(),
horizontal_border, vertical_border);
}
if (max_value) {
scale_info.max_unnormalized_image_value = *max_value;
if (RmsFactorImage().Empty()) {
scale_info.max_normalized_image_value = *max_value;
} else {
scale_info.max_normalized_image_value =
(*max_value) /
RmsFactorImage()[scale_info.max_image_value_x +
scale_info.max_image_value_y * image.Width()];
}
} else {
scale_info.max_unnormalized_image_value = 0.0;
scale_info.max_normalized_image_value = 0.0;
}
}
} // namespace radler::algorithms
|