1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
#include "msprovidercollection.h"
#include <vector>
#include <aocommon/logger.h>
#include "msgridder.h"
#include "msgriddermanager.h"
using aocommon::Logger;
namespace wsclean {
namespace {
template <size_t NPolInMSProvider>
inline void CalculateMsLimits(MsProviderCollection::MsData& ms_data, double u,
double v, double w, double baseline_in_meters,
double wavelength, double pixel_size_x,
double pixel_size_y, size_t image_width,
size_t image_height,
const ImageWeights* image_weights) {
const double half_width = 0.5 * image_width;
const double half_height = 0.5 * image_height;
const double x = u * pixel_size_x * image_width;
const double y = u * pixel_size_y * image_height;
const double imaging_weight = image_weights->GetWeight(u, v);
if (imaging_weight != 0.0) {
if (std::floor(x) > -half_width && std::ceil(x) < half_width &&
std::floor(y) > -half_height && std::ceil(y) < half_height) {
ms_data.max_w = std::max(ms_data.max_w, std::fabs(w));
ms_data.min_w = std::min(ms_data.min_w, std::fabs(w));
ms_data.max_baseline_uvw =
std::max(ms_data.max_baseline_uvw, baseline_in_meters / wavelength);
ms_data.max_baseline_meters =
std::max(ms_data.max_baseline_meters, baseline_in_meters);
}
}
}
std::vector<double> SelectH5parmTimes(MSProvider& ms_provider) {
std::unique_ptr<MSReader> ms_reader = ms_provider.MakeReader();
std::vector<double> unique_times;
while (ms_reader->CurrentRowAvailable()) {
MSProvider::MetaData meta_data;
ms_reader->ReadMeta(meta_data);
if (!unique_times.empty() && meta_data.time < unique_times.back()) {
throw std::runtime_error(
"The measurement set is not sorted in time. To apply h5parm "
"solutions, this is currently required.");
}
if (unique_times.empty() || meta_data.time != unique_times.back()) {
unique_times.emplace_back(meta_data.time);
}
ms_reader->NextInputRow();
}
return unique_times;
}
} // namespace
void MsProviderCollection::InitializeMSDataVector(
const std::vector<MsGridder*>& gridders, double w_limit,
bool has_solution_data) {
assert(Count() != 0);
bool has_cache = false;
for (MsGridder* facet_gridder : gridders) {
has_cache = facet_gridder->HasMetaDataCache();
if (!has_cache) facet_gridder->AllocateMetaDataCache(Count());
facet_gridder->ResetVisibilityModifierCache(Count());
}
ms_limits_.max_baseline = 0.0;
ms_limits_.max_w = 0.0;
ms_limits_.min_w = std::numeric_limits<double>::max();
for (size_t i = 0; i != Count(); ++i) {
MsData& ms_data = ms_data_vector_[i];
ms_data.internal_ms_index = i;
ms_data.original_ms_index = Index(i);
InitializeMeasurementSet(ms_data, gridders, has_cache, has_solution_data);
ms_limits_.Calculate(ms_data.SelectedBand(),
ms_data.ms_provider->StartTime());
ms_limits_.max_baseline =
std::max(ms_limits_.max_baseline, ms_data.max_baseline_uvw);
ms_limits_.max_w = std::max(ms_limits_.max_w, ms_data.max_w);
ms_limits_.min_w = std::min(ms_limits_.min_w, ms_data.min_w);
}
ms_limits_.Validate();
if (w_limit != 0.0) {
ms_limits_.max_w *= (1.0 - w_limit);
if (ms_limits_.max_w < ms_limits_.min_w)
ms_limits_.max_w = ms_limits_.min_w;
}
for (MsGridder* facet_gridder : gridders) {
facet_gridder->SetMaxW(ms_limits_.max_w);
facet_gridder->SetMinW(ms_limits_.min_w);
facet_gridder->SetMaxBaseline(ms_limits_.max_baseline);
}
}
void MsProviderCollection::InitializeMS() { ms_data_vector_.resize(Count()); }
std::vector<std::string> MsProviderCollection::GetAntennaNames(
const casacore::MSAntenna& antenna) {
const casacore::ScalarColumn<casacore::String> antennaNameColumn(
antenna, antenna.columnName(casacore::MSAntenna::NAME));
std::vector<std::string> antenna_names;
antenna_names.reserve(antennaNameColumn.nrow());
for (size_t i = 0; i < antennaNameColumn.nrow(); ++i) {
antenna_names.push_back(antennaNameColumn(i));
}
return antenna_names;
}
void MsProviderCollection::MsData::InitializeBandData(
const casacore::MeasurementSet& ms, const MSSelection& selection) {
band_data = aocommon::MultiBandData(ms)[data_desc_id];
if (selection.HasChannelRange()) {
start_channel = selection.ChannelRangeStart();
end_channel = selection.ChannelRangeEnd();
Logger::Debug << "Selected channels: " << start_channel << '-'
<< end_channel << '\n';
if (start_channel >= band_data.ChannelCount() ||
end_channel > band_data.ChannelCount() ||
start_channel == end_channel) {
std::ostringstream str;
str << "An invalid channel range was specified! Measurement set only has "
<< band_data.ChannelCount()
<< " channels, requested imaging range is " << start_channel << " -- "
<< end_channel << '.';
throw std::runtime_error(str.str());
}
} else {
start_channel = 0;
end_channel = band_data.ChannelCount();
}
}
void MsProviderCollection::InitializeMeasurementSet(
MsData& ms_data, const std::vector<MsGridder*>& gridders, bool is_cached,
bool has_solution_data) {
MSProvider& ms_provider = MeasurementSet(ms_data.internal_ms_index);
ms_data.ms_provider = &ms_provider;
{
SynchronizedMS ms(ms_provider.MS());
if (ms->nrow() == 0)
throw std::runtime_error("Table has no rows (no data)");
ms_data.antenna_names = GetAntennaNames(ms->antenna());
ms_data.data_desc_id = ms_provider.DataDescId();
ms_data.InitializeBandData(*ms, Selection(ms_data.internal_ms_index));
}
// wlimits will vary across facets in a facet group, however these limits are
// "estimates".
// They should not be too small but can be too large (though this can have
// performance implications.
// As a code simplification and performance improvement we select the smallest
// width and height out of all facets in a facet group to calculate the
// wlimits rather than doing it individually for each one.
size_t min_image_width = gridders[0]->ImageWidth();
size_t min_image_height = gridders[0]->ImageHeight();
for (const MsGridder* gridder : gridders) {
min_image_width = std::min(min_image_width, gridder->ImageWidth());
min_image_height = std::min(min_image_height, gridder->ImageHeight());
}
MetaDataCache::Entry& cache_entry =
gridders[0]->GetMetaDataCacheItem(ms_data.internal_ms_index);
if (is_cached) {
ms_data.max_w = cache_entry.max_w;
ms_data.max_w_with_flags = cache_entry.max_w_with_flags;
ms_data.min_w = cache_entry.min_w;
ms_data.max_baseline_uvw = cache_entry.max_baseline_uvw;
ms_data.max_baseline_meters = cache_entry.max_baseline_in_m;
ms_data.integration_time = cache_entry.integration_time;
} else {
if (ms_provider.NPolarizations() == 4)
CalculateMsLimits<4>(ms_data, gridders[0]->PixelSizeX(),
gridders[0]->PixelSizeY(), min_image_width,
min_image_height, gridders[0]->GetImageWeights());
else if (ms_provider.NPolarizations() == 2)
CalculateMsLimits<2>(ms_data, gridders[0]->PixelSizeX(),
gridders[0]->PixelSizeY(), min_image_width,
min_image_height, gridders[0]->GetImageWeights());
else
CalculateMsLimits<1>(ms_data, gridders[0]->PixelSizeX(),
gridders[0]->PixelSizeY(), min_image_width,
min_image_height, gridders[0]->GetImageWeights());
cache_entry.max_w = ms_data.max_w;
cache_entry.max_w_with_flags = ms_data.max_w_with_flags;
cache_entry.min_w = ms_data.min_w;
cache_entry.max_baseline_uvw = ms_data.max_baseline_uvw;
cache_entry.max_baseline_in_m = ms_data.max_baseline_meters;
cache_entry.integration_time = ms_data.integration_time;
}
if (has_solution_data) {
ms_data.unique_times =
std::make_shared<std::vector<double>>(SelectH5parmTimes(ms_provider));
for (MsGridder* gridder : gridders) {
gridder->GetVisibilityModifier().SetMSTimes(ms_data.original_ms_index,
ms_data.unique_times);
}
}
}
template <size_t NPolInMSProvider>
void MsProviderCollection::CalculateMsLimits(
MsData& ms_data, double pixel_size_x, double pixel_size_y,
size_t image_width, size_t image_height,
const ImageWeights* image_weights) {
Logger::Info << "Determining min and max w & theoretical beam size... ";
Logger::Info.Flush();
ms_data.max_w = 0.0;
ms_data.max_w_with_flags = 0.0;
ms_data.min_w = 1e100;
ms_data.max_baseline_uvw = 0.0;
ms_data.max_baseline_meters = 0.0;
const aocommon::BandData selectedBand = ms_data.SelectedBand();
std::vector<float> weightArray(selectedBand.ChannelCount() *
NPolInMSProvider);
double curTimestep = -1, firstTime = -1, lastTime = -1;
size_t nTimesteps = 0;
std::unique_ptr<MSReader> msReader = ms_data.ms_provider->MakeReader();
const double smallestWavelength = selectedBand.SmallestWavelength();
const double longestWavelength = selectedBand.LongestWavelength();
while (msReader->CurrentRowAvailable()) {
MSProvider::MetaData metaData;
msReader->ReadMeta(metaData);
if (curTimestep != metaData.time) {
curTimestep = metaData.time;
++nTimesteps;
if (firstTime == -1) firstTime = curTimestep;
lastTime = curTimestep;
}
const double wHi = std::fabs(metaData.wInM / smallestWavelength);
const double wLo = std::fabs(metaData.wInM / longestWavelength);
const double baselineInM = std::sqrt(metaData.uInM * metaData.uInM +
metaData.vInM * metaData.vInM +
metaData.wInM * metaData.wInM);
if (wHi > ms_data.max_w || wLo < ms_data.min_w ||
baselineInM / selectedBand.SmallestWavelength() >
ms_data.max_baseline_uvw) {
msReader->ReadWeights(weightArray.data());
const float* weightPtr = weightArray.data();
for (size_t ch = 0; ch != selectedBand.ChannelCount(); ++ch) {
const double wavelength = selectedBand.ChannelWavelength(ch);
double wInL = metaData.wInM / wavelength;
ms_data.max_w_with_flags =
std::max(ms_data.max_w_with_flags, fabs(wInL));
if (*weightPtr != 0.0) {
double uInL = metaData.uInM / wavelength;
double vInL = metaData.vInM / wavelength;
wsclean::CalculateMsLimits<NPolInMSProvider>(
ms_data, uInL, vInL, wInL, baselineInM, wavelength, pixel_size_x,
pixel_size_y, image_width, image_height, image_weights);
}
weightPtr += NPolInMSProvider;
}
}
msReader->NextInputRow();
}
if (ms_data.min_w == 1e100) {
ms_data.min_w = 0.0;
ms_data.max_w_with_flags = 0.0;
ms_data.max_w = 0.0;
}
Logger::Info << "DONE (w=[" << ms_data.min_w << ":" << ms_data.max_w
<< "] lambdas, maxuvw=" << ms_data.max_baseline_uvw
<< " lambda)\n";
if (ms_data.max_w_with_flags != ms_data.max_w) {
Logger::Debug << "Discarded data has higher w value of "
<< ms_data.max_w_with_flags << " lambda.\n";
}
if (lastTime == firstTime || nTimesteps < 2)
ms_data.integration_time = 1;
else
ms_data.integration_time = (lastTime - firstTime) / (nTimesteps - 1);
}
template void MsProviderCollection::CalculateMsLimits<1>(
MsData& ms_data, double pixel_size_x, double pixel_size_y,
size_t image_width, size_t image_height, const ImageWeights* image_weights);
template void MsProviderCollection::CalculateMsLimits<2>(
MsData& ms_data, double pixel_size_x, double pixel_size_y,
size_t image_width, size_t image_height, const ImageWeights* image_weights);
template void MsProviderCollection::CalculateMsLimits<4>(
MsData& ms_data, double pixel_size_x, double pixel_size_y,
size_t image_width, size_t image_height, const ImageWeights* image_weights);
} // namespace wsclean
|