1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#include "directmsgridder.h"
#include "msgriddermanager.h"
#include "../main/progressbar.h"
#include "../msproviders/msprovider.h"
#include "../msproviders/msreaders/msreader.h"
#include <thread>
#include <vector>
#include <aocommon/threadpool.h>
namespace wsclean {
template <typename num_t>
DirectMSGridder<num_t>::DirectMSGridder(
const Settings& settings, const Resources& resources,
MsProviderCollection& ms_provider_collection)
: MsGridder(settings, ms_provider_collection), _resources(resources) {}
template <typename num_t>
void DirectMSGridder<num_t>::StartInversion() {
_sqrtLMTable = GetSqrtLMLookupTable();
ResetVisibilityCounters();
progress_bar_ =
std::make_unique<ProgressBar>("Performing direct Fourier transform");
_inversionLane.resize(_resources.NCpus() * 1024);
for (size_t t = 0; t != _resources.NCpus(); ++t) {
_layers.emplace_back(aocommon::ImageBase<num_t>(TrimWidth(), TrimHeight(),
static_cast<num_t>(0.0)));
}
aocommon::ThreadPool& thread_pool = aocommon::ThreadPool::GetInstance();
thread_pool.SetNThreads(_resources.NCpus() + 1);
thread_pool.StartParallelExecution([&](size_t thread_index) {
const size_t layer = thread_index - 1;
InversionSample sample;
while (_inversionLane.read(sample)) {
gridSample(sample, layer);
}
});
}
template <typename num_t>
size_t DirectMSGridder<num_t>::GridMeasurementSet(
const MsProviderCollection::MsData& ms_data) {
InvertMeasurementSet(ms_data, ms_data.internal_ms_index);
return 0;
}
template <typename num_t>
void DirectMSGridder<num_t>::FinishInversion() {
_inversionLane.write_end();
aocommon::ThreadPool::GetInstance().FinishParallelExecution();
aocommon::ImageBase<num_t> scratch = std::move(_layers.back());
_layers.pop_back();
for (const aocommon::ImageBase<num_t>& layer : _layers) {
scratch += layer;
}
_layers.clear();
_sqrtLMTable.Reset();
const size_t width = TrimWidth();
const size_t height = TrimHeight();
// Wrap the image correctly and normalize it
_image = aocommon::Image(TrimWidth(), TrimHeight());
const double weight_factor = 1.0 / ImageWeight();
for (size_t y = 0; y != height; ++y) {
size_t ySrc = (height - y) + height / 2;
if (ySrc >= height) ySrc -= height;
for (size_t x = 0; x != width; ++x) {
size_t xSrc = x + width / 2;
if (xSrc >= width) xSrc -= width;
_image[x + y * width] = scratch[xSrc + ySrc * width] * weight_factor;
}
}
progress_bar_.reset();
}
template <typename num_t>
inline void DirectMSGridder<num_t>::gridSample(const InversionSample& sample,
size_t layerIndex) {
// Contribution of one visibility:
// I(l, m) = V(u, v, w) exp (2 pi i (ul + vm + w (sqrt(1 - l^2 - m^2) - 1)))
// Since every visibility has a conjugate visibility for (-u, -v, -w), we
// can simultaneously add:
// Ic(l, m) = V^*(u, v, w) exp (-2 pi i (ul + vm + w (sqrt(1 - l^2 - m^2) -
// 1)))
// Adding those together gives one real value:
// I+Ic = real(V) 2 cos (2 pi (ul + vm + w (sqrt(1 - l^2 - m^2) - 1))) -
// imag(V) 2 sin (2 pi (ul + vm + w (sqrt(1 - l^2 - m^2) - 1)))
aocommon::ImageBase<num_t>& layer = _layers[layerIndex];
const std::complex<num_t> val = sample.sample;
const size_t width = TrimWidth();
const size_t height = TrimHeight();
constexpr num_t minTwoPi = num_t(-2.0 * M_PI);
const num_t u = sample.uInLambda;
const num_t v = sample.vInLambda;
const num_t w = sample.wInLambda;
for (size_t y = 0; y != height; ++y) {
const size_t yIndex = y * width;
size_t ySrc = (height - y) + height / 2;
if (ySrc >= height) ySrc -= height;
const num_t m =
num_t(((num_t)ySrc - (height / 2)) * PixelSizeY() + MShift());
for (size_t x = 0; x != width; ++x) {
size_t xSrc = x + width / 2;
if (xSrc >= width) xSrc -= width;
const num_t l =
num_t(((width / 2) - (num_t)xSrc) * PixelSizeX() + LShift());
const size_t index = yIndex + x;
const num_t angle = minTwoPi * (u * l + v * m + w * _sqrtLMTable[index]);
layer[index] +=
val.real() * std::cos(angle) - val.imag() * std::sin(angle);
}
}
}
template <typename num_t>
void DirectMSGridder<num_t>::InvertMeasurementSet(
const MsProviderCollection::MsData& ms_data, size_t ms_index) {
const size_t n_vis_polarizations = ms_data.ms_provider->NPolarizations();
const aocommon::BandData selected_band(ms_data.SelectedBand());
const size_t data_size = selected_band.ChannelCount() * n_vis_polarizations;
aocommon::UVector<std::complex<float>> model_buffer(data_size);
aocommon::UVector<float> weight_buffer(data_size);
aocommon::UVector<bool> selection_buffer(selected_band.ChannelCount(), true);
InversionRow row_data;
aocommon::UVector<std::complex<float>> row_visibilities(data_size);
row_data.data = row_visibilities.data();
std::vector<size_t> id_to_ms_row;
ms_data.ms_provider->MakeIdToMSRowMapping(id_to_ms_row);
size_t rowIndex = 0;
std::unique_ptr<MSReader> ms_reader = ms_data.ms_provider->MakeReader();
while (ms_reader->CurrentRowAvailable()) {
progress_bar_->SetProgress(ms_index * id_to_ms_row.size() + rowIndex,
GetMsCount() * id_to_ms_row.size());
MSProvider::MetaData metadata;
ms_reader->ReadMeta(metadata);
row_data.uvw[0] = metadata.uInM;
row_data.uvw[1] = metadata.vInM;
row_data.uvw[2] = metadata.wInM;
GetCollapsedVisibilities(*ms_reader, ms_data.antenna_names.size(), row_data,
selected_band, weight_buffer.data(),
model_buffer.data(), selection_buffer.data(),
metadata);
InversionSample sample;
for (size_t channel = 0; channel != selected_band.ChannelCount();
++channel) {
const double wavelength = selected_band.ChannelWavelength(channel);
sample.uInLambda = row_data.uvw[0] / wavelength;
sample.vInLambda = row_data.uvw[1] / wavelength;
sample.wInLambda = row_data.uvw[2] / wavelength;
sample.sample = row_data.data[channel];
_inversionLane.write(sample);
}
ms_reader->NextInputRow();
++rowIndex;
}
}
template <typename num_t>
void DirectMSGridder<num_t>::StartPredict(
std::vector<aocommon::Image>&& /*image*/) {
throw std::runtime_error(
"Prediction not yet implemented for direct FT gridding");
}
template <typename num_t>
size_t DirectMSGridder<num_t>::PredictMeasurementSet(
const MsProviderCollection::MsData& /*ms_data*/) {
throw std::runtime_error(
"Prediction not yet implemented for direct FT gridding");
return 0;
}
template <typename num_t>
void DirectMSGridder<num_t>::FinishPredict() {
throw std::runtime_error(
"Prediction not yet implemented for direct FT gridding");
}
template <typename num_t>
aocommon::ImageBase<num_t> DirectMSGridder<num_t>::GetSqrtLMLookupTable()
const {
const size_t width = TrimWidth();
const size_t height = TrimHeight();
aocommon::ImageBase<num_t> sqrtLMTable(ImageWidth(), ImageHeight());
num_t* iter = sqrtLMTable.Data();
for (size_t y = 0; y != height; ++y) {
size_t ySrc = (height - y) + height / 2;
if (ySrc >= height) ySrc -= height;
num_t m = num_t(((num_t)ySrc - (height / 2)) * PixelSizeY() + MShift());
for (size_t x = 0; x != width; ++x) {
size_t xSrc = x + width / 2;
if (xSrc >= width) xSrc -= width;
num_t l = num_t(((width / 2) - (num_t)xSrc) * PixelSizeX() + LShift());
if (l * l + m * m < 1.0)
*iter = std::sqrt(1.0 - l * l - m * m) - 1.0;
else
*iter = 0.0;
++iter;
}
}
return sqrtLMTable;
}
template class DirectMSGridder<float>;
template class DirectMSGridder<double>;
template class DirectMSGridder<long double>;
} // namespace wsclean
|