1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
// SPDX-License-Identifier: LGPL-3.0-only
#include "radler.h"
#include <algorithm>
#include <cmath>
#include <aocommon/fits/fitsreader.h>
#include <aocommon/image.h>
#include <aocommon/imagecoordinates.h>
#include <aocommon/logger.h>
#include <aocommon/units/fluxdensity.h>
#include <aocommon/threadpool.h>
#include <schaapcommon/math/convolution.h>
#include "algorithms/asp_algorithm.h"
#include "algorithms/generic_clean.h"
#include "algorithms/iuwt_deconvolution.h"
#include "algorithms/more_sane.h"
#include "algorithms/multiscale_algorithm.h"
#include "algorithms/parallel_deconvolution.h"
#include "algorithms/python_deconvolution.h"
#include "algorithms/simple_clean.h"
#include "image_set.h"
#include "math/rms_image.h"
#include "utils/casa_mask_reader.h"
#include "utils/load_image_accessor.h"
#include "utils/load_and_store_image_accessor.h"
using aocommon::FitsReader;
using aocommon::FitsWriter;
using aocommon::Image;
using aocommon::ImageCoordinates;
using aocommon::Logger;
using aocommon::units::FluxDensity;
using schaapcommon::fitters::SpectralFittingMode;
namespace radler {
Radler::Radler(const Settings& settings, std::unique_ptr<WorkTable> table,
double beam_size)
: Radler(settings, beam_size) {
InitializeDeconvolutionAlgorithm(std::move(table));
}
Radler::Radler(const Settings& settings, const aocommon::Image& psf_image,
aocommon::Image& residual_image, aocommon::Image& model_image,
double beam_size, aocommon::PolarizationEnum polarization)
: Radler(settings, beam_size) {
if (psf_image.Width() != settings.trimmed_image_width ||
psf_image.Height() != settings.trimmed_image_height) {
throw std::runtime_error("Mismatch in PSF image size");
}
if (residual_image.Width() != settings.trimmed_image_width ||
residual_image.Height() != settings.trimmed_image_height) {
throw std::runtime_error("Mismatch in residual image size");
}
if (model_image.Width() != settings.trimmed_image_width ||
model_image.Height() != settings.trimmed_image_height) {
throw std::runtime_error("Mismatch in model image size");
}
// Make WorkTable with just one entry
const size_t n_original_channels = 1;
const size_t n_deconvolution_channels = 1;
auto table = std::make_unique<WorkTable>(
std::vector<PsfOffset>{}, n_original_channels, n_deconvolution_channels);
auto e = std::make_unique<WorkTableEntry>();
e->polarization = polarization;
e->image_weight = 1.0;
e->psf_accessors.emplace_back(
std::make_unique<radler::utils::LoadOnlyImageAccessor>(psf_image));
e->residual_accessor =
std::make_unique<radler::utils::LoadAndStoreImageAccessor>(
residual_image);
e->model_accessor =
std::make_unique<radler::utils::LoadAndStoreImageAccessor>(model_image);
table->AddEntry(std::move(e));
InitializeDeconvolutionAlgorithm(std::move(table));
}
Radler::Radler(const Settings& settings, double beam_size)
: settings_(settings),
table_(),
parallel_deconvolution_(
std::make_unique<algorithms::ParallelDeconvolution>(settings_)),
auto_mask_is_finished_(false),
image_width_(settings_.trimmed_image_width),
image_height_(settings_.trimmed_image_height),
pixel_scale_x_(settings_.pixel_scale.x),
pixel_scale_y_(settings_.pixel_scale.y),
auto_mask_(),
beam_size_(beam_size) {
if (settings.spectral_fitting.mode ==
schaapcommon::fitters::SpectralFittingMode::kForcedTerms &&
settings.spectral_fitting.forced_filename.empty()) {
throw std::runtime_error(
"Forced fitting filename is required when forced fitting is enabled.");
}
if (settings.parallel.grid_width == 0) {
throw std::runtime_error("parallel.grid_width must be larger than zero");
}
if (settings.parallel.grid_height == 0) {
throw std::runtime_error("parallel.grid_height must be larger than zero");
}
if (settings.parallel.max_threads == 0) {
throw std::runtime_error("parallel.max_threads must be larger than zero");
}
// Ensure that all FFTWF plan calls inside Radler are
// thread safe.
schaapcommon::math::MakeFftwfPlannerThreadSafe();
}
Radler::~Radler() { FreeDeconvolutionAlgorithms(); }
ComponentList Radler::GetComponentList() const {
return parallel_deconvolution_->GetComponentList(*table_);
}
const algorithms::DeconvolutionAlgorithm& Radler::MaxScaleCountAlgorithm()
const {
return parallel_deconvolution_->MaxScaleCountAlgorithm();
}
void Radler::Perform(bool& reached_major_threshold,
size_t major_iteration_number) {
/**
* Because functions like convolution in schaapcommon use parallelized fors,
* and because these itself occur in the deconvolution of different sub-images
* that may also be parallelized over, it is necessary to have a recursive for
* alive so that all fors are scheduled through this recursive for.
*/
std::optional<aocommon::RecursiveFor> recursive_for;
if (aocommon::RecursiveFor::GetInstance() == nullptr) {
aocommon::ThreadPool::GetInstance().SetNThreads(settings_.thread_count);
recursive_for.emplace();
}
assert(table_);
table_->ValidatePsfs();
Logger::Info.Flush();
Logger::Info << " == Deconvolving (" << major_iteration_number << ") ==\n";
ImageSet residual_set(*table_, settings_.squared_joins,
settings_.linked_polarizations, image_width_,
image_height_);
ImageSet model_set(*table_, settings_.squared_joins,
settings_.linked_polarizations, image_width_,
image_height_);
Logger::Debug << "Loading residual images...\n";
residual_set.LoadAndAverage(true);
Logger::Debug << "Loading model images...\n";
model_set.LoadAndAverage(false);
Image integrated(image_width_, image_height_);
residual_set.GetLinearIntegrated(integrated);
Logger::Debug << "Calculating standard deviation...\n";
double stddev = integrated.StdDevFromMAD();
Logger::Info << "Estimated standard deviation of background noise: "
<< FluxDensity::ToNiceString(stddev) << '\n';
const bool auto_mask_is_enabled =
settings_.auto_mask_sigma || settings_.absolute_auto_mask_threshold;
if (auto_mask_is_enabled && auto_mask_is_finished_) {
// When we are in the second phase of automasking, don't use
// the RMS background anymore
parallel_deconvolution_->SetRmsFactorImage(Image());
} else {
Image rms_image;
if (!settings_.local_rms.image.empty()) {
rms_image = Image(image_width_, image_height_);
FitsReader reader(settings_.local_rms.image);
reader.Read(rms_image.Data());
stddev = math::rms_image::MakeRmsFactorImage(
rms_image, settings_.local_rms.strength);
parallel_deconvolution_->SetRmsFactorImage(std::move(rms_image));
} else if (settings_.local_rms.method != LocalRmsMethod::kNone) {
Logger::Debug << "Constructing local RMS image...\n";
// TODO this should use full beam parameters
switch (settings_.local_rms.method) {
case LocalRmsMethod::kNone:
assert(false);
break;
case LocalRmsMethod::kRmsWindow:
math::rms_image::Make(
rms_image, integrated, settings_.local_rms.window, beam_size_,
beam_size_, 0.0, pixel_scale_x_, pixel_scale_y_);
break;
case LocalRmsMethod::kRmsAndMinimumWindow:
math::rms_image::MakeWithNegativityLimit(
rms_image, integrated, settings_.local_rms.window, beam_size_,
beam_size_, 0.0, pixel_scale_x_, pixel_scale_y_);
break;
}
stddev = math::rms_image::MakeRmsFactorImage(
rms_image, settings_.local_rms.strength);
parallel_deconvolution_->SetRmsFactorImage(std::move(rms_image));
}
}
if (auto_mask_is_enabled && !auto_mask_is_finished_) {
const double combined_auto_mask_threshold =
std::max(stddev * settings_.auto_mask_sigma.value_or(0.0),
settings_.absolute_auto_mask_threshold.value_or(0.0));
parallel_deconvolution_->SetThreshold(
std::max(combined_auto_mask_threshold, settings_.absolute_threshold));
} else if (settings_.auto_threshold_sigma) {
parallel_deconvolution_->SetThreshold(
std::max(stddev * (*settings_.auto_threshold_sigma),
settings_.absolute_threshold));
}
integrated.Reset();
Logger::Debug << "Loading PSFs...\n";
const std::vector<std::vector<aocommon::Image>> psf_images =
residual_set.LoadAndAveragePsfs();
if (settings_.algorithm_type == AlgorithmType::kMultiscale) {
if (auto_mask_is_enabled) {
if (auto_mask_is_finished_) {
parallel_deconvolution_->SetAutoMaskMode(false, true);
} else {
parallel_deconvolution_->SetAutoMaskMode(true, false);
}
}
} else {
if (auto_mask_is_enabled && auto_mask_is_finished_) {
if (auto_mask_.empty()) {
// Generate the auto-mask from the model image(s)
auto_mask_.assign(image_width_ * image_height_, false);
for (size_t image_index = 0; image_index != model_set.Size();
++image_index) {
const aocommon::Image& image = model_set[image_index];
for (size_t i = 0; i != image_width_ * image_height_; ++i) {
if (std::isfinite(image[i]) && image[i] != 0.0)
auto_mask_[i] = true;
}
}
}
parallel_deconvolution_->SetCleanMask(auto_mask_.data());
}
}
parallel_deconvolution_->ExecuteMajorIteration(
residual_set, model_set, psf_images, table_->PsfOffsets(),
reached_major_threshold);
if (!reached_major_threshold && auto_mask_is_enabled &&
!auto_mask_is_finished_) {
Logger::Info << "Auto-masking threshold reached; continuing next major "
"iteration with deeper threshold and mask.\n";
auto_mask_is_finished_ = true;
reached_major_threshold = true;
}
if (settings_.major_iteration_count != 0 &&
major_iteration_number >= settings_.major_iteration_count) {
reached_major_threshold = false;
Logger::Info << "Maximum number of major iterations was reached: not "
"continuing deconvolution.\n";
}
if (settings_.minor_iteration_count != 0 &&
parallel_deconvolution_->FirstAlgorithm().IterationNumber() >=
settings_.minor_iteration_count) {
reached_major_threshold = false;
Logger::Info
<< "Maximum number of minor deconvolution iterations was reached: not "
"continuing deconvolution.\n";
}
residual_set.AssignAndStoreResidual();
model_set.InterpolateAndStoreModel(
parallel_deconvolution_->FirstAlgorithm().Fitter());
}
std::unique_ptr<schaapcommon::fitters::SpectralFitter>
Radler::CreateSpectralFitter() const {
std::vector<double> channel_frequencies;
std::vector<float> channel_weights;
if (settings_.spectral_fitting.mode != SpectralFittingMode::kNoFitting) {
ImageSet::CalculateDeconvolutionFrequencies(*table_, channel_frequencies,
channel_weights);
}
return std::make_unique<schaapcommon::fitters::SpectralFitter>(
settings_.spectral_fitting.mode, settings_.spectral_fitting.terms,
std::move(channel_frequencies), std::move(channel_weights));
}
void Radler::InitializeDeconvolutionAlgorithm(
std::unique_ptr<WorkTable> table) {
auto_mask_is_finished_ = false;
auto_mask_.clear();
FreeDeconvolutionAlgorithms();
table_ = std::move(table);
if (table_->OriginalGroups().empty()) {
throw std::runtime_error("Nothing to clean");
}
if (!std::isfinite(beam_size_)) {
Logger::Warn << "No proper beam size available in deconvolution!\n";
beam_size_ = 0.0;
}
std::unique_ptr<algorithms::DeconvolutionAlgorithm> algorithm;
switch (settings_.algorithm_type) {
case AlgorithmType::kGenericClean:
algorithm = std::make_unique<algorithms::GenericClean>(
settings_.generic.use_sub_minor_optimization);
break;
case AlgorithmType::kAdaptiveScalePixel:
algorithm = std::make_unique<algorithms::AspAlgorithm>(
settings_.multiscale, beam_size_, pixel_scale_x_, pixel_scale_y_);
break;
case AlgorithmType::kIuwt:
algorithm = std::make_unique<algorithms::IuwtDeconvolution>();
break;
case AlgorithmType::kMoreSane:
algorithm = std::make_unique<algorithms::MoreSane>(settings_.more_sane,
settings_.prefix_name);
break;
case AlgorithmType::kMultiscale:
algorithm = std::make_unique<algorithms::MultiScaleAlgorithm>(
settings_.multiscale, beam_size_, pixel_scale_x_, pixel_scale_y_,
settings_.save_source_list);
break;
case AlgorithmType::kPython:
algorithm = std::make_unique<algorithms::PythonDeconvolution>(
settings_.python.filename);
break;
}
algorithm->SetMaxIterations(settings_.minor_iteration_count);
algorithm->SetThreshold(settings_.absolute_threshold);
algorithm->SetMinorLoopGain(settings_.minor_loop_gain);
algorithm->SetMajorLoopGain(settings_.major_loop_gain);
algorithm->SetCleanBorderRatio(settings_.border_ratio);
algorithm->SetDivergenceLimit(settings_.divergence_limit);
algorithm->SetAllowNegativeComponents(settings_.allow_negative_components);
algorithm->SetStopOnNegativeComponents(settings_.stop_on_negative_components);
const size_t n_polarizations = table_->OriginalGroups().front().size();
algorithm->SetSpectralFitter(CreateSpectralFitter(), n_polarizations);
parallel_deconvolution_->SetAlgorithm(std::move(algorithm));
if (settings_.spectral_fitting.mode == SpectralFittingMode::kForcedTerms) {
ReadForcedSpectrumImages();
}
ReadMask(*table_);
}
void Radler::FreeDeconvolutionAlgorithms() {
parallel_deconvolution_->FreeDeconvolutionAlgorithms();
table_.reset();
}
bool Radler::IsInitialized() const {
return parallel_deconvolution_->IsInitialized();
}
size_t Radler::IterationNumber() const {
return parallel_deconvolution_->FirstAlgorithm().IterationNumber();
}
void Radler::ReadForcedSpectrumImages() {
Logger::Debug << "Reading " << settings_.spectral_fitting.forced_filename
<< ".\n";
FitsReader reader(settings_.spectral_fitting.forced_filename, false, true);
if (reader.ImageWidth() != image_width_ ||
reader.ImageHeight() != image_height_) {
throw std::runtime_error(
"The image dimensions of the forced spectrum fits file do not match "
"the deconvolved image dimensions");
}
if (reader.NImages() + 1 != settings_.spectral_fitting.terms) {
throw std::runtime_error(
"The number of images in the forced spectrum fits file does not match "
"the deconvolved image dimensions");
}
std::vector<Image> terms(reader.NImages());
for (size_t spectral_term = 0; spectral_term != reader.NImages();
++spectral_term) {
terms[spectral_term] = Image(image_width_, image_height_);
reader.ReadIndex(terms[spectral_term].Data(), spectral_term);
}
parallel_deconvolution_->SetSpectrallyForcedImages(std::move(terms));
}
void Radler::ReadMask(const WorkTable& group_table) {
bool has_mask = false;
if (!settings_.fits_mask.empty()) {
FitsReader mask_reader(settings_.fits_mask, true, true);
if (mask_reader.ImageWidth() != image_width_ ||
mask_reader.ImageHeight() != image_height_) {
throw std::runtime_error(
"Specified Fits file mask did not have same dimensions as output "
"image!");
}
aocommon::UVector<float> mask_data(image_width_ * image_height_);
if (mask_reader.NFrequencies() == 1) {
Logger::Debug << "Reading mask '" << settings_.fits_mask << "'...\n";
mask_reader.Read(mask_data.data());
} else if (mask_reader.NFrequencies() == settings_.channels_out) {
Logger::Debug << "Reading mask '" << settings_.fits_mask << "' ("
<< (group_table.Front().mask_channel_index + 1) << ")...\n";
mask_reader.ReadIndex(mask_data.data(),
group_table.Front().mask_channel_index);
} else {
std::stringstream msg;
msg << "The number of frequencies in the specified fits mask ("
<< mask_reader.NFrequencies()
<< ") does not match the number of requested output channels ("
<< settings_.channels_out << ")";
throw std::runtime_error(msg.str());
}
clean_mask_.assign(image_width_ * image_height_, false);
for (size_t i = 0; i != image_width_ * image_height_; ++i) {
clean_mask_[i] = (mask_data[i] != 0.0);
}
has_mask = true;
} else if (!settings_.casa_mask.empty()) {
if (clean_mask_.empty()) {
Logger::Info << "Reading CASA mask '" << settings_.casa_mask << "'...\n";
clean_mask_.assign(image_width_ * image_height_, false);
utils::CasaMaskReader mask_reader(settings_.casa_mask);
if (mask_reader.Width() != image_width_ ||
mask_reader.Height() != image_height_) {
throw std::runtime_error(
"Specified CASA mask did not have same dimensions as output "
"image!");
}
mask_reader.Read(clean_mask_.data());
}
has_mask = true;
}
if (settings_.horizon_mask_distance) {
if (!has_mask) {
clean_mask_.assign(image_width_ * image_height_, true);
has_mask = true;
}
double fov_sq = M_PI_2 - *settings_.horizon_mask_distance;
if (fov_sq < 0.0) fov_sq = 0.0;
if (fov_sq <= M_PI_2) {
fov_sq = std::sin(fov_sq);
} else { // a negative horizon distance was given
fov_sq = 1.0 - *settings_.horizon_mask_distance;
}
fov_sq = fov_sq * fov_sq;
bool* ptr = clean_mask_.data();
for (size_t y = 0; y != image_height_; ++y) {
for (size_t x = 0; x != image_width_; ++x) {
double l, m;
ImageCoordinates::XYToLM(x, y, pixel_scale_x_, pixel_scale_y_,
image_width_, image_height_, l, m);
if (l * l + m * m >= fov_sq) *ptr = false;
++ptr;
}
}
Logger::Info << "Saving horizon mask...\n";
Image image(image_width_, image_height_);
for (size_t i = 0; i != image_width_ * image_height_; ++i) {
image[i] = clean_mask_[i] ? 1.0 : 0.0;
}
FitsWriter writer;
writer.SetImageDimensions(image_width_, image_height_,
settings_.pixel_scale.x, settings_.pixel_scale.y);
std::string filename = settings_.horizon_mask_filename;
if (filename.empty()) {
filename = settings_.prefix_name + "-horizon-mask.fits";
}
writer.Write(filename, image.Data());
}
if (has_mask) parallel_deconvolution_->SetCleanMask(clean_mask_.data());
}
} // namespace radler
|