1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
// SPDX-License-Identifier: LGPL-3.0-only
#include "image_set.h"
#include <cassert>
#include <aocommon/logger.h>
#include <aocommon/staticfor.h>
using aocommon::Image;
using aocommon::Logger;
namespace radler {
namespace {
void AssignMultiply(aocommon::Image& lhs, const aocommon::Image& rhs,
float factor) {
// As this function is used in cases where rhs.Size() is larger than
// lhs.Size(), this method can't be easily migrated to aocommon. Maybe
// consider a stricter enforcement of lhs.Size() and rhs.Size() to be equal?
const size_t image_size = lhs.Size();
assert(rhs.Size() >= image_size);
for (size_t i = 0; i != image_size; ++i) lhs[i] = rhs[i] * factor;
}
void LoadImage(const aocommon::ImageAccessor& accessor,
aocommon::Image& image) {
assert(accessor.Width() == image.Width());
assert(accessor.Height() == image.Height());
accessor.Load(image.Data());
}
void StoreImage(aocommon::ImageAccessor& accessor,
const aocommon::Image& image) {
assert(accessor.Width() == image.Width());
assert(accessor.Height() == image.Height());
accessor.Store(image.Data());
}
} // namespace
ImageSet::ImageSet(
const WorkTable& table, bool squared_joins,
const std::set<aocommon::PolarizationEnum>& linked_polarizations,
size_t width, size_t height)
: images_(),
square_joined_channels_(squared_joins),
work_table_(table),
image_index_to_psf_index_(),
linked_polarizations_(linked_polarizations) {
const size_t n_pol = table.OriginalGroups().front().size();
const size_t n_images = n_pol * NDeconvolutionChannels();
assert(n_images >= 1);
images_.reserve(n_images);
for (size_t i = 0; i < n_images; ++i) {
images_.emplace_back(width, height);
}
image_index_to_psf_index_.resize(n_images);
InitializePolFactor();
InitializeIndices();
std::vector<double> frequencies;
CalculateDeconvolutionFrequencies(table, frequencies, weights_);
}
ImageSet::ImageSet(const ImageSet& image_set, size_t width, size_t height)
: ImageSet(image_set.work_table_, image_set.square_joined_channels_,
image_set.linked_polarizations_, width, height) {}
void ImageSet::InitializeIndices() {
entry_index_to_image_index_.reserve(work_table_.Size());
size_t image_index = 0;
for (const std::vector<size_t>& group : work_table_.DeconvolutionGroups()) {
const size_t deconvolution_channel_start_index = image_index;
for (const size_t original_index : group) {
image_index = deconvolution_channel_start_index;
for ([[maybe_unused]] const WorkTableEntry* entry :
work_table_.OriginalGroups()[original_index]) {
assert(entry->index == entry_index_to_image_index_.size());
entry_index_to_image_index_.push_back(image_index);
++image_index;
}
}
}
for (size_t channel_index = 0; channel_index != NDeconvolutionChannels();
++channel_index) {
const WorkTable::Group& original_group =
work_table_.FirstOriginalGroup(channel_index);
for (const WorkTableEntry* entry : original_group) {
const size_t image_index = entry_index_to_image_index_[entry->index];
image_index_to_psf_index_[image_index] = channel_index;
}
}
}
void ImageSet::SetImages(ImageSet&& source) {
images_ = std::move(source.images_);
// Note: 'source' becomes invalid now: Since its images_ becomes empty,
// Width() and Height() will fail. Move semantics allow this case, though:
// The state of 'source' is unknown and the destructor will not fail.
}
void ImageSet::LoadAndAverage(bool use_residual_image) {
for (Image& image : images_) {
image = 0.0;
}
Image scratch(Width(), Height());
std::vector<double> averaged_weights(images_.size(), 0.0);
size_t image_index = 0;
for (const std::vector<size_t>& group : work_table_.DeconvolutionGroups()) {
const size_t deconvolution_channel_start_index = image_index;
for (const size_t original_index : group) {
// The next loop iterates over the polarizations. The logic in the next
// loop makes sure that images of the same polarizations and that belong
// to the same deconvolution channel are averaged together.
image_index = deconvolution_channel_start_index;
for (const WorkTableEntry* entry_ptr :
work_table_.OriginalGroups()[original_index]) {
LoadImage(use_residual_image ? *entry_ptr->residual_accessor
: *entry_ptr->model_accessor,
scratch);
// If the weight is zero, the image may contain NaNs, so in that case do
// not include the image.
if (entry_ptr->image_weight != 0.0) {
images_[image_index].AddWithFactor(scratch, entry_ptr->image_weight);
averaged_weights[image_index] += entry_ptr->image_weight;
}
++image_index;
}
}
}
for (size_t i = 0; i != images_.size(); ++i) {
images_[i] *= 1.0 / averaged_weights[i];
}
}
std::vector<std::vector<aocommon::Image>> ImageSet::LoadAndAveragePsfs() const {
std::vector<std::vector<aocommon::Image>> result;
// The PSF accessor vectors in each group should have equal shapes:
// - The number of PSFs should be equal.
// - For a given index, psf_accessors[index] should have the same size in
// a group. For different indices, psf sizes may differ.
// -> Use first vector for the PSF count and PSF sizes.
const std::vector<std::unique_ptr<aocommon::ImageAccessor>>&
first_psf_accessors = work_table_.Front().psf_accessors;
size_t scratch_size = 0;
for (const std::unique_ptr<aocommon::ImageAccessor>& psf_accessor :
first_psf_accessors) {
scratch_size =
std::max(scratch_size, psf_accessor->Width() * psf_accessor->Height());
}
aocommon::UVector<float> scratch(scratch_size);
// The index of the PSF in the WorkTableEntry PSF vector being processed.
for (size_t psf_index = 0; psf_index != first_psf_accessors.size();
++psf_index) {
const size_t psf_width = first_psf_accessors[psf_index]->Width();
const size_t psf_height = first_psf_accessors[psf_index]->Height();
const size_t psf_size = psf_width * psf_height;
std::vector<aocommon::Image>& psf_images = result.emplace_back();
psf_images.reserve(NDeconvolutionChannels());
for (size_t i = 0; i < NDeconvolutionChannels(); ++i) {
psf_images.emplace_back(psf_width, psf_height, 0.0);
}
aocommon::UVector<double> averaged_weights(NDeconvolutionChannels(), 0.0);
for (size_t group_index = 0; group_index != NOriginalChannels();
++group_index) {
const size_t channel_index =
(group_index * NDeconvolutionChannels()) / NOriginalChannels();
const WorkTable::Group& channel_group =
work_table_.OriginalGroups()[group_index];
const WorkTableEntry& entry = *channel_group.front();
const double input_channel_weight = entry.image_weight;
const aocommon::ImageAccessor& psf_accessor =
*entry.psf_accessors[psf_index];
assert(psf_accessor.Width() == psf_width);
assert(psf_accessor.Height() == psf_height);
psf_accessor.Load(scratch.data());
for (size_t i = 0; i != psf_size; ++i) {
psf_images[channel_index][i] += scratch[i] * input_channel_weight;
}
averaged_weights[channel_index] += input_channel_weight;
}
for (size_t channel_index = 0; channel_index != NDeconvolutionChannels();
++channel_index) {
const double factor = averaged_weights[channel_index] == 0.0
? 0.0
: 1.0 / averaged_weights[channel_index];
for (size_t i = 0; i != psf_size; ++i) {
psf_images[channel_index][i] *= factor;
}
}
}
return result;
}
void ImageSet::InterpolateAndStoreModel(
const schaapcommon::fitters::SpectralFitter& fitter) {
if (NDeconvolutionChannels() == NOriginalChannels()) {
size_t image_index = 0;
for (const WorkTableEntry& e : work_table_) {
StoreImage(*e.model_accessor, images_[image_index]);
++image_index;
}
} else {
const WorkTable::Group& first_group = work_table_.OriginalGroups().front();
const size_t n_polarizations = first_group.size();
for (size_t polarization_index = 0; polarization_index != n_polarizations;
++polarization_index) {
Logger::Info << "Interpolating "
<< aocommon::Polarization::TypeToFullString(
first_group[polarization_index]->polarization)
<< " from " << NDeconvolutionChannels() << " to "
<< NOriginalChannels() << " channels...\n";
const WorkTable::Group same_polarization_group =
work_table_.GetOriginalSamePolarizationGroup(
first_group[polarization_index]->polarization);
// TODO should use spectralimagefitter to do the interpolation of images;
// here we should just unpack the data structure
// The following loop will make an 'image' with at each pixel
// the terms of the fit. By doing this first, it is not necessary
// to have all channel images in memory at the same time.
const size_t n_terms = fitter.NTerms();
aocommon::UVector<float> terms_image(Width() * Height() * n_terms);
aocommon::StaticFor<size_t> loop;
loop.Run(0, Height(), [&](size_t y_start, size_t y_end) {
aocommon::UVector<float> spectral_pixel(NDeconvolutionChannels());
std::vector<float> terms_pixel;
for (size_t y = y_start; y != y_end; ++y) {
size_t px = y * Width();
for (size_t x = 0; x != Width(); ++x) {
bool is_zero = true;
for (size_t channel = 0; channel != NDeconvolutionChannels();
++channel) {
const size_t image_index =
channel * n_polarizations + polarization_index;
float value = images_[image_index][px];
spectral_pixel[channel] = value;
is_zero = is_zero && (value == 0.0);
}
float* terms_ptr = &terms_image[px * n_terms];
// Skip fitting if it is zero; large parts of model images will be
// zero, so this can save a lot of time.
if (is_zero) {
std::fill_n(terms_ptr, n_terms, 0.0);
} else {
fitter.Fit(terms_pixel, spectral_pixel.data(), x, y);
std::copy_n(terms_pixel.cbegin(), n_terms, terms_ptr);
}
++px;
}
}
});
// Now that we know the fit for each pixel, evaluate the function for each
// pixel of each output channel.
Image scratch(Width(), Height());
for (const WorkTableEntry* entry : same_polarization_group) {
double freq = entry->CentralFrequency();
loop.Run(0, Width() * Height(), [&](size_t px_start, size_t px_end) {
std::vector<float> terms_pixel;
for (size_t px = px_start; px != px_end; ++px) {
const float* terms_ptr = &terms_image[px * n_terms];
terms_pixel.assign(terms_ptr, terms_ptr + n_terms);
scratch[px] = fitter.Evaluate(terms_pixel, freq);
}
});
StoreImage(*entry->model_accessor, scratch);
}
}
}
}
void ImageSet::AssignAndStoreResidual() {
Logger::Info << "Assigning from " << NDeconvolutionChannels() << " to "
<< NOriginalChannels() << " channels...\n";
size_t image_index = 0;
for (const std::vector<size_t>& group : work_table_.DeconvolutionGroups()) {
const size_t deconvolution_channel_start_index = image_index;
for (const size_t original_index : group) {
image_index = deconvolution_channel_start_index;
for (const WorkTableEntry* entry :
work_table_.OriginalGroups()[original_index]) {
StoreImage(*entry->residual_accessor, images_[image_index]);
++image_index;
}
}
}
}
void ImageSet::GetSquareIntegratedWithNormalChannels(Image& dest,
Image& scratch) const {
// In case only one frequency channel is used, we do not have to use
// 'scratch', which saves copying and normalizing the data.
if (NDeconvolutionChannels() == 1) {
const WorkTable::Group& original_group =
work_table_.OriginalGroups().front();
if (original_group.size() == 1) {
const WorkTableEntry& entry = *original_group.front();
dest = EntryToImage(entry);
} else {
const bool use_all_polarizations = linked_polarizations_.empty();
bool is_first = true;
for (const WorkTableEntry* entry_ptr : original_group) {
if (use_all_polarizations ||
linked_polarizations_.count(entry_ptr->polarization) != 0) {
if (is_first) {
dest = EntryToImage(*entry_ptr);
dest.Square();
is_first = false;
} else {
dest.AddSquared(EntryToImage(*entry_ptr));
}
}
}
dest.SqrtWithFactor(std::sqrt(polarization_normalization_factor_));
}
} else {
double weight_sum = 0.0;
bool is_first_channel = true;
for (size_t channel_index = 0; channel_index != NDeconvolutionChannels();
++channel_index) {
const WorkTable::Group& original_group =
work_table_.FirstOriginalGroup(channel_index);
const double group_weight = weights_[channel_index];
// if the groupWeight is zero, the image might contain NaNs, so we
// shouldn't add it to the total in that case.
if (group_weight != 0.0) {
weight_sum += group_weight;
if (original_group.size() == 1) {
const WorkTableEntry& entry = *original_group.front();
scratch = EntryToImage(entry);
} else {
const bool use_all_polarizations = linked_polarizations_.empty();
bool is_first_polarization = true;
for (const WorkTableEntry* entry_ptr : original_group) {
if (use_all_polarizations ||
linked_polarizations_.count(entry_ptr->polarization) != 0) {
if (is_first_polarization) {
scratch = EntryToImage(*entry_ptr);
scratch.Square();
is_first_polarization = false;
} else {
scratch.AddSquared(EntryToImage(*entry_ptr));
}
}
}
if (is_first_polarization)
scratch = 0.0;
else
scratch.Sqrt();
}
} else {
scratch = 0.0;
}
if (is_first_channel) {
AssignMultiply(dest, scratch, group_weight);
is_first_channel = false;
} else {
dest.AddWithFactor(scratch, group_weight);
}
}
dest *= std::sqrt(polarization_normalization_factor_) / weight_sum;
}
}
void ImageSet::GetSquareIntegratedWithSquaredChannels(Image& dest) const {
bool is_first = true;
const bool use_all_polarizations = linked_polarizations_.empty();
double weight_sum = 0.0;
for (size_t channel_index = 0; channel_index != NDeconvolutionChannels();
++channel_index) {
const double group_weight = weights_[channel_index];
if (group_weight != 0.0) {
weight_sum += group_weight;
const WorkTable::Group& original_group =
work_table_.FirstOriginalGroup(channel_index);
for (const WorkTableEntry* entry_ptr : original_group) {
if (use_all_polarizations ||
linked_polarizations_.count(entry_ptr->polarization) != 0) {
if (is_first) {
dest = EntryToImage(*entry_ptr);
dest.SquareWithFactor(group_weight);
is_first = false;
} else {
dest.AddSquared(EntryToImage(*entry_ptr), group_weight);
}
}
}
}
}
if (weight_sum > 0.0) {
dest.SqrtWithFactor(
std::sqrt(polarization_normalization_factor_ / weight_sum));
} else {
// Effectively multiplying with a 0.0 weighting factor
dest = 0.0;
}
}
void ImageSet::GetLinearIntegratedWithNormalChannels(Image& dest) const {
const bool use_all_polarizations = linked_polarizations_.empty();
if (work_table_.DeconvolutionGroups().size() == 1 &&
work_table_.OriginalGroups().front().size() == 1) {
const WorkTable::Group& original_group =
work_table_.OriginalGroups().front();
const WorkTableEntry& entry = *original_group.front();
dest = EntryToImage(entry);
} else {
bool is_first = true;
double weight_sum = 0.0;
for (size_t channel_index = 0; channel_index != NDeconvolutionChannels();
++channel_index) {
const WorkTable::Group& original_group =
work_table_.FirstOriginalGroup(channel_index);
const double group_weight = weights_[channel_index];
// if the groupWeight is zero, the image might contain NaNs, so we
// shouldn't add it to the total in that case.
if (group_weight != 0.0) {
weight_sum += group_weight;
for (const WorkTableEntry* entry_ptr : original_group) {
if (use_all_polarizations ||
linked_polarizations_.count(entry_ptr->polarization) != 0) {
if (is_first) {
AssignMultiply(dest, EntryToImage(*entry_ptr), group_weight);
is_first = false;
} else {
dest.AddWithFactor(EntryToImage(*entry_ptr), group_weight);
}
}
}
}
}
if (weight_sum > 0.0) {
dest *= polarization_normalization_factor_ / weight_sum;
} else {
dest = 0.0;
}
}
}
void ImageSet::CalculateDeconvolutionFrequencies(
const WorkTable& group_table, std::vector<double>& frequencies,
std::vector<float>& weights) {
const size_t n_input_channels = group_table.OriginalGroups().size();
const size_t n_deconvolution_channels =
group_table.DeconvolutionGroups().size();
frequencies.assign(n_deconvolution_channels, 0.0);
weights.assign(n_deconvolution_channels, 0.0);
std::vector<double> unweighted_frequencies(n_deconvolution_channels, 0.0);
std::vector<size_t> counts(n_deconvolution_channels, 0);
for (size_t i = 0; i != n_input_channels; ++i) {
const WorkTableEntry& entry = *group_table.OriginalGroups()[i].front();
const double freq = entry.CentralFrequency();
const double weight = entry.image_weight;
const size_t deconvolution_channel =
i * n_deconvolution_channels / n_input_channels;
frequencies[deconvolution_channel] += freq * weight;
weights[deconvolution_channel] += weight;
unweighted_frequencies[deconvolution_channel] += freq;
++counts[deconvolution_channel];
}
for (size_t i = 0; i != n_deconvolution_channels; ++i) {
// Even when there is no data for a given frequency and the weight
// is zero, it is still desirable to have a proper value for the frequency
// (e.g. for extrapolating flux).
if (weights[i] > 0.0) {
frequencies[i] /= weights[i];
} else {
frequencies[i] = unweighted_frequencies[i] / counts[i];
}
}
}
void ImageSet::GetIntegratedPsf(Image& dest,
const std::vector<aocommon::Image>& psfs) {
assert(psfs.size() == NDeconvolutionChannels());
[[maybe_unused]] const size_t image_size = Width() * Height();
if (NDeconvolutionChannels() == 1) {
dest = psfs.front();
} else {
bool is_first = true;
double weight_sum = 0.0;
for (size_t channel = 0; channel != NDeconvolutionChannels(); ++channel) {
assert(psfs[channel].Size() == image_size);
const double group_weight = weights_[channel];
// if the groupWeight is zero, the image might contain NaNs, so we
// shouldn't add it to the total in that case.
if (group_weight != 0.0) {
weight_sum += group_weight;
if (is_first) {
dest = psfs[channel];
dest *= group_weight;
is_first = false;
} else {
dest.AddWithFactor(psfs[channel], group_weight);
}
}
}
const double factor = weight_sum == 0.0 ? 0.0 : 1.0 / weight_sum;
dest *= factor;
}
}
} // namespace radler
|