1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
// SPDX-License-Identifier: LGPL-3.0-only
// NOTE:
// - This file hasn't been tested on real input.
// - Rather than being a demo/example, this file might be the basis for a
// multiscale algorithm test.
#include <iostream>
#include <memory>
#include <aocommon/image.h>
#include <aocommon/imageaccessor.h>
#include <aocommon/fits/fitsreader.h>
#include <aocommon/fits/fitswriter.h>
#include <schaapcommon/fitters/spectralfitter.h>
#include "algorithms/multiscale_algorithm.h"
#include "image_set.h"
#include "work_table.h"
namespace {
class MinimalImageAccessor final : public aocommon::ImageAccessor {
public:
MinimalImageAccessor(const aocommon::Image& image,
aocommon::FitsWriter writer,
const std::string& output_fits)
: image_(image), writer_(writer), output_fits_(output_fits) {}
~MinimalImageAccessor() override = default;
size_t Width() const override { return writer_.Width(); }
size_t Height() const override { return writer_.Height(); }
void Load(float* image_data) const override {
std::copy_n(image_.Data(), Width() * Height(), image_data);
}
void Store(const float* image_data) override {
writer_.Write(output_fits_, image_data);
}
private:
const aocommon::Image image_;
const aocommon::FitsWriter writer_;
const std::string output_fits_;
};
} // namespace
int main(int argc, char* argv[]) {
if (argc != 3) {
std::cout << "Syntax: mscaleexample <image> <psf>\n";
} else {
aocommon::FitsReader imgReader(argv[1]);
aocommon::FitsReader psfReader(argv[2]);
const double beamScale = imgReader.BeamMajorAxisRad();
const size_t width = imgReader.ImageWidth();
const size_t height = imgReader.ImageHeight();
const size_t n_channels = 1;
aocommon::Image image(width, height);
aocommon::Image psf(width, height);
imgReader.Read(image.Data());
psfReader.Read(psf.Data());
aocommon::Image model(width, height, 0.0);
aocommon::FitsWriter writer(imgReader);
std::unique_ptr<radler::WorkTable> table =
std::make_unique<radler::WorkTable>(std::vector<radler::PsfOffset>{},
n_channels, n_channels);
auto e = std::make_unique<radler::WorkTableEntry>();
e->polarization = imgReader.Polarization();
e->band_start_frequency = imgReader.Frequency();
e->band_end_frequency = imgReader.Frequency();
e->image_weight = 1.0;
e->psf_accessors.emplace_back(
std::make_unique<MinimalImageAccessor>(psf, writer, "psf.fits"));
e->model_accessor =
std::make_unique<MinimalImageAccessor>(model, writer, "model.fits");
e->residual_accessor =
std::make_unique<MinimalImageAccessor>(image, writer, "residual.fits");
table->AddEntry(std::move(e));
radler::ImageSet residualSet(*table, false, {}, width, height);
radler::ImageSet modelSet(*table, false, {}, width, height);
radler::Settings::Multiscale settings;
settings.sub_minor_loop_gain = 0.1;
const bool trackComponents = false;
const bool allowNegativeComponents = true;
const double borderRatio = 0.05;
radler::algorithms::MultiScaleAlgorithm algorithm(
settings, beamScale, imgReader.PixelSizeX(), imgReader.PixelSizeY(),
trackComponents);
algorithm.SetAllowNegativeComponents(allowNegativeComponents);
algorithm.SetCleanBorderRatio(borderRatio);
algorithm.ExecuteMajorIteration(residualSet, modelSet, {psf});
residualSet.AssignAndStoreResidual();
modelSet.InterpolateAndStoreModel(schaapcommon::fitters::SpectralFitter(
schaapcommon::fitters::SpectralFittingMode::kNoFitting, 0));
}
return 0;
}
|