1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
// SPDX-License-Identifier: LGPL-3.0-only
#ifndef RADLER_ALGORITHMS_LSDECONVOLUTION_H_
#define RADLER_ALGORITHMS_LSDECONVOLUTION_H_
#include <memory>
#include <string>
#include <aocommon/uvector.h>
#include "image_set.h"
#include "algorithms/deconvolution_algorithm.h"
// TODO: LSDeconvolution algorithm is currently in
// a somewhat experimental stage
namespace radler::algorithms {
struct LsDeconvolutionData; // Defined in ls_deconvolution.cc.
class LsDeconvolution final : public DeconvolutionAlgorithm {
public:
LsDeconvolution();
~LsDeconvolution();
LsDeconvolution(const LsDeconvolution& source);
DeconvolutionResult ExecuteMajorIteration(
ImageSet& data_image, ImageSet& model_image,
const std::vector<aocommon::Image>& psf_images) override {
if (data_image.NDeconvolutionChannels() != 1 ||
data_image.LinkedPolarizations().size() > 1)
throw std::runtime_error(
"LS deconvolution can only do single-channel, single-polarization "
"deconvolution");
return ExecuteMajorIteration(data_image.Data(0), model_image.Data(0),
psf_images[0], data_image.Width(),
data_image.Height());
}
std::unique_ptr<DeconvolutionAlgorithm> Clone() const final {
return std::make_unique<LsDeconvolution>(*this);
}
DeconvolutionResult ExecuteMajorIteration(float* data_image,
float* model_image,
const aocommon::Image& psf_image,
size_t width, size_t height) {
return nonLinearFit(data_image, model_image, psf_image, width, height);
}
private:
void getMaskPositions(
aocommon::UVector<std::pair<size_t, size_t>>& maskPositions,
const bool* mask, size_t width, size_t height);
DeconvolutionResult linearFit(float* data_image, float* model_image,
const aocommon::Image& psf_image, size_t width,
size_t height);
DeconvolutionResult nonLinearFit(float* data_image, float* model_image,
const aocommon::Image& psf_image,
size_t width, size_t height);
std::unique_ptr<LsDeconvolutionData> _data;
};
} // namespace radler::algorithms
#endif
|