1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# SPDX-License-Identifier: LGPL-3.0-only
import radler as rd
import numpy as np
# Tests for the VectorUniquePtrImageAccessor classe. This class is created in
# C++ and can't be created directly by Python. They are available in a
# WorkTableEntry so the tests use that class as a provider for the tested
# classes.
def test_vector_unique_ptr_image_accessor_append():
data = np.zeros((1, 1), dtype=np.float32)
entry = rd.WorkTableEntry()
vector = entry.psfs
assert len(vector) == 0
vector.append(data)
assert len(vector) == 1
def get_psf_rectangular(size, width, height):
"""Define a PSF with a rectangular shape"""
psf = np.zeros((size, size), dtype=np.float32)
psf[
size // 2 - height : size // 2 + height + 1,
size // 2 - width : size // 2 + width + 1,
] = 0.4
psf[size // 2, size // 2] = 1
return psf
def get_psf_cross(size, width, height):
"""Define a PSF with a cross shape"""
psf = np.zeros((size, size), dtype=np.float32)
psf[size // 2 - height : size // 2 + height + 1, size // 2] = 0.4
psf[size // 2, size // 2 - width : size // 2 + width + 1] = 0.4
psf[size // 2, size // 2] = 1
return psf
def get_subimage(center_point_x, center_point_y, interval, img):
"""Returns a square from the input image img, with center in (center_point_x, center_point_y) and width/height = 2 * interval"""
return img[
center_point_x - interval : center_point_x + interval + 1,
center_point_y - interval : center_point_y + interval + 1,
]
def check_values(current_psf, residual, psf_center, source_coords):
"""Asserts that the residual and PSF have the same shape"""
# Since the point source does not lie in the center of the region (a random shift is applied), the PSF and the residual need to be aligned to have a shape match
# Select the region in the residual image (one of the 9 in the grid) corresponding to the input PSF coordinates
subimage_residual = get_subimage(
psf_center[0], psf_center[1], 15, residual
)
# Select a 10x10 region centered around the point source
subimage_residual_centered = get_subimage(
source_coords[0] % 30, source_coords[1] % 30, 5, subimage_residual
)
# Only consider a 10x10 region in the center of the PSF
subimage_psf = get_subimage(
current_psf.shape[0] // 2, current_psf.shape[1] // 2, 5, current_psf
)
# If the shapes match, the sum between residual and PSF contains only the point source in its center
combined = subimage_residual_centered + subimage_psf
np.testing.assert_allclose(
combined[combined.shape[0] // 2, combined.shape[0] // 2],
1,
rtol=1e-5,
atol=1e-6,
)
# After its value is checked, we can reset the center point to 0 to make the next check easier
combined[5, 5] = 0
np.testing.assert_allclose(
combined, np.zeros_like(combined), rtol=1e-6, atol=1e-6
)
def test_direction_dependent_psfs():
"""
This test checks that each point is deconvolved with the closest PSF:
1. Place 9 PSF on a regular 3x3 grid.
2. Place 9 point sources on a semi-regular grid.
3. Run one iteration of deconvolution with multiple PSFs and parallel deconvolution.
4. Check in the residual that the correct PSF has been subtracted.
This test is also documented at https://confluence.skatelescope.org/display/SE/Test+DD+PSFs
"""
image_size = 90
psf_size = image_size // 3
# Define a grid of 9 PSFs
# The coordinates given in the work table are the center of each cell in the grid.
center_offset = psf_size // 2
psf_centers = np.zeros((9, 2), dtype=np.int64)
for i in range(3):
for k in range(3):
coord_x = i * image_size // 3 + center_offset
coord_y = k * image_size // 3 + center_offset
psf_centers[3 * i + k, :] = [coord_x, coord_y]
work_table = rd.WorkTable(psf_centers, 0, 0)
# Define 9 PSFs with different shapes
# psf_size = image_size # TODO: remove after MR !87 is merged
w1 = 2
w2 = 4
w3 = 8
entry = rd.WorkTableEntry()
direction_dependent_psfs = []
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, w2, w2)
) # Square
direction_dependent_psfs.append(
get_psf_cross(psf_size, w2, w2)
) # Symmetrical cross
direction_dependent_psfs.append(
get_psf_cross(psf_size, w1, w3)
) # Horizontal cross
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, w2, 0)
) # Vertical line
direction_dependent_psfs.append(
get_psf_cross(psf_size, w3, w1)
) # Vertical cross
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, w2, w1)
) # Vertical rectangle
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, 0, w2)
) # Horizontal line
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, 0, 0)
) # Point
direction_dependent_psfs.append(
get_psf_rectangular(psf_size, w1, w2)
) # Horizontal rectangle
# Define dirty image. There are 9 points, one in each of the 9 regions defined by the PSF grid.
# The point is not in the center of the grid, but a random shift is applied (the point will remain in its region)
residual = np.zeros((image_size, image_size), dtype=np.float32)
np.random.seed(10)
rand_interval = 4
source_coords = np.zeros((9, 2), dtype=np.int64)
for i in range(3):
for k in range(3):
point_offset = np.random.randint(-rand_interval, rand_interval)
coord_x = psf_centers[3 * i + k, 0] + point_offset
coord_y = psf_centers[3 * i + k, 1] + point_offset
source_coords[3 * i + k, :] = [coord_x, coord_y]
for p in source_coords:
residual[p[0], p[1]] = 1
# Initialize an empty model image
model = np.zeros((image_size, image_size), np.float32)
# Define work table entry
for psf in direction_dependent_psfs:
entry.psfs.append(psf)
entry.residual = residual
entry.model = model
entry.polarization = rd.Polarization.stokes_i
entry.image_weight = 1.0
work_table.add_entry(entry)
# Define deconvolution settings
settings = rd.Settings()
settings.algorithm_type = rd.AlgorithmType.generic_clean
settings.trimmed_image_width = image_size
settings.trimmed_image_height = image_size
settings.pixel_scale.x = 1.0
settings.pixel_scale.y = 1.0
settings.minor_iteration_count = 1
settings.minor_loop_gain = 1.0
# The settings for parallel deconvolution give the same number of subimages as the PSF grid
settings.parallel.grid_width = 3
settings.parallel.grid_height = 3
settings.parallel.max_threads = 1
# Run 1 iteration of deconvolution
radler_object = rd.Radler(settings, work_table, 0)
radler_object.perform(0)
# Verify that the correct PSF is applied in the corresponding region
check_values(
direction_dependent_psfs[0], residual, psf_centers[0], source_coords[0]
)
check_values(
direction_dependent_psfs[3], residual, psf_centers[1], source_coords[1]
)
check_values(
direction_dependent_psfs[6], residual, psf_centers[2], source_coords[2]
)
check_values(
direction_dependent_psfs[1], residual, psf_centers[3], source_coords[3]
)
check_values(
direction_dependent_psfs[4], residual, psf_centers[4], source_coords[4]
)
check_values(
direction_dependent_psfs[7], residual, psf_centers[5], source_coords[5]
)
check_values(
direction_dependent_psfs[2], residual, psf_centers[6], source_coords[6]
)
check_values(
direction_dependent_psfs[5], residual, psf_centers[7], source_coords[7]
)
check_values(
direction_dependent_psfs[8], residual, psf_centers[8], source_coords[8]
)
|