File: subminor_loop.cc

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (247 lines) | stat: -rw-r--r-- 9,080 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// SPDX-License-Identifier: LGPL-3.0-only

#include "subminor_loop.h"

#include <schaapcommon/math/convolution.h>

#include "algorithms/deconvolution_algorithm.h"

using aocommon::Image;

namespace radler::algorithms {

template <bool AllowNegatives>
size_t SubMinorModel::GetMaxComponent(Image& scratch, float& max_value) const {
  _residual->GetLinearIntegrated(scratch);
  if (!_rmsFactorImage.Empty()) {
    for (size_t i = 0; i != size(); ++i) scratch[i] *= _rmsFactorImage[i];
  }
  size_t maxComponent = 0;
  max_value = scratch[0];
  for (size_t i = 0; i != size(); ++i) {
    float value;
    if (AllowNegatives) {
      value = std::fabs(scratch[i]);
    } else {
      value = scratch[i];
    }
    if (value > max_value) {
      maxComponent = i;
      max_value = value;
    }
  }
  max_value = scratch[maxComponent];  // If it was negative, make sure a
                                      // negative value is returned
  return maxComponent;
}

std::pair<bool, aocommon::OptionalNumber<float>> SubMinorLoop::Run(
    ImageSet& convolvedResidual,
    const std::vector<aocommon::Image>& twiceConvolvedPsfs) {
  _subMinorModel = SubMinorModel(_width, _height);

  findPeakPositions(convolvedResidual);

  _subMinorModel.MakeSets(convolvedResidual);
  if (!_rmsFactorImage.Empty()) {
    _subMinorModel.MakeRmsFactorImage(_rmsFactorImage);
  }
  _logReceiver.Debug << "Number of components selected > " << _threshold << ": "
                     << _subMinorModel.size() << '\n';

  if (_subMinorModel.size() == 0) {
    return std::make_pair(false, aocommon::OptionalNumber<float>());
  }

  Image scratch(_subMinorModel.size(), 1);
  float maxValue;
  size_t maxComponent = _subMinorModel.GetMaxComponent(
      scratch, maxValue, _allowNegativeComponents);
  const float max_value_at_start = std::fabs(maxValue);
  bool diverging = false;
  while (std::fabs(maxValue) > _threshold &&
         _currentIteration < _maxIterations &&
         (!_stopOnNegativeComponent || maxValue >= 0.0) && !diverging) {
    aocommon::UVector<float> componentValues(_subMinorModel.Residual().Size());
    for (size_t imgIndex = 0; imgIndex != _subMinorModel.Residual().Size();
         ++imgIndex) {
      componentValues[imgIndex] =
          _subMinorModel.Residual()[imgIndex][maxComponent] * _gain;
    }
    _fluxCleaned += maxValue * _gain;

    const size_t x = _subMinorModel.X(maxComponent),
                 y = _subMinorModel.Y(maxComponent);

    _parentAlgorithm->PerformSpectralFit(componentValues.data(), x, y);

    for (size_t imgIndex = 0; imgIndex != _subMinorModel.Model().Size();
         ++imgIndex) {
      _subMinorModel.Model().Data(imgIndex)[maxComponent] +=
          componentValues[imgIndex];
    }

    /*
      Commented out because even in verbose mode this is a bit too verbose, but
    useful in case divergence occurs: _logReceiver.Debug << x << ", " << y << "
    " << maxValue << " -> "; for(size_t imgIndex=0;
    imgIndex!=_clarkModel.Model().size(); ++imgIndex) _logReceiver.Debug <<
    componentValues[imgIndex] << ' '; _logReceiver.Debug << '\n';
    */
    for (size_t imgIndex = 0; imgIndex != _subMinorModel.Residual().Size();
         ++imgIndex) {
      float* image = _subMinorModel.Residual().Data(imgIndex);
      const aocommon::Image& psf =
          twiceConvolvedPsfs[_subMinorModel.Residual().PsfIndex(imgIndex)];
      float psfFactor = componentValues[imgIndex];
      for (size_t px = 0; px != _subMinorModel.size(); ++px) {
        int psfX = _subMinorModel.X(px) - x + _width / 2;
        int psfY = _subMinorModel.Y(px) - y + _height / 2;
        if (psfX >= 0 && psfX < static_cast<int>(_width) && psfY >= 0 &&
            psfY < static_cast<int>(_height)) {
          image[px] -= psf[psfX + psfY * _width] * psfFactor;
        }
      }
    }

    maxComponent = _subMinorModel.GetMaxComponent(scratch, maxValue,
                                                  _allowNegativeComponents);

    if (_divergenceLimit != 0.0) {
      diverging = std::fabs(maxValue) > max_value_at_start * _divergenceLimit;
    }

    ++_currentIteration;
  }
  return std::make_pair(diverging, aocommon::OptionalNumber<float>(maxValue));
}

void SubMinorModel::MakeSets(const ImageSet& residual_set) {
  _residual = std::make_unique<ImageSet>(residual_set, size(), 1);
  _model = std::make_unique<ImageSet>(residual_set, size(), 1);
  *_model = 0.0;
  for (size_t imgIndex = 0; imgIndex != _model->Size(); ++imgIndex) {
    const float* sourceResidual = residual_set[imgIndex].Data();
    float* destResidual = _residual->Data(imgIndex);
    for (size_t pxIndex = 0; pxIndex != size(); ++pxIndex) {
      size_t srcIndex =
          _positions[pxIndex].second * _width + _positions[pxIndex].first;
      destResidual[pxIndex] = sourceResidual[srcIndex];
    }
  }
}

void SubMinorModel::MakeRmsFactorImage(Image& rms_factor_image) {
  _rmsFactorImage = Image(size(), 1);
  for (size_t pxIndex = 0; pxIndex != size(); ++pxIndex) {
    size_t srcIndex =
        _positions[pxIndex].second * _width + _positions[pxIndex].first;
    _rmsFactorImage[pxIndex] = rms_factor_image[srcIndex];
  }
}

void SubMinorLoop::findPeakPositions(ImageSet& convolvedResidual) {
  Image integratedScratch(_width, _height);
  convolvedResidual.GetLinearIntegrated(integratedScratch);

  if (!_rmsFactorImage.Empty()) {
    integratedScratch *= _rmsFactorImage;
  }

  const size_t xiStart = _horizontalBorder,
               xiEnd = std::max<long>(xiStart, _width - _horizontalBorder),
               yiStart = _verticalBorder,
               yiEnd = std::max<long>(yiStart, _height - _verticalBorder);

  if (_mask) {
    for (size_t y = yiStart; y != yiEnd; ++y) {
      const bool* maskPtr = _mask + y * _width;
      float* imagePtr = integratedScratch.Data() + y * _width;
      for (size_t x = xiStart; x != xiEnd; ++x) {
        float value;
        if (_allowNegativeComponents) {
          value = fabs(imagePtr[x]);
        } else {
          value = imagePtr[x];
        }
        if (value >= _threshold && maskPtr[x]) _subMinorModel.AddPosition(x, y);
      }
    }
  } else {
    for (size_t y = yiStart; y != yiEnd; ++y) {
      float* imagePtr = integratedScratch.Data() + y * _width;
      for (size_t x = xiStart; x != xiEnd; ++x) {
        float value;
        if (_allowNegativeComponents) {
          value = fabs(imagePtr[x]);
        } else {
          value = imagePtr[x];
        }
        if (value >= _threshold) _subMinorModel.AddPosition(x, y);
      }
    }
  }
}

void SubMinorLoop::GetFullIndividualModel(size_t image_index,
                                          float* individualModelImg) const {
  std::fill(individualModelImg, individualModelImg + _width * _height, 0.0);
  const float* data = _subMinorModel.Model()[image_index].Data();
  for (size_t px = 0; px != _subMinorModel.size(); ++px) {
    individualModelImg[_subMinorModel.FullIndex(px)] = data[px];
  }
}

void SubMinorLoop::CorrectResidualDirty(
    float* scratch_a, float* scratch_b, float* scratch_c, size_t image_index,
    float* residual, const float* single_convolved_psf) const {
  // Get padded kernel in scratch_b
  Image::Untrim(scratch_a, _paddedWidth, _paddedHeight, single_convolved_psf,
                _width, _height);
  schaapcommon::math::PrepareConvolutionKernel(scratch_b, scratch_a,
                                               _paddedWidth, _paddedHeight);

  // Get padded model image in scratch_a
  GetFullIndividualModel(image_index, scratch_c);
  Image::Untrim(scratch_a, _paddedWidth, _paddedHeight, scratch_c, _width,
                _height);

  // Convolve and store in scratch_a
  schaapcommon::math::Convolve(scratch_a, scratch_b, _paddedWidth,
                               _paddedHeight);

  // Trim the result into scratch_c
  Image::Trim(scratch_c, _width, _height, scratch_a, _paddedWidth,
              _paddedHeight);

  for (size_t i = 0; i != _width * _height; ++i) residual[i] -= scratch_c[i];
}

void SubMinorLoop::UpdateAutoMask(bool* mask) const {
  for (size_t imageIndex = 0; imageIndex != _subMinorModel.Model().Size();
       ++imageIndex) {
    const aocommon::Image& image = _subMinorModel.Model()[imageIndex];
    for (size_t px = 0; px != _subMinorModel.size(); ++px) {
      if (image[px] != 0.0) mask[_subMinorModel.FullIndex(px)] = true;
    }
  }
}

void SubMinorLoop::UpdateComponentList(ComponentList& list,
                                       size_t scale_index) const {
  aocommon::UVector<float> values(_subMinorModel.Model().Size());
  for (size_t px = 0; px != _subMinorModel.size(); ++px) {
    bool isNonZero = false;
    for (size_t imageIndex = 0; imageIndex != _subMinorModel.Model().Size();
         ++imageIndex) {
      values[imageIndex] = _subMinorModel.Model()[imageIndex][px];
      if (values[imageIndex] != 0.0) isNonZero = true;
    }
    if (isNonZero) {
      size_t posIndex = _subMinorModel.FullIndex(px);
      size_t x = posIndex % _width, y = posIndex / _width;
      list.Add(x, y, scale_index, values.data());
    }
  }
}
}  // namespace radler::algorithms