File: component_list.cc

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (169 lines) | stat: -rw-r--r-- 6,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// SPDX-License-Identifier: LGPL-3.0-only

#include "component_list.h"

#include "algorithms/multiscale_algorithm.h"

#include <aocommon/imagecoordinates.h>

#include "radler.h"
#include "utils/write_model.h"

using aocommon::ImageCoordinates;

namespace radler {
void ComponentList::WriteSources(
    const Radler& radler, const std::string& filename,
    long double pixel_scale_x, long double pixel_scale_y,
    long double phase_centre_ra, long double phase_centre_dec,
    long double l_shift, long double m_shift) const {
  const algorithms::DeconvolutionAlgorithm& deconvolution_algorithm =
      radler.MaxScaleCountAlgorithm();
  if (const auto* multiscale_algorithm =
          dynamic_cast<const algorithms::MultiScaleAlgorithm*>(
              &deconvolution_algorithm)) {
    Write(filename, *multiscale_algorithm, pixel_scale_x, pixel_scale_y,
          phase_centre_ra, phase_centre_dec, l_shift, m_shift);
  } else {
    WriteSingleScale(filename, deconvolution_algorithm, pixel_scale_x,
                     pixel_scale_y, phase_centre_ra, phase_centre_dec, l_shift,
                     m_shift);
  }
}

void ComponentList::Write(const std::string& filename,
                          const algorithms::MultiScaleAlgorithm& multiscale,
                          long double pixel_scale_x, long double pixel_scale_y,
                          long double phase_centre_ra,
                          long double phase_centre_dec, long double l_shift,
                          long double m_shift) const {
  aocommon::UVector<double> scale_sizes(NScales());
  for (size_t scale_index = 0; scale_index != NScales(); ++scale_index) {
    scale_sizes[scale_index] = multiscale.ScaleSize(scale_index);
  }
  Write(filename, multiscale.Fitter(), scale_sizes, pixel_scale_x,
        pixel_scale_y, phase_centre_ra, phase_centre_dec, l_shift, m_shift);
}

void ComponentList::WriteSingleScale(
    const std::string& filename,
    const algorithms::DeconvolutionAlgorithm& algorithm,
    long double pixel_scale_x, long double pixel_scale_y,
    long double phase_centre_ra, long double phase_centre_dec,
    long double l_shift, long double m_shift) const {
  aocommon::UVector<double> scale_sizes(1, 0);
  Write(filename, algorithm.Fitter(), scale_sizes, pixel_scale_x, pixel_scale_y,
        phase_centre_ra, phase_centre_dec, l_shift, m_shift);
}

void ComponentList::Write(const std::string& filename,
                          const schaapcommon::fitters::SpectralFitter& fitter,
                          const aocommon::UVector<double>& scale_sizes,
                          long double pixel_scale_x, long double pixel_scale_y,
                          long double phase_centre_ra,
                          long double phase_centre_dec, long double l_shift,
                          long double m_shift) const {
  if (components_added_since_last_merge_ != 0) {
    throw std::runtime_error(
        "ComponentList::Write called while there are yet unmerged components. "
        "Run ComponentList::MergeDuplicates() first.");
  }

  if (fitter.Mode() == schaapcommon::fitters::SpectralFittingMode::kNoFitting &&
      n_frequencies_ > 1) {
    throw std::runtime_error(
        "Can't Write component list, because you have not specified a spectral "
        "fitting method. You probably want to add '-fit-spectral-pol'.");
  }

  std::ofstream file(filename);
  bool use_log_si = false;
  switch (fitter.Mode()) {
    case schaapcommon::fitters::SpectralFittingMode::kNoFitting:
    case schaapcommon::fitters::SpectralFittingMode::kPolynomial:
      use_log_si = false;
      break;
    case schaapcommon::fitters::SpectralFittingMode::kForcedTerms:
    case schaapcommon::fitters::SpectralFittingMode::kLogPolynomial:
      use_log_si = true;
      break;
  }
  utils::WriteHeaderForSpectralTerms(file, fitter.ReferenceFrequency());
  std::vector<float> terms;
  for (size_t scale_index = 0; scale_index != NScales(); ++scale_index) {
    const ScaleList& list = list_per_scale_[scale_index];
    size_t component_index = 0;
    const double scale = scale_sizes[scale_index];
    // Using the FWHM formula for a Gaussian
    const double
        fwhm =
            2.0L * sqrtl(2.0L * logl(2.0L)) *
            algorithms::multiscale::MultiScaleTransforms::GaussianSigma(scale),
        scale_fwhml = fwhm * pixel_scale_x * (180.0 * 60.0 * 60.0 / M_PI),
        scale_fwhmm = fwhm * pixel_scale_y * (180.0 * 60.0 * 60.0 / M_PI);
    size_t value_index = 0;
    for (size_t index = 0; index != list.positions.size(); ++index) {
      const size_t x = list.positions[index].x;
      const size_t y = list.positions[index].y;
      aocommon::UVector<float> spectrum(n_frequencies_);
      for (size_t frequency = 0; frequency != n_frequencies_; ++frequency) {
        spectrum[frequency] = list.values[value_index];
        ++value_index;
      }
      if (n_frequencies_ == 1) {
        terms.assign(1, spectrum[0]);
      } else {
        fitter.Fit(terms, spectrum.data(), x, y);
      }
      long double l, m;
      ImageCoordinates::XYToLM<long double>(x, y, pixel_scale_x, pixel_scale_y,
                                            width_, height_, l, m);
      l += l_shift;
      m += m_shift;
      long double ra, dec;
      ImageCoordinates::LMToRaDec(l, m, phase_centre_ra, phase_centre_dec, ra,
                                  dec);
      std::ostringstream name;
      name << 's' << scale_index << 'c' << component_index;
      if (scale == 0.0) {
        radler::utils::WritePolynomialPointComponent(
            file, name.str(), ra, dec, use_log_si, terms,
            fitter.ReferenceFrequency());
      } else {
        radler::utils::WritePolynomialGaussianComponent(
            file, name.str(), ra, dec, use_log_si, terms,
            fitter.ReferenceFrequency(), scale_fwhml, scale_fwhmm, 0.0);
      }
      ++component_index;
    }
  }
}

void ComponentList::LoadFromImageSet(ImageSet& image_set, size_t scale_index) {
  components_added_since_last_merge_ = 0;
  list_per_scale_[scale_index].positions.clear();
  list_per_scale_[scale_index].values.clear();
  for (size_t y = 0; y != height_; ++y) {
    const size_t row_index = y * width_;
    for (size_t x = 0; x != width_; ++x) {
      const size_t pos_index = row_index + x;
      bool is_non_zero = false;
      for (size_t image_index = 0; image_index != image_set.Size();
           ++image_index) {
        if (image_set[image_index][pos_index] != 0.0) {
          is_non_zero = true;
          break;
        }
      }
      if (is_non_zero) {
        list_per_scale_[scale_index].positions.emplace_back(x, y);
        for (size_t image_index = 0; image_index != image_set.Size();
             ++image_index) {
          list_per_scale_[scale_index].values.push_back(
              image_set[image_index][pos_index]);
        }
      }
    }
  }
}
}  // namespace radler