File: msprovidercollection.cpp

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (306 lines) | stat: -rw-r--r-- 12,247 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include "msprovidercollection.h"

#include <vector>

#include <aocommon/logger.h>

#include "msgridder.h"
#include "msgriddermanager.h"

using aocommon::Logger;

namespace wsclean {

namespace {
template <size_t NPolInMSProvider>
inline void CalculateMsLimits(MsProviderCollection::MsData& ms_data, double u,
                              double v, double w, double baseline_in_meters,
                              double wavelength, double pixel_size_x,
                              double pixel_size_y, size_t image_width,
                              size_t image_height,
                              const ImageWeights* image_weights) {
  const double half_width = 0.5 * image_width;
  const double half_height = 0.5 * image_height;
  const double x = u * pixel_size_x * image_width;
  const double y = u * pixel_size_y * image_height;
  const double imaging_weight = image_weights->GetWeight(u, v);
  if (imaging_weight != 0.0) {
    if (std::floor(x) > -half_width && std::ceil(x) < half_width &&
        std::floor(y) > -half_height && std::ceil(y) < half_height) {
      ms_data.max_w = std::max(ms_data.max_w, std::fabs(w));
      ms_data.min_w = std::min(ms_data.min_w, std::fabs(w));
      ms_data.max_baseline_uvw =
          std::max(ms_data.max_baseline_uvw, baseline_in_meters / wavelength);
      ms_data.max_baseline_meters =
          std::max(ms_data.max_baseline_meters, baseline_in_meters);
    }
  }
}

std::vector<double> SelectH5parmTimes(MSProvider& ms_provider) {
  std::unique_ptr<MSReader> ms_reader = ms_provider.MakeReader();
  std::vector<double> unique_times;
  while (ms_reader->CurrentRowAvailable()) {
    MSProvider::MetaData meta_data;
    ms_reader->ReadMeta(meta_data);
    if (!unique_times.empty() && meta_data.time < unique_times.back()) {
      throw std::runtime_error(
          "The measurement set is not sorted in time. To apply h5parm "
          "solutions, this is currently required.");
    }
    if (unique_times.empty() || meta_data.time != unique_times.back()) {
      unique_times.emplace_back(meta_data.time);
    }
    ms_reader->NextInputRow();
  }
  return unique_times;
}
}  // namespace

void MsProviderCollection::InitializeMSDataVector(
    const std::vector<MsGridder*>& gridders, double w_limit,
    bool has_solution_data) {
  assert(Count() != 0);

  bool has_cache = false;
  for (MsGridder* facet_gridder : gridders) {
    has_cache = facet_gridder->HasMetaDataCache();
    if (!has_cache) facet_gridder->AllocateMetaDataCache(Count());

    facet_gridder->ResetVisibilityModifierCache(Count());
  }

  ms_limits_.max_baseline = 0.0;
  ms_limits_.max_w = 0.0;
  ms_limits_.min_w = std::numeric_limits<double>::max();
  for (size_t i = 0; i != Count(); ++i) {
    MsData& ms_data = ms_data_vector_[i];
    ms_data.internal_ms_index = i;
    ms_data.original_ms_index = Index(i);
    InitializeMeasurementSet(ms_data, gridders, has_cache, has_solution_data);

    ms_limits_.Calculate(ms_data.SelectedBand(),
                         ms_data.ms_provider->StartTime());
    ms_limits_.max_baseline =
        std::max(ms_limits_.max_baseline, ms_data.max_baseline_uvw);
    ms_limits_.max_w = std::max(ms_limits_.max_w, ms_data.max_w);
    ms_limits_.min_w = std::min(ms_limits_.min_w, ms_data.min_w);
  }

  ms_limits_.Validate();

  if (w_limit != 0.0) {
    ms_limits_.max_w *= (1.0 - w_limit);
    if (ms_limits_.max_w < ms_limits_.min_w)
      ms_limits_.max_w = ms_limits_.min_w;
  }

  for (MsGridder* facet_gridder : gridders) {
    facet_gridder->SetMaxW(ms_limits_.max_w);
    facet_gridder->SetMinW(ms_limits_.min_w);
    facet_gridder->SetMaxBaseline(ms_limits_.max_baseline);
  }
}

void MsProviderCollection::InitializeMS() { ms_data_vector_.resize(Count()); }

std::vector<std::string> MsProviderCollection::GetAntennaNames(
    const casacore::MSAntenna& antenna) {
  const casacore::ScalarColumn<casacore::String> antennaNameColumn(
      antenna, antenna.columnName(casacore::MSAntenna::NAME));

  std::vector<std::string> antenna_names;
  antenna_names.reserve(antennaNameColumn.nrow());
  for (size_t i = 0; i < antennaNameColumn.nrow(); ++i) {
    antenna_names.push_back(antennaNameColumn(i));
  }
  return antenna_names;
}

void MsProviderCollection::MsData::InitializeBandData(
    const casacore::MeasurementSet& ms, const MSSelection& selection) {
  band_data = aocommon::MultiBandData(ms)[data_desc_id];
  if (selection.HasChannelRange()) {
    start_channel = selection.ChannelRangeStart();
    end_channel = selection.ChannelRangeEnd();
    Logger::Debug << "Selected channels: " << start_channel << '-'
                  << end_channel << '\n';
    if (start_channel >= band_data.ChannelCount() ||
        end_channel > band_data.ChannelCount() ||
        start_channel == end_channel) {
      std::ostringstream str;
      str << "An invalid channel range was specified! Measurement set only has "
          << band_data.ChannelCount()
          << " channels, requested imaging range is " << start_channel << " -- "
          << end_channel << '.';
      throw std::runtime_error(str.str());
    }
  } else {
    start_channel = 0;
    end_channel = band_data.ChannelCount();
  }
}

void MsProviderCollection::InitializeMeasurementSet(
    MsData& ms_data, const std::vector<MsGridder*>& gridders, bool is_cached,
    bool has_solution_data) {
  MSProvider& ms_provider = MeasurementSet(ms_data.internal_ms_index);
  ms_data.ms_provider = &ms_provider;

  {
    SynchronizedMS ms(ms_provider.MS());
    if (ms->nrow() == 0)
      throw std::runtime_error("Table has no rows (no data)");

    ms_data.antenna_names = GetAntennaNames(ms->antenna());
    ms_data.data_desc_id = ms_provider.DataDescId();

    ms_data.InitializeBandData(*ms, Selection(ms_data.internal_ms_index));
  }

  // wlimits will vary across facets in a facet group, however these limits are
  // "estimates".
  // They should not be too small but can be too large (though this can have
  // performance implications.
  // As a code simplification and performance improvement we select the smallest
  // width and height out of all facets in a facet group to calculate the
  // wlimits rather than doing it individually for each one.
  size_t min_image_width = gridders[0]->ImageWidth();
  size_t min_image_height = gridders[0]->ImageHeight();
  for (const MsGridder* gridder : gridders) {
    min_image_width = std::min(min_image_width, gridder->ImageWidth());
    min_image_height = std::min(min_image_height, gridder->ImageHeight());
  }

  MetaDataCache::Entry& cache_entry =
      gridders[0]->GetMetaDataCacheItem(ms_data.internal_ms_index);

  if (is_cached) {
    ms_data.max_w = cache_entry.max_w;
    ms_data.max_w_with_flags = cache_entry.max_w_with_flags;
    ms_data.min_w = cache_entry.min_w;
    ms_data.max_baseline_uvw = cache_entry.max_baseline_uvw;
    ms_data.max_baseline_meters = cache_entry.max_baseline_in_m;
    ms_data.integration_time = cache_entry.integration_time;
  } else {
    if (ms_provider.NPolarizations() == 4)
      CalculateMsLimits<4>(ms_data, gridders[0]->PixelSizeX(),
                           gridders[0]->PixelSizeY(), min_image_width,
                           min_image_height, gridders[0]->GetImageWeights());
    else if (ms_provider.NPolarizations() == 2)
      CalculateMsLimits<2>(ms_data, gridders[0]->PixelSizeX(),
                           gridders[0]->PixelSizeY(), min_image_width,
                           min_image_height, gridders[0]->GetImageWeights());
    else
      CalculateMsLimits<1>(ms_data, gridders[0]->PixelSizeX(),
                           gridders[0]->PixelSizeY(), min_image_width,
                           min_image_height, gridders[0]->GetImageWeights());
    cache_entry.max_w = ms_data.max_w;
    cache_entry.max_w_with_flags = ms_data.max_w_with_flags;
    cache_entry.min_w = ms_data.min_w;
    cache_entry.max_baseline_uvw = ms_data.max_baseline_uvw;
    cache_entry.max_baseline_in_m = ms_data.max_baseline_meters;
    cache_entry.integration_time = ms_data.integration_time;
  }

  if (has_solution_data) {
    ms_data.unique_times =
        std::make_shared<std::vector<double>>(SelectH5parmTimes(ms_provider));
    for (MsGridder* gridder : gridders) {
      gridder->GetVisibilityModifier().SetMSTimes(ms_data.original_ms_index,
                                                  ms_data.unique_times);
    }
  }
}

template <size_t NPolInMSProvider>
void MsProviderCollection::CalculateMsLimits(
    MsData& ms_data, double pixel_size_x, double pixel_size_y,
    size_t image_width, size_t image_height,
    const ImageWeights* image_weights) {
  Logger::Info << "Determining min and max w & theoretical beam size... ";
  Logger::Info.Flush();
  ms_data.max_w = 0.0;
  ms_data.max_w_with_flags = 0.0;
  ms_data.min_w = 1e100;
  ms_data.max_baseline_uvw = 0.0;
  ms_data.max_baseline_meters = 0.0;
  const aocommon::BandData selectedBand = ms_data.SelectedBand();
  std::vector<float> weightArray(selectedBand.ChannelCount() *
                                 NPolInMSProvider);
  double curTimestep = -1, firstTime = -1, lastTime = -1;
  size_t nTimesteps = 0;
  std::unique_ptr<MSReader> msReader = ms_data.ms_provider->MakeReader();
  const double smallestWavelength = selectedBand.SmallestWavelength();
  const double longestWavelength = selectedBand.LongestWavelength();
  while (msReader->CurrentRowAvailable()) {
    MSProvider::MetaData metaData;
    msReader->ReadMeta(metaData);

    if (curTimestep != metaData.time) {
      curTimestep = metaData.time;
      ++nTimesteps;
      if (firstTime == -1) firstTime = curTimestep;
      lastTime = curTimestep;
    }

    const double wHi = std::fabs(metaData.wInM / smallestWavelength);
    const double wLo = std::fabs(metaData.wInM / longestWavelength);
    const double baselineInM = std::sqrt(metaData.uInM * metaData.uInM +
                                         metaData.vInM * metaData.vInM +
                                         metaData.wInM * metaData.wInM);
    if (wHi > ms_data.max_w || wLo < ms_data.min_w ||
        baselineInM / selectedBand.SmallestWavelength() >
            ms_data.max_baseline_uvw) {
      msReader->ReadWeights(weightArray.data());
      const float* weightPtr = weightArray.data();

      for (size_t ch = 0; ch != selectedBand.ChannelCount(); ++ch) {
        const double wavelength = selectedBand.ChannelWavelength(ch);
        double wInL = metaData.wInM / wavelength;
        ms_data.max_w_with_flags =
            std::max(ms_data.max_w_with_flags, fabs(wInL));
        if (*weightPtr != 0.0) {
          double uInL = metaData.uInM / wavelength;
          double vInL = metaData.vInM / wavelength;
          wsclean::CalculateMsLimits<NPolInMSProvider>(
              ms_data, uInL, vInL, wInL, baselineInM, wavelength, pixel_size_x,
              pixel_size_y, image_width, image_height, image_weights);
        }
        weightPtr += NPolInMSProvider;
      }
    }
    msReader->NextInputRow();
  }

  if (ms_data.min_w == 1e100) {
    ms_data.min_w = 0.0;
    ms_data.max_w_with_flags = 0.0;
    ms_data.max_w = 0.0;
  }

  Logger::Info << "DONE (w=[" << ms_data.min_w << ":" << ms_data.max_w
               << "] lambdas, maxuvw=" << ms_data.max_baseline_uvw
               << " lambda)\n";
  if (ms_data.max_w_with_flags != ms_data.max_w) {
    Logger::Debug << "Discarded data has higher w value of "
                  << ms_data.max_w_with_flags << " lambda.\n";
  }

  if (lastTime == firstTime || nTimesteps < 2)
    ms_data.integration_time = 1;
  else
    ms_data.integration_time = (lastTime - firstTime) / (nTimesteps - 1);
}

template void MsProviderCollection::CalculateMsLimits<1>(
    MsData& ms_data, double pixel_size_x, double pixel_size_y,
    size_t image_width, size_t image_height, const ImageWeights* image_weights);
template void MsProviderCollection::CalculateMsLimits<2>(
    MsData& ms_data, double pixel_size_x, double pixel_size_y,
    size_t image_width, size_t image_height, const ImageWeights* image_weights);
template void MsProviderCollection::CalculateMsLimits<4>(
    MsData& ms_data, double pixel_size_x, double pixel_size_y,
    size_t image_width, size_t image_height, const ImageWeights* image_weights);

}  // namespace wsclean