1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
// SPDX-License-Identifier: LGPL-3.0-only
#include "algorithms/ls_deconvolution.h"
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit_nlin.h>
#include <gsl/gsl_multifit.h>
#include <aocommon/logger.h>
#define OUTPUT_LSD_DEBUG_INFO 1
using aocommon::Logger;
namespace radler::algorithms {
struct LsDeconvolutionData {
LsDeconvolution* parent;
gsl_multifit_fdfsolver* solver;
aocommon::UVector<std::pair<size_t, size_t>> maskPositions;
size_t width, height;
double regularization;
const float* dirty;
const float* psf;
static int fitting_func(const gsl_vector* xvec, void* data, gsl_vector* f) {
const LsDeconvolutionData& lsData =
*reinterpret_cast<LsDeconvolutionData*>(data);
size_t i = 0, midX = lsData.width + (lsData.width / 2),
midY = lsData.height + (lsData.height / 2);
#ifdef OUTPUT_LSD_DEBUG_INFO
double rmsSum = 0.0, cost = 0.0, peakFlux = 0.0;
#endif
// e = (y - sum modelledflux)^2 + mu modelledflux
for (size_t y = 0; y != lsData.height; ++y) {
for (size_t x = 0; x != lsData.width; ++x) {
double modelledFlux = 0.0;
for (size_t p = 0; p != lsData.maskPositions.size(); ++p) {
int pX = lsData.maskPositions[p].first,
pY = lsData.maskPositions[p].second;
double pVal = gsl_vector_get(xvec, p);
int psfX = (x + midX - pX) % lsData.width;
int psfY = (y + midY - pY) % lsData.height;
modelledFlux += lsData.psf[psfX + psfY * lsData.width] * pVal;
}
#ifdef OUTPUT_LSD_DEBUG_INFO
double pixelCost =
(lsData.dirty[i] - modelledFlux) * (lsData.dirty[i] - modelledFlux);
rmsSum += pixelCost;
cost += pixelCost;
#endif
gsl_vector_set(f, i, lsData.dirty[i] - modelledFlux);
++i;
}
}
double totalModelledFlux = 0.0;
for (size_t p = 0; p != lsData.maskPositions.size(); ++p) {
totalModelledFlux += std::fabs(gsl_vector_get(xvec, p));
#ifdef OUTPUT_LSD_DEBUG_INFO
cost += std::fabs(gsl_vector_get(xvec, p)) * lsData.regularization;
peakFlux = std::max(peakFlux, gsl_vector_get(xvec, p));
#endif
}
// gsl_vector_set(f, lsData.width*lsData.height,
// sqrt(lsData.regularization*totalModelledFlux));
gsl_vector_set(f, lsData.width * lsData.height,
lsData.regularization * totalModelledFlux);
#ifdef OUTPUT_LSD_DEBUG_INFO
Logger::Debug << "Current RMS="
<< sqrt(rmsSum / (lsData.height * lsData.width))
<< ", mean flux in model="
<< totalModelledFlux / lsData.maskPositions.size()
<< ", peak=" << peakFlux << ", total cost=" << cost << '\n';
#endif
return GSL_SUCCESS;
}
static int fitting_func_deriv(const gsl_vector* xvec, void* data,
gsl_matrix* J) {
#ifdef OUTPUT_LSD_DEBUG_INFO
// Logger::Info << "Calculating Jacobian... " << std::flush;
#endif
const LsDeconvolutionData& lsData =
*reinterpret_cast<LsDeconvolutionData*>(data);
size_t i = 0, midX = lsData.width + (lsData.width / 2),
midY = lsData.height + (lsData.height / 2);
for (size_t y = 0; y != lsData.height; ++y) {
for (size_t x = 0; x != lsData.width; ++x) {
for (size_t p = 0; p != lsData.maskPositions.size(); ++p) {
int pX = lsData.maskPositions[p].first,
pY = lsData.maskPositions[p].second;
// double pVal = gsl_vector_get(xvec, p);
int psfX = (x + midX - pX) % lsData.width;
int psfY = (y + midY - pY) % lsData.height;
gsl_matrix_set(J, i, p, -lsData.psf[psfX + psfY * lsData.width]);
}
++i;
}
}
for (size_t p = 0; p != lsData.maskPositions.size(); ++p) {
// f = sqrt | pval |
// = sqrt sqrt(pval^2)
// f'= 2pval * 0.5/sqrt(pval^2) * 0.5/sqrt(sqrt(pval^2))
// f'= pval/( 2.0 * |pval| * sqrt(|pval|) )
double dpval = gsl_vector_get(xvec, p);
/*if(dpval < 0.0)
dpval = -0.5/sqrt(-dpval);
else if(dpval > 0.0)
dpval = 0.5/sqrt(dpval);
else
dpval = 0.0;*/
if (dpval < 0.0) dpval = -dpval;
// else if(dpval > 0.0)
// dpval = dpval;
// else
// dpval = 0.0;
gsl_matrix_set(J, lsData.width * lsData.height, p,
dpval * lsData.regularization);
}
#ifdef OUTPUT_LSD_DEBUG_INFO
// Logger::Info << "DONE\n";
#endif
return GSL_SUCCESS;
}
static int fitting_func_both(const gsl_vector* x, void* data, gsl_vector* f,
gsl_matrix* J) {
fitting_func(x, data, f);
fitting_func_deriv(x, data, J);
return GSL_SUCCESS;
}
};
LsDeconvolution::LsDeconvolution() : _data(new LsDeconvolutionData()) {}
LsDeconvolution::LsDeconvolution(const LsDeconvolution& source)
: DeconvolutionAlgorithm(), _data(new LsDeconvolutionData(*source._data)) {}
LsDeconvolution::~LsDeconvolution() {}
void LsDeconvolution::getMaskPositions(
aocommon::UVector<std::pair<size_t, size_t>>& maskPositions,
const bool* mask, size_t width, size_t height) {
const bool* maskPtr = mask;
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
if (*maskPtr) {
maskPositions.push_back(std::make_pair(x, y));
}
++maskPtr;
}
}
}
DeconvolutionResult LsDeconvolution::linearFit(float* dataImage,
float* modelImage,
const aocommon::Image& psfImage,
size_t width, size_t height) {
aocommon::UVector<std::pair<size_t, size_t>> maskPositions;
getMaskPositions(maskPositions, CleanMask(), width, height);
Logger::Info << "Running LSDeconvolution with " << maskPositions.size()
<< " parameters.\n";
// y = X c
// - y is vector of N, N=number of data points (pixels in image)
// y_i = pixel value i
// - x is vector of N x M, M=number of parameters (pixels in mask)
// x_ij = (pixel value i) * (psf value j)
size_t n = width * height;
size_t pn = maskPositions.size();
gsl_matrix* x = gsl_matrix_calloc(n, pn);
gsl_vector* y = gsl_vector_alloc(n);
gsl_vector* c = gsl_vector_calloc(pn);
gsl_matrix* cov = gsl_matrix_alloc(pn, pn);
double chisq;
gsl_multifit_linear_workspace* work = gsl_multifit_linear_alloc(n, pn);
for (size_t i = 0; i != n; ++i) gsl_vector_set(y, i, dataImage[i]);
size_t i = 0, midX = width + (width / 2), midY = height + (height / 2);
for (size_t yi = 0; yi != height; ++yi) {
for (size_t xi = 0; xi != width; ++xi) {
for (size_t p = 0; p != pn; ++p) {
int pX = maskPositions[p].first, pY = maskPositions[p].second;
int psfX = (xi + midX - pX) % width;
int psfY = (yi + midY - pY) % height;
gsl_matrix_set(x, i, p, psfImage[psfX + psfY * width]);
}
++i;
}
}
Logger::Info << "psf(0,0) = "
<< psfImage[midX % width + (midY % height) * width] << "\n";
Logger::Info << "Fitting... ";
Logger::Info.Flush();
int result = gsl_multifit_linear(x, y, c, cov, &chisq, work);
Logger::Info << "result=" << gsl_strerror(result) << "\n";
gsl_multifit_linear_free(work);
for (size_t i = 0; i != n; ++n) modelImage[i] = 0.0;
for (size_t p = 0; p != pn; ++p) {
size_t pX = maskPositions[p].first, pY = maskPositions[p].second;
modelImage[pY * width + pX] = gsl_vector_get(c, p);
}
for (size_t y = 0; y != height; ++y) {
size_t index = y * width;
for (size_t x = 0; x != width; ++x) {
double val = dataImage[index];
for (size_t p = 0; p != pn; ++p) {
int pX = maskPositions[p].first, pY = maskPositions[p].second;
double pVal = gsl_vector_get(c, p);
int psfX = (x + midX - pX) % width;
int psfY = (y + midY - pY) % height;
val -= psfImage[psfX + psfY * width] * pVal;
}
dataImage[index] = val;
++index;
}
}
gsl_matrix_free(x);
gsl_vector_free(y);
gsl_vector_free(c);
gsl_matrix_free(cov);
return DeconvolutionResult();
}
DeconvolutionResult LsDeconvolution::nonLinearFit(
float* dataImage, float* modelImage, const aocommon::Image& psfImage,
size_t width, size_t height) {
if (!CleanMask()) throw std::runtime_error("No mask available");
getMaskPositions(_data->maskPositions, CleanMask(), width, height);
size_t parameterCount = _data->maskPositions.size(),
dataCount = width * height + 1;
Logger::Info << "Running LSDeconvolution with " << parameterCount
<< " parameters.\n";
const gsl_multifit_fdfsolver_type* T = gsl_multifit_fdfsolver_lmsder;
_data->solver = gsl_multifit_fdfsolver_alloc(T, dataCount, parameterCount);
_data->dirty = dataImage;
_data->psf = psfImage.Data();
_data->width = width;
_data->height = height;
_data->parent = this;
_data->regularization = 0.1;
gsl_multifit_function_fdf fdf;
fdf.f = &LsDeconvolutionData::fitting_func;
fdf.df = &LsDeconvolutionData::fitting_func_deriv;
fdf.fdf = &LsDeconvolutionData::fitting_func_both;
fdf.n = dataCount;
fdf.p = parameterCount;
fdf.params = &*_data;
aocommon::UVector<double> parameterArray(parameterCount, 0.0);
gsl_vector_view initialVals =
gsl_vector_view_array(parameterArray.data(), parameterCount);
gsl_multifit_fdfsolver_set(_data->solver, &fdf, &initialVals.vector);
int status;
size_t iter = 0;
do {
iter++;
status = gsl_multifit_fdfsolver_iterate(_data->solver);
if (status) break;
status = gsl_multifit_test_delta(_data->solver->dx, _data->solver->x, 1e-4,
1e-4);
} while (status == GSL_CONTINUE && iter < 100);
Logger::Info << "niter=" << iter << ", status=" << gsl_strerror(status)
<< "\n";
for (size_t p = 0; p != parameterCount; ++p) {
size_t pX = _data->maskPositions[p].first,
pY = _data->maskPositions[p].second;
modelImage[pY * width + pX] = gsl_vector_get(_data->solver->x, p);
}
size_t midX = width + (width / 2), midY = height + (height / 2);
for (size_t y = 0; y != height; ++y) {
size_t index = y * width;
for (size_t x = 0; x != width; ++x) {
double val = dataImage[index];
for (size_t p = 0; p != parameterCount; ++p) {
int pX = _data->maskPositions[p].first,
pY = _data->maskPositions[p].second;
double pVal = gsl_vector_get(_data->solver->x, p);
int psfX = (x + midX - pX) % width;
int psfY = (y + midY - pY) % height;
val -= psfImage[psfX + psfY * width] * pVal;
}
dataImage[index] = val;
++index;
}
}
gsl_multifit_fdfsolver_free(_data->solver);
return DeconvolutionResult();
}
} // namespace radler::algorithms
|