1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
|
#ifndef WSCLEAN_GRIDDING_MS_GRIDDER_DATA_H_
#define WSCLEAN_GRIDDING_MS_GRIDDER_DATA_H_
#include "gridmode.h"
#include <aocommon/banddata.h>
#include <aocommon/image.h>
#include <aocommon/polarization.h>
#include <aocommon/imagecoordinates.h>
#include "../msproviders/msreaders/msreader.h"
#include "h5solutiondata.h"
#include "msprovidercollection.h"
#include "visibilitymodifier.h"
#include "visibilityweightingmode.h"
#include "../main/settings.h"
#include "../scheduling/griddingtaskmanager.h"
#include <aocommon/uvector.h>
namespace wsclean {
enum class PsfMode {
kNone, // Not a psf, grid the visibilities in the MS
kSingle, // Grid generated visibilities for a point source at the centre of
// the main image
kDirectionDependent // Grid generated visibilities for a point source at the
// centre of the current facet
};
namespace internal {
template <size_t PolarizationCount>
inline void CollapseData(
size_t n_channels, std::complex<float>* buffer,
[[maybe_unused]] aocommon::PolarizationEnum polarization) {
if constexpr (PolarizationCount == 2) {
for (size_t ch = 0; ch != n_channels; ++ch) {
buffer[ch] = buffer[ch * PolarizationCount] +
buffer[(ch * PolarizationCount + (PolarizationCount - 1))];
}
} else if constexpr (PolarizationCount == 4) {
for (size_t ch = 0; ch != n_channels; ++ch) {
buffer[ch] = aocommon::Polarization::ConvertFromLinear(
buffer + ch * PolarizationCount, polarization);
}
} else
throw std::runtime_error("Invalid polarization conversion");
}
template <size_t PolarizationCount>
inline void ExpandData(
size_t n_channels, std::complex<float>* buffer, std::complex<float>* output,
[[maybe_unused]] aocommon::PolarizationEnum polarization) {
if constexpr (PolarizationCount == 2) {
for (size_t ch = 0; ch != n_channels; ++ch) {
output[ch * 2] = buffer[ch];
output[ch * 2 + 1] = buffer[ch];
}
} else if constexpr (PolarizationCount == 4) {
for (size_t i = 0; i != n_channels; ++i) {
const size_t ch = n_channels - 1 - i;
aocommon::Polarization::ConvertToLinear(buffer[ch], polarization,
&output[ch * 4]);
}
} else
throw std::runtime_error("Invalid polarization conversion");
}
} // namespace internal
/**
* MsGridder stores a collection of methods and data required for computing and
* working with the data required for gridding a measurement set, including
* Calculation of weights and applying corrections.
*
* Data stored in this class is generally specific to a single measurement set,
* however some more general (used across multiple MS) data is also stored for
* convenience where it is required by one of the methods supported.
*
* MsGridderData is usually used via @ref MsGridder. However when doing shared
* reads, @ref MsGridderManager instead instantiates a single @ref MsGridderData
* for multiple gridders, uses it to prepare a single data buffer for gridding
* and then passes that buffer into the gridders.
*/
class MsGridderData {
public:
MsGridderData(const Settings& settings);
virtual ~MsGridderData() = default;
/* Copy all member variables relating to task data into another MsGridderData.
* member variables not related to task data are left as is.
*/
void CopyTaskData(MsGridderData& other, const H5SolutionData& solution_data,
MsProviderCollection::MsData& ms_data) {
psf_mode_ = other.psf_mode_;
main_image_dl_ = other.main_image_dl_;
main_image_dm_ = other.main_image_dm_;
facet_group_index_ = other.facet_group_index_;
is_facet_ = other.is_facet_;
do_subtract_model_ = other.do_subtract_model_;
polarization_ = other.polarization_;
l_shift_ = other.l_shift_;
m_shift_ = other.m_shift_;
SetImageWeights(other.GetImageWeights());
if (solution_data.HasData()) {
visibility_modifier_.SetMSTimes(ms_data.original_ms_index,
ms_data.unique_times);
visibility_modifier_.SetH5Parm(
solution_data.GetH5Parms(), solution_data.GetFirstSolutions(),
solution_data.GetSecondSolutions(), solution_data.GetGainTypes());
}
}
bool WillApplyCorrections() const {
if (IsFacet() && (GetPsfMode() != PsfMode::kSingle)) {
#ifdef HAVE_EVERYBEAM
const bool apply_beam =
settings_.applyFacetBeam || settings_.gridWithBeam;
if (apply_beam) return true;
#endif
if (visibility_modifier_.HasH5Parm()) {
return true;
}
}
return false;
}
/**
* Applies the selected visibility modifier (selected by Mode)
* solutions to the visibilities and computes the weight corresponding to the
* combined effect.
*
* @tparam Behaviour See @ref ModifierBehaviour and @ref @ref
* ApplyConjugatedParmResponse for more information
* @tparam LoadResponse This should always be true unless the calling code
* knows the response has already been loaded previously, e.g. if we first
* call `ApplyCorrections<Mode, kSum, true>(...)` we can then afterwards call
* `ApplyCorrection<Mode, kApply, false>(...)` for the same values
*/
template <GainMode Mode,
ModifierBehaviour Behaviour = ModifierBehaviour::kApplyAndSum,
bool LoadResponse = true, bool UseBufferedOffsets = false>
void ApplyCorrections(size_t n_antennas, std::complex<float>* visibility_row,
const aocommon::BandData& band,
const float* weight_buffer,
const MSProvider::MetaData& metadata);
template <GainMode Mode,
ModifierBehaviour Behaviour = ModifierBehaviour::kApplyAndSum,
bool LoadResponse = true>
void ApplyCorrections(size_t n_antennas, std::complex<float>* visibility_row,
const aocommon::BandData& band,
const float* weight_buffer, double time,
size_t field_id, size_t antenna1, size_t antenna2,
size_t& time_offset, float* scratch_image_weights);
/**
* Initializes MS related data members, i.e. the @c _telescope and the
* @c _pointResponse data in case a beam is applied on the facets and
* EveryBeam is available and the @c _predictReader data member in case
* @c isPredict is true.
*/
void StartMeasurementSet(size_t ms_count,
const MsProviderCollection::MsData& ms_data,
bool is_predict);
/**
* Write (modelled) visibilities to MS, provides an interface to
* MSProvider::WriteModel(). Any active facet beam or solution corrections
* are applied. Method is templated on the number of
* polarizations (1, 2 or 4). The gain_mode can be used to
* select an entry or entries from the gain matrix that should be used for the
* correction.
* @param buffer should on entry contain n_channels visibilities to be
* written.
*/
void WriteCollapsedVisibilities(MSProvider& ms_provider, size_t n_antennas,
const aocommon::BandData& band,
std::complex<float>* buffer,
MSProvider::MetaData& metadata) {
switch (n_vis_polarizations_) {
case 1:
WriteInstrumentalVisibilities(ms_provider, n_antennas, band, buffer,
metadata);
break;
case 2:
internal::ExpandData<2>(band.ChannelCount(), buffer,
scratch_model_data_.data(), Polarization());
WriteInstrumentalVisibilities(ms_provider, n_antennas, band,
scratch_model_data_.data(), metadata);
break;
case 4:
internal::ExpandData<4>(band.ChannelCount(), buffer,
scratch_model_data_.data(), Polarization());
WriteInstrumentalVisibilities(ms_provider, n_antennas, band,
scratch_model_data_.data(), metadata);
break;
}
}
/**
* Similar to @ref WriteCollapsedVisibilities(), but assumes the input are
* instrumental visibilities.
* @param buffer n_polarizations x n_channels entries, which are the
* instrumental visibilities.
*/
void WriteInstrumentalVisibilities(MSProvider& ms_provider, size_t n_antennas,
const aocommon::BandData& band,
std::complex<float>* buffer,
MSProvider::MetaData& metadata);
bool HasDenormalPhaseCentre() const {
return l_shift_ != 0.0 || m_shift_ != 0.0;
}
double ImageWeight() const {
return total_weight_ / GetNVisibilities(gain_mode_);
}
void ReadPredictMetaData(MSProvider::MetaData& metadata);
void ResetVisibilityModifierCache(size_t ms_count);
double PixelSizeX() const { return settings_.pixelScaleX; }
double PixelSizeY() const { return settings_.pixelScaleY; }
/**
* This is the sum of the weights as given by the measurement set, before the
* image weighting is applied.
*/
double VisibilityWeightSum() const { return visibility_weight_sum_; }
/**
* The number of visibilities that were gridded.
*/
size_t GriddedVisibilityCount() const { return gridded_visibility_count_; }
/**
* The maximum weight, after having applied the imaging weighting.
*/
double MaxGriddedWeight() const { return max_gridded_weight_; }
/**
* The effective number of visibilities, taking into account imaging weighting
* and visibility weighting. This number is relative to the "best" visibility:
* if one visibility with a weight of 10 and 5 visibilities with
* a weight of 4 were gridded, the effective number of visibilities is
* (10 + 5 x 4) / 10 = 3
*/
double EffectiveGriddedVisibilityCount() const {
return ImageWeight() / MaxGriddedWeight();
}
void ResetVisibilityCounters() {
gridded_visibility_count_ = 0;
total_weight_ = 0.0;
max_gridded_weight_ = 0.0;
visibility_weight_sum_ = 0.0;
}
bool DoSubtractModel() const { return do_subtract_model_; }
void SetDoSubtractModel(bool do_subtract_model) {
do_subtract_model_ = do_subtract_model;
}
PsfMode GetPsfMode() const { return psf_mode_; }
void SetPsfMode(PsfMode psf_mode) { psf_mode_ = psf_mode; }
VisibilityWeightingMode GetVisibilityWeightingMode() const {
return visibility_weighting_mode_;
}
double MainImageDL() const { return main_image_dl_; }
void SetMainImageDL(const double main_image_dl) {
main_image_dl_ = main_image_dl;
}
double MainImageDM() const { return main_image_dm_; }
void SetMainImageDM(const double main_image_dm) {
main_image_dm_ = main_image_dm;
}
aocommon::PolarizationEnum Polarization() const { return polarization_; }
void SetPolarization(aocommon::PolarizationEnum polarization) {
polarization_ = polarization;
}
VisibilityModifier& GetVisibilityModifier() { return visibility_modifier_; };
const VisibilityModifier& GetVisibilityModifier() const {
return visibility_modifier_;
};
/**
* @brief In case of facet-based imaging, the model data in the @param
* MSProvider is reset to zeros in every major cycle, and predicted data
* should be add-assigned to the model data (_isFacet = true) rather
* than overwriting it. For standard imaging (_isFacet = false), the model
* data should be overwritten.
*/
void SetIsFacet(bool is_facet) { is_facet_ = is_facet; }
bool IsFacet() const { return is_facet_; }
void SetLShift(const double l_shift) { l_shift_ = l_shift; }
double LShift() const { return l_shift_; }
void SetMShift(const double m_shift) { m_shift_ = m_shift; }
double MShift() const { return m_shift_; }
const ImageWeights* GetImageWeights() const {
return precalculated_weight_info_;
}
void SetImageWeights(const ImageWeights* weights) {
precalculated_weight_info_ = weights;
}
bool StoreImagingWeights() const { return store_imaging_weights_; }
void SetStoreImagingWeights(bool store_imaging_weights) {
store_imaging_weights_ = store_imaging_weights;
}
void SetWriterLockManager(GriddingTaskManager* writer_lock_manager) {
writer_lock_manager_ = writer_lock_manager;
}
void SetFacetGroupIndex(size_t index) { facet_group_index_ = index; }
const Settings& GetSettings() const { return settings_; }
GainMode GetGainMode() const { return gain_mode_; }
/**
* The average squared Mueller correction of all applied corrections.
* This is the weighted sum of squared Mueller matrices, divided by the sum of
* weights. It is zero if no corrections are applied.
* @sa VisibilityModifier::TotalCorrectionSum().
*/
AverageCorrection GetAverageCorrection() const {
if (ImageWeight() != 0.0) {
return visibility_modifier_.TotalCorrectionSum() / ImageWeight();
} else {
return AverageCorrection();
}
}
/**
* The average squared Mueller correction. This is the weighted sum of
* squared Mueller matrices, divided by the sum of weights.
* It is zero if not both beam and solution corrections are applied.
* @sa VisibilityModifier::TotalCorrectionSum().
*/
AverageCorrection GetAverageBeamCorrection() const {
if (ImageWeight() != 0.0) {
return visibility_modifier_.BeamCorrectionSum() / ImageWeight();
} else {
return AverageCorrection();
}
}
struct InversionRow {
double uvw[3];
std::complex<float>* data;
};
template <size_t PolarizationCount>
static void RotateVisibilities(const aocommon::BandData& band,
double shift_factor,
std::complex<float>* data_iter);
protected:
/**
* Read a row of visibility and weights from the msprovider
*
* Use this function to correctly populate an InversionRow structure and an
* accompanying weight_buffer and model_buffer before calling @ref
* CollapseVisibilities() or @ref ApplyWeightsAndCorrections()
*
* @param ms_reader The measurement set provider from which data will be read
* @param row_data The caller must set this object up to point at the desired
* portion of an allocated buffer into which the visibilities will be read.
* After returning from this call the uvw paramater of this object will be
* populated with the (u/v/w)InM values of `metadata`
* @param weight_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate weights in. After returning from the call, these values will
* hold the weights from `ms_reader`
* @param model_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate model data in.
*/
inline void ReadVisibilities(MSReader& ms_reader,
std::complex<float>* row_data,
float* weight_buffer,
std::complex<float>* model_buffer) {
if (GetPsfMode() == PsfMode::kNone) {
ms_reader.ReadData(row_data);
}
if (DoSubtractModel()) {
ms_reader.ReadModel(model_buffer);
}
ms_reader.ReadWeights(weight_buffer);
}
/**
* Read a row of visibilities from the msprovider, and apply weights, flags
* and a-terms.
*
* This function applies both the selected method of visibility weighting
* (i.e. the weights that are normally stored in the WEIGHT_SPECTRUM column)
* and the imaging weight (coming from uniform or Briggs weighting, etc).
*
* To read the data, this function requires scratch weight and model buffers
* for storing intermediate values. Even if the caller does not need these
* values, they still need to provide an already allocated buffer. This is to
* avoid having to allocate memory within this method.
*
* This function collapses the visibilities in the polarization direction.
* Gridders that grid a single polarization should use this method instead of
* @ref GetInstrumentalVisibilities(). The output is stored in the first
* n_channel elements of the visibility data buffer in @c row_data.
*
* @param ms_reader The measurement set provider from which data will be read
* @param n_antennas The number of antennas
* @param row_data The resulting weighted data
* @param band The spectral band currently being imaged
* @param weight_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate weights in. After returning from the call, these values will
* hold the full applied weight (i.e. visibility weight * imaging weight).
* @param model_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate model data in.
* @param is_selected Per visibility whether that visibility will be gridded
* in this pass. When the visibility is not gridded, its weight will not be
* added to the relevant sums (visibility count, weight sum, etc.). This
* buffer is of size n_chan; i.e. it is not specified per polarization.
* @param metadata Metadata that has previously been read from a measurement
* set provider
*/
inline void GetCollapsedVisibilities(MSReader& ms_reader, size_t n_antennas,
InversionRow& row_data,
const aocommon::BandData& band,
float* weight_buffer,
std::complex<float>* model_buffer,
const bool* is_selected,
const MSProvider::MetaData& metadata) {
ReadVisibilities(ms_reader, row_data.data, weight_buffer, model_buffer);
CollapseVisibilities(n_antennas, row_data, band, weight_buffer,
model_buffer, is_selected, metadata);
if (StoreImagingWeights())
ms_reader.WriteImagingWeights(scratch_image_weights_.data());
}
/**
* Same as @ref GetCollapsedVisibilities(), but without collapsing the
* polarization direction. This implies that the output visibility buffer in
* the row_data structure will contain n_channel x n_polarization elements.
*/
template <size_t PolarizationCount>
inline void GetInstrumentalVisibilities(
MSReader& ms_reader, size_t n_antennas, InversionRow& row_data,
const aocommon::BandData& band, float* weight_buffer,
std::complex<float>* model_buffer, const bool* is_selected,
const MSProvider::MetaData& metadata) {
ReadVisibilities(ms_reader, row_data.data, weight_buffer, model_buffer);
CalculateWeightsImplementation<PolarizationCount>(
row_data.uvw, row_data.data, band, weight_buffer, model_buffer,
is_selected);
ApplyWeightsAndCorrections(n_antennas, row_data, band, weight_buffer,
metadata);
if (StoreImagingWeights())
ms_reader.WriteImagingWeights(scratch_image_weights_.data());
}
/**
* @brief Apply corrections as well as visibility and imaging weights
* Also computes the weight corresponding to the
* combined effect of the corrections.
*
* Requires `scratch_image_weights_` to be populated which is usually done by
* calling @ref CalculateWeights()
*/
void ApplyWeightsAndCorrections(size_t n_antennas, InversionRow& row_data,
const aocommon::BandData& band,
float* weight_buffer,
const MSProvider::MetaData& metadata);
/**
* Apply weights, flags and a-terms to a row of visibility data that has been
* read by @ref ReadVisibilities() and collapse in the polarization direction
*
* This function applies both the selected method of visibility weighting
* (i.e. the weights that are normally stored in the WEIGHT_SPECTRUM column)
* and the imaging weight (coming from uniform or Briggs weighting, etc).
*
* To read the data, this function requires scratch weight and model buffers
* for storing intermediate values. Even if the caller does not need these
* values, they still need to provide an already allocated buffer. This is to
* avoid having to allocate memory within this method.
*
* This function collapses the visibilities in the polarization direction.
* Gridders that grid a single polarization should use this method instead of
* @ref ApplyWeightsAndCorrections(). The output is stored in the first
* n_channel elements of the visibility data buffer in @c row_data.
*
* Normally set to one when imaging a single
* polarization. It may be set to 2 or 4 for IDG as it images multiple
* polarizations at once, and it may be set to 2 or 4 when applying
* solutions.
* @param row_data The resulting weighted data
* @param band The spectral band currently being imaged
* @param weight_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate weights in. After returning from the call, these values will
* hold the full applied weight (i.e. visibility weight * imaging weight).
* @param model_buffer An allocated buffer of size n_chan x n_pol to store
* intermediate model data in.
* @param is_selected Per visibility whether that visibility will be gridded
* in this pass. When the visibility is not gridded, its weight will not be
* added to the relevant sums (visibility count, weight sum, etc.). This
* buffer is of size n_chan; i.e. it is not specified per polarization.
* @param metadata Metadata that has previously been read from a measurement
* set provider
*/
inline void CollapseVisibilities(size_t n_antennas, InversionRow& row_data,
const aocommon::BandData& band,
float* weight_buffer,
std::complex<float>* model_buffer,
const bool* is_selected,
const MSProvider::MetaData& metadata) {
switch (n_vis_polarizations_) {
case 1:
CalculateWeightsImplementation<1>(row_data.uvw, row_data.data, band,
weight_buffer, model_buffer,
is_selected);
ApplyWeightsAndCorrections(n_antennas, row_data, band, weight_buffer,
metadata);
break;
case 2:
CalculateWeightsImplementation<2>(row_data.uvw, row_data.data, band,
weight_buffer, model_buffer,
is_selected);
ApplyWeightsAndCorrections(n_antennas, row_data, band, weight_buffer,
metadata);
internal::CollapseData<2>(band.ChannelCount(), row_data.data,
Polarization());
break;
case 4:
CalculateWeightsImplementation<4>(row_data.uvw, row_data.data, band,
weight_buffer, model_buffer,
is_selected);
ApplyWeightsAndCorrections(n_antennas, row_data, band, weight_buffer,
metadata);
internal::CollapseData<4>(band.ChannelCount(), row_data.data,
Polarization());
break;
}
}
private:
/**
* @brief Apply visibility and imaging weights
* Requires `scratch_image_weights_` to be populated which is usually done by
* calling @ref CalculateWeights()
*/
template <GainMode Mode>
void ApplyWeights(std::complex<float>* visibility_row,
const size_t channel_count, float* weight_buffer);
/**
* @brief Applies both the conjugated h5 parm
* solutions to the visibilities and computes the weight corresponding to the
* combined effect.
*
* @param apply_forward If true, also apply the forward (non-conjugated) gain.
* Used for generating a direction dependent psf, where
* both the (forward) gain needs to be applied for the
* predict/degridding step
* and the conjugate gain for the gridding step
*/
template <size_t PolarizationCount, GainMode GainEntry>
void ApplyConjugatedH5Parm(MSReader& ms_reader,
const std::vector<std::string>& antenna_names,
InversionRow& row_data,
const aocommon::BandData& band,
const float* weight_buffer,
bool apply_forward = false);
#ifdef HAVE_EVERYBEAM
/**
* @brief Applies the conjugated facet beam to the visibilities and computes
* the weight corresponding to the combined effect.
*
* @param apply_forward If true, also apply the forward (non-conjugated) gain.
* Used for generating a direction dependent psf, where
* both the (forward) gain needs to be applied for the
* predict/degridding step
* and the conjugate gain for the gridding step
*/
template <size_t PolarizationCount, GainMode GainEntry>
void ApplyConjugatedFacetBeam(MSReader& ms_reader, InversionRow& row_data,
const aocommon::BandData& band,
const float* weight_buffer,
bool apply_forward = false);
/**
* @brief Applies both the conjugated facet beam and the conjugated h5 parm
* solutions to the visibilities and computes the weight corresponding to the
* combined effect.
*
* @param apply_forward If true, also apply the forward (non-conjugated) gain.
* Used for generating a direction dependent psf, where
* both the (forward) gain needs to be applied for the
* predict/degridding step
* and the conjugate gain for the gridding step
*/
template <size_t PolarizationCount, GainMode GainEntry>
void ApplyConjugatedFacetDdEffects(
MSReader& ms_reader, const std::vector<std::string>& antenna_names,
InversionRow& row_data, const aocommon::BandData& band,
const float* weight_buffer, bool apply_forward = false);
#endif // HAVE_EVERYBEAM
inline void CalculateWeights(double* uvw_buffer,
std::complex<float>* visibility_buffer,
const aocommon::BandData& band,
float* weight_buffer,
std::complex<float>* model_buffer,
const bool* is_selected);
template <size_t PolarizationCount>
void CalculateWeightsImplementation(double* uvw_buffer,
std::complex<float>* visibility_buffer,
const aocommon::BandData& band,
float* weight_buffer,
std::complex<float>* model_buffer,
const bool* is_selected);
void InitializePointResponse(const MsProviderCollection::MsData& ms_data);
template <GainMode Mode>
void WriteInstrumentalVisibilities(MSProvider& ms_provider, size_t n_antennas,
const aocommon::BandData& band,
std::complex<float>* buffer,
MSProvider::MetaData& metadata);
const Settings& settings_;
VisibilityWeightingMode visibility_weighting_mode_ =
VisibilityWeightingMode::NormalVisibilityWeighting;
// Reset by the gridders at the start of each inversion, incremented during
// gridding
size_t gridded_visibility_count_ = 0;
double total_weight_ = 0.0;
double max_gridded_weight_ = 0.0;
double visibility_weight_sum_ = 0.0;
// These members are set from the task during InitializeGridderForTask
bool do_subtract_model_ = false;
bool is_facet_ = false; /// @see SetIsFacet()
bool store_imaging_weights_ = false;
double main_image_dl_ = 0.0;
double main_image_dm_ = 0.0;
double l_shift_ = 0.0;
double m_shift_ = 0.0;
aocommon::PolarizationEnum polarization_ = aocommon::Polarization::StokesI;
const ImageWeights* precalculated_weight_info_ = nullptr;
PsfMode psf_mode_ = PsfMode::kNone;
/// These members are initialised from MsData during StartMeasurementSet
size_t n_vis_polarizations_ = 1;
size_t original_ms_index_ = 0;
VisibilityModifier visibility_modifier_;
GainMode gain_mode_ = GainMode::kTrace;
/// Used in WriteCollapsedVisibilities() to expand visibilities into.
aocommon::UVector<std::complex<float>> scratch_model_data_;
aocommon::UVector<float> scratch_image_weights_;
/* @p _facetGroupIndex and @p _msIndex in conjunction with the @p GetMsCount()
* determine the index in the _writerGroupLocks vector, having size
* FacetGroupCount() * GetMsCount().
* These variable are only relevant for prediction.
*/
size_t facet_group_index_ = 0;
GriddingTaskManager* writer_lock_manager_ = nullptr;
size_t writer_lock_index_ = 0;
std::unique_ptr<MSReader> predict_reader_;
/* @ref MsGridderManager needs to access various methods that we would
* otherwise need to make public, as only certain parts of the code should
* access these methods we make @ref MsGridderManager a friend instead.
*/
friend class MSGridderManager;
};
template <GainMode Mode, ModifierBehaviour Behaviour, bool LoadResponse,
bool UseBufferedOffsets>
void MsGridderData::ApplyCorrections(size_t n_antennas,
std::complex<float>* visibility_row,
const aocommon::BandData& band,
const float* weight_buffer,
const MSProvider::MetaData& metadata) {
size_t time_offset = visibility_modifier_.GetTimeOffset(original_ms_index_);
ApplyCorrections<Mode, Behaviour, LoadResponse>(
n_antennas, visibility_row, band, weight_buffer, metadata.time,
metadata.fieldId, metadata.antenna1, metadata.antenna2, time_offset,
scratch_image_weights_.data());
visibility_modifier_.SetTimeOffset(original_ms_index_, time_offset);
}
// We can safely pass nullptr for weight buffer and image weights as well as
// 0 for time and field_id because these are unused in
// ModifierBehaviour::kApply mode
template <GainMode Mode, ModifierBehaviour Behaviour, bool LoadResponse>
void MsGridderData::ApplyCorrections(size_t n_antennas,
std::complex<float>* visibility_row,
const aocommon::BandData& band,
const float* weight_buffer, double time,
size_t field_id, size_t antenna1,
size_t antenna2, size_t& time_offset,
float* scratch_image_weights) {
assert((weight_buffer == nullptr) ==
(Behaviour == ModifierBehaviour::kApply));
if (IsFacet() && (GetPsfMode() != PsfMode::kSingle)) {
const bool apply_beam = settings_.applyFacetBeam || settings_.gridWithBeam;
const bool apply_forward = GetPsfMode() == PsfMode::kDirectionDependent;
if (apply_beam && visibility_modifier_.HasH5Parm()) {
#ifdef HAVE_EVERYBEAM
// Load and apply (in conjugate) both the beam and the h5parm solutions
if constexpr (LoadResponse) {
visibility_modifier_.CacheBeamResponse(time, field_id, band);
visibility_modifier_.CacheParmResponse(time, band, original_ms_index_,
time_offset);
}
visibility_modifier_.ApplyConjugatedDual<Behaviour, Mode>(
visibility_row, weight_buffer, scratch_image_weights,
band.ChannelCount(), n_antennas, antenna1, antenna2,
original_ms_index_, apply_forward, time_offset);
} else if (apply_beam) {
// Load and apply only the conjugate beam
if constexpr (LoadResponse) {
visibility_modifier_.CacheBeamResponse(time, field_id, band);
}
visibility_modifier_.ApplyConjugatedBeamResponse<Behaviour, Mode>(
visibility_row, weight_buffer, scratch_image_weights,
band.ChannelCount(), antenna1, antenna2, apply_forward);
#endif // HAVE_EVERYBEAM
} else if (visibility_modifier_.HasH5Parm()) {
// Load and apply the h5parm solutions
if constexpr (LoadResponse) {
visibility_modifier_.CacheParmResponse(time, band, original_ms_index_,
time_offset);
}
visibility_modifier_.ApplyConjugatedParmResponse<Behaviour, Mode>(
visibility_row, weight_buffer, scratch_image_weights,
original_ms_index_, band.ChannelCount(), n_antennas, antenna1,
antenna2, apply_forward, time_offset);
}
}
}
template <GainMode Mode>
inline void MsGridderData::ApplyWeights(std::complex<float>* visibility_row,
const size_t channel_count,
float* weight_buffer) {
const size_t n_pols = GetNVisibilities(Mode);
for (size_t channel = 0; channel < channel_count; channel++) {
for (size_t pol = 0; pol < n_pols; pol++) {
size_t i = channel * n_pols + pol;
const float cumWeight =
weight_buffer[i] * scratch_image_weights_[channel];
// We can use the boolean for computation instead of an if-condition
// within the loop. This allows the inner part of the loop to be
// autovectorized more easily.
const bool has_weight = cumWeight != 0.0;
if (pol == 0) {
// Visibility weight sum is the sum of weights excluding imaging weights
visibility_weight_sum_ += weight_buffer[i] * has_weight;
max_gridded_weight_ =
std::max(static_cast<double>(cumWeight), max_gridded_weight_);
gridded_visibility_count_ += has_weight;
}
// Total weight includes imaging weights
total_weight_ += cumWeight;
weight_buffer[i] = cumWeight;
visibility_row[i] *= cumWeight;
}
}
}
inline void MsGridderData::CalculateWeights(
double* uvw_buffer, std::complex<float>* visibility_buffer,
const aocommon::BandData& band, float* weight_buffer,
std::complex<float>* model_buffer, const bool* is_selected) {
switch (n_vis_polarizations_) {
case 1:
CalculateWeightsImplementation<1>(uvw_buffer, visibility_buffer, band,
weight_buffer, model_buffer,
is_selected);
break;
case 2:
CalculateWeightsImplementation<2>(uvw_buffer, visibility_buffer, band,
weight_buffer, model_buffer,
is_selected);
break;
case 4:
CalculateWeightsImplementation<4>(uvw_buffer, visibility_buffer, band,
weight_buffer, model_buffer,
is_selected);
break;
}
}
template <size_t PolarizationCount>
void MsGridderData::CalculateWeightsImplementation(
double* uvw_buffer, std::complex<float>* visibility_buffer,
const aocommon::BandData& band, float* weight_buffer,
std::complex<float>* model_buffer, const bool* is_selected) {
const std::size_t data_size = band.ChannelCount() * PolarizationCount;
if (GetPsfMode() != PsfMode::kNone) {
// Visibilities for a point source at the phase centre are all ones
std::fill_n(visibility_buffer, data_size, 1.0);
double dl = 0.0;
double dm = 0.0;
if (GetPsfMode() == PsfMode::kSingle) {
// The point source is shifted to the centre of the main image
dl = MainImageDL();
dm = MainImageDM();
} else { // GetPsfMode() == PsfMode::kDirectionDependent
// The point source is shifted to the centre of the current DdPsf
// position
dl = LShift();
dm = MShift();
}
if (dl != 0.0 || dm != 0.0) {
const double dn = std::sqrt(1.0 - dl * dl - dm * dm) - 1.0;
const double shift_factor =
2.0 * M_PI *
(uvw_buffer[0] * dl + uvw_buffer[1] * dm + uvw_buffer[2] * dn);
RotateVisibilities<PolarizationCount>(band, shift_factor,
visibility_buffer);
}
}
if (DoSubtractModel()) {
std::complex<float>* model_iter = model_buffer;
for (std::complex<float>* iter = visibility_buffer;
iter != visibility_buffer + data_size; ++iter) {
*iter -= *model_iter;
model_iter++;
}
}
// Any visibilities that are not gridded in this pass
// should not contribute to the weight sum, so set these
// to have zero weight.
for (size_t ch = 0; ch != band.ChannelCount(); ++ch) {
for (size_t p = 0; p != PolarizationCount; ++p) {
if (!is_selected[ch]) weight_buffer[ch * PolarizationCount + p] = 0.0;
}
}
switch (GetVisibilityWeightingMode()) {
case VisibilityWeightingMode::NormalVisibilityWeighting:
// The weight buffer already contains the visibility weights: do nothing
break;
case VisibilityWeightingMode::SquaredVisibilityWeighting:
// Square the visibility weights
for (size_t i = 0; i != data_size; ++i)
weight_buffer[i] *= weight_buffer[i];
break;
case VisibilityWeightingMode::UnitVisibilityWeighting:
// Set the visibility weights to one
for (size_t i = 0; i != data_size; ++i) {
if (weight_buffer[i] != 0.0) weight_buffer[i] = 1.0f;
}
break;
}
// Precompute imaging weights
for (size_t ch = 0; ch != band.ChannelCount(); ++ch) {
const double u = uvw_buffer[0] / band.ChannelWavelength(ch);
const double v = uvw_buffer[1] / band.ChannelWavelength(ch);
scratch_image_weights_[ch] = GetImageWeights()->GetWeight(u, v);
}
}
// Apply corrections as well as visibility and imaging weights
inline void MsGridderData::ApplyWeightsAndCorrections(
size_t n_antennas, InversionRow& row_data, const aocommon::BandData& band,
float* weight_buffer, const MSProvider::MetaData& metadata) {
switch (gain_mode_) {
case GainMode::kXX:
ApplyCorrections<GainMode::kXX>(n_antennas, row_data.data, band,
weight_buffer, metadata);
ApplyWeights<GainMode::kXX>(row_data.data, band.ChannelCount(),
weight_buffer);
break;
case GainMode::kYY:
ApplyCorrections<GainMode::kYY>(n_antennas, row_data.data, band,
weight_buffer, metadata);
ApplyWeights<GainMode::kYY>(row_data.data, band.ChannelCount(),
weight_buffer);
break;
case GainMode::kTrace:
ApplyCorrections<GainMode::kTrace>(n_antennas, row_data.data, band,
weight_buffer, metadata);
ApplyWeights<GainMode::kTrace>(row_data.data, band.ChannelCount(),
weight_buffer);
break;
case GainMode::k2VisDiagonal:
ApplyCorrections<GainMode::k2VisDiagonal>(n_antennas, row_data.data, band,
weight_buffer, metadata);
ApplyWeights<GainMode::k2VisDiagonal>(row_data.data, band.ChannelCount(),
weight_buffer);
break;
case GainMode::kFull:
ApplyCorrections<GainMode::kFull>(n_antennas, row_data.data, band,
weight_buffer, metadata);
ApplyWeights<GainMode::kFull>(row_data.data, band.ChannelCount(),
weight_buffer);
break;
default:
throw std::runtime_error(
"Invalid combination of visibility polarizations and gain mode");
}
}
template <size_t PolarizationCount>
void MsGridderData::RotateVisibilities(const aocommon::BandData& band,
double shift_factor,
std::complex<float>* data_iter) {
for (size_t ch = 0; ch != band.ChannelCount(); ++ch) {
const double wShiftRad = shift_factor / band.ChannelWavelength(ch);
const std::complex<float> phasor(std::cos(wShiftRad), std::sin(wShiftRad));
for (size_t p = 0; p != PolarizationCount; ++p) {
*data_iter *= phasor;
++data_iter;
}
}
}
inline void MsGridderData::WriteInstrumentalVisibilities(
MSProvider& ms_provider, size_t n_antennas, const aocommon::BandData& band,
std::complex<float>* buffer, MSProvider::MetaData& metadata) {
switch (gain_mode_) {
case GainMode::kXX:
WriteInstrumentalVisibilities<GainMode::kXX>(ms_provider, n_antennas,
band, buffer, metadata);
break;
case GainMode::kYY:
WriteInstrumentalVisibilities<GainMode::kYY>(ms_provider, n_antennas,
band, buffer, metadata);
break;
case GainMode::kTrace:
WriteInstrumentalVisibilities<GainMode::kTrace>(ms_provider, n_antennas,
band, buffer, metadata);
break;
case GainMode::k2VisDiagonal:
WriteInstrumentalVisibilities<GainMode::k2VisDiagonal>(
ms_provider, n_antennas, band, buffer, metadata);
break;
case GainMode::kFull:
WriteInstrumentalVisibilities<GainMode::kFull>(ms_provider, n_antennas,
band, buffer, metadata);
break;
}
}
template <GainMode Mode>
void MsGridderData::WriteInstrumentalVisibilities(
MSProvider& ms_provider, size_t n_antennas, const aocommon::BandData& band,
std::complex<float>* buffer, MSProvider::MetaData& metadata) {
assert(GetPsfMode() == PsfMode::kNone); // The PSF is never predicted.
#ifdef HAVE_EVERYBEAM
if (settings_.applyFacetBeam) {
visibility_modifier_.CacheBeamResponse(metadata.time, metadata.fieldId,
band);
visibility_modifier_.ApplyBeamResponse<Mode>(
buffer, band.ChannelCount(), metadata.antenna1, metadata.antenna2);
}
#endif
if (visibility_modifier_.HasH5Parm()) {
assert(!settings_.facetRegionFilename.empty());
size_t time_offset = visibility_modifier_.GetTimeOffset(original_ms_index_);
visibility_modifier_.CacheParmResponse(metadata.time, band,
original_ms_index_, time_offset);
visibility_modifier_.ApplyParmResponse<Mode>(
buffer, original_ms_index_, band.ChannelCount(), n_antennas,
metadata.antenna1, metadata.antenna2, time_offset);
visibility_modifier_.SetTimeOffset(original_ms_index_, time_offset);
}
{
std::unique_ptr<GriddingTaskManager::WriterLock> lock =
writer_lock_manager_->GetLock(writer_lock_index_);
ms_provider.WriteModel(buffer, IsFacet());
}
ms_provider.NextOutputRow();
}
} // namespace wsclean
#endif // WSCLEAN_GRIDDING_MS_GRIDDER_DATA_H_
|