1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
#include "wsmsgridder.h"
#include "msgriddermanager.h"
#include "../structures/imageweights.h"
#include "../system/buffered_lane.h"
#include "../msproviders/msprovider.h"
#include "../msproviders/msreaders/msreader.h"
#include <aocommon/logger.h>
#include <schaapcommon/math/resampler.h>
#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <fftw3.h>
#include <cassert>
#include <queue>
#include <stdexcept>
using aocommon::Image;
using aocommon::Logger;
namespace wsclean {
WSMSGridder::WSMSGridder(const Settings& settings, const Resources& resources,
MsProviderCollection& ms_provider_collection)
: MsGridder(settings, ms_provider_collection),
_antialiasingKernelSize(settings.antialiasingKernelSize),
_overSamplingFactor(settings.overSamplingFactor),
_resources(resources),
_laneBufferSize(std::max<size_t>(_resources.NCpus() * 2, 1024)) {
// We do this once here. WStackingGridder does this too, but by default only
// for the float variant of fftw. schaapcommon::fft::Resampler does double
// fft's multithreaded, hence this needs to be done here too.
fftw_make_planner_thread_safe();
}
WSMSGridder::~WSMSGridder() noexcept {
// In case there is an exception during gridding, the lanes need to
// be end so that the threads stop waiting:
for (aocommon::Lane<WSMSGridder::InversionWorkSample>& lane :
_inversionCPULanes)
lane.write_end();
for (std::thread& t : _threadGroup) t.join();
}
void WSMSGridder::countSamplesPerLayer(MsProviderCollection::MsData& msData) {
aocommon::UVector<size_t> sampleCount(ActualWGridSize(), 0);
size_t total = 0;
msData.matching_rows = 0;
std::unique_ptr<MSReader> msReader = msData.ms_provider->MakeReader();
const aocommon::BandData& bandData = msData.band_data;
while (msReader->CurrentRowAvailable()) {
double uInM, vInM, wInM;
msReader->ReadMeta(uInM, vInM, wInM);
for (size_t ch = msData.start_channel; ch != msData.end_channel; ++ch) {
double w = wInM / bandData.ChannelWavelength(ch);
size_t wLayerIndex = _gridder->WToLayer(w);
if (wLayerIndex < ActualWGridSize()) {
++sampleCount[wLayerIndex];
++total;
}
}
++msData.matching_rows;
msReader->NextInputRow();
}
Logger::Debug << "Visibility count per layer: ";
for (size_t& count : sampleCount) {
Logger::Debug << count << ' ';
}
Logger::Debug << "\nTotal nr. of visibilities to be gridded: " << total
<< '\n';
}
size_t WSMSGridder::GetSuggestedWGridSize() const {
size_t wWidth, wHeight;
if (HasNWSize()) {
wWidth = NWWidth();
wHeight = NWHeight();
} else {
wWidth = TrimWidth();
wHeight = TrimHeight();
}
double maxL = wWidth * PixelSizeX() * 0.5 + fabs(LShift()),
maxM = wHeight * PixelSizeY() * 0.5 + fabs(MShift()),
lmSq = maxL * maxL + maxM * maxM;
double cMinW = IsComplex() ? -MaxW() : MinW();
double radiansForAllLayers;
if (lmSq < 1.0)
radiansForAllLayers =
2 * M_PI * (MaxW() - cMinW) * (1.0 - sqrt(1.0 - lmSq));
else
radiansForAllLayers = 2 * M_PI * (MaxW() - cMinW);
size_t suggestedGridSize = size_t(ceil(radiansForAllLayers * NWFactor()));
if (suggestedGridSize == 0) suggestedGridSize = 1;
if (suggestedGridSize < _resources.NCpus()) {
// When nwlayers is lower than the nr of cores, we cannot parallellize well.
// However, we don't want extra w-layers if we are low on mem, as that might
// slow down the process
double memoryRequired =
double(_resources.NCpus()) * double(sizeof(GridderType::num_t)) *
double(ActualInversionWidth() * ActualInversionHeight());
if (4.0 * memoryRequired < double(_resources.Memory())) {
Logger::Info << "The theoretically suggested number of w-layers ("
<< suggestedGridSize
<< ") is less than the number of availables\n"
"cores ("
<< _resources.NCpus()
<< "). Changing suggested number of w-layers to "
<< _resources.NCpus() << ".\n";
suggestedGridSize = _resources.NCpus();
} else {
Logger::Info << "The theoretically suggested number of w-layers ("
<< suggestedGridSize
<< ") is less than the number of availables\n"
"cores ("
<< _resources.NCpus()
<< "), but there is not enough memory available to increase "
"the number of w-layers.\n"
"Not all cores can be used efficiently.\n";
}
}
if (IsFirstTask())
Logger::Info << "Suggested number of w-layers: " << ceil(suggestedGridSize)
<< '\n';
return suggestedGridSize;
}
size_t WSMSGridder::GridMeasurementSet(
const MsProviderCollection::MsData& ms_data) {
const size_t n_vis_polarizations = ms_data.ms_provider->NPolarizations();
const aocommon::BandData selected_band = ms_data.SelectedBand();
const size_t data_size = selected_band.ChannelCount() * n_vis_polarizations;
aocommon::UVector<std::complex<float>> model_buffer(data_size);
aocommon::UVector<float> weight_buffer(data_size);
aocommon::UVector<bool> selection_buffer(selected_band.ChannelCount());
startInversionWorkThreads(selected_band.ChannelCount());
_gridder->PrepareBand(selected_band);
// Samples of the same w-layer are collected in a buffer
// before they are written into the lane. This is done because writing
// to a lane is reasonably slow; it requires holding a mutex. Without
// these buffers, writing the lane was a bottleneck and multithreading
// did not help. I think.
std::vector<lane_write_buffer<InversionWorkSample>> buffered_lanes(
_resources.NCpus());
size_t lane_buffer_size =
std::max<size_t>(8u, _inversionCPULanes[0].capacity() / 8);
lane_buffer_size = std::min<size_t>(
128, std::min(lane_buffer_size, _inversionCPULanes[0].capacity()));
for (size_t i = 0; i != _resources.NCpus(); ++i) {
buffered_lanes[i].reset(&_inversionCPULanes[i], lane_buffer_size);
}
InversionRow row_data;
aocommon::UVector<std::complex<float>> row_visibilities(data_size);
row_data.data = row_visibilities.data();
size_t n_total_rows_read = 0;
try {
std::unique_ptr<MSReader> ms_reader = ms_data.ms_provider->MakeReader();
while (ms_reader->CurrentRowAvailable()) {
MSProvider::MetaData metadata;
ms_reader->ReadMeta(metadata);
const double u_in_meters = metadata.uInM;
const double v_in_meters = metadata.vInM;
const double w_in_meters = metadata.wInM;
const aocommon::BandData& band(selected_band);
const double w1 = w_in_meters / band.LongestWavelength();
const double w2 = w_in_meters / band.SmallestWavelength();
if (_gridder->IsInLayerRange(w1, w2)) {
row_data.uvw[0] = u_in_meters;
row_data.uvw[1] = v_in_meters;
row_data.uvw[2] = w_in_meters;
// Any visibilities that are not gridded in this pass
// should not contribute to the weight sum
for (size_t ch = 0; ch != band.ChannelCount(); ++ch) {
const double w = row_data.uvw[2] / band.ChannelWavelength(ch);
selection_buffer[ch] = _gridder->IsInLayerRange(w);
}
GetCollapsedVisibilities(*ms_reader, ms_data.antenna_names.size(),
row_data, band, weight_buffer.data(),
model_buffer.data(), selection_buffer.data(),
metadata);
if (HasDenormalPhaseCentre()) {
const double shiftFactor =
-2.0 * M_PI *
(row_data.uvw[0] * LShift() + row_data.uvw[1] * MShift());
// Because the visibilities have been collapsed, there's only one
// polarization left:
RotateVisibilities<1>(band, shiftFactor, row_data.data);
}
InversionWorkSample sample_data;
for (size_t channel = 0; channel != band.ChannelCount(); ++channel) {
double wavelength = band.ChannelWavelength(channel);
sample_data.sample = row_data.data[channel];
sample_data.uInLambda = row_data.uvw[0] / wavelength;
sample_data.vInLambda = row_data.uvw[1] / wavelength;
sample_data.wInLambda = row_data.uvw[2] / wavelength;
size_t cpu =
_gridder->WToLayer(sample_data.wInLambda) % _resources.NCpus();
buffered_lanes[cpu].write(sample_data);
}
++n_total_rows_read;
}
ms_reader->NextInputRow();
}
for (lane_write_buffer<InversionWorkSample>& lane : buffered_lanes)
lane.write_end();
if (IsFirstTask())
Logger::Info << "Rows that were required: " << n_total_rows_read << '/'
<< ms_data.matching_rows << '\n';
} catch (...) {
for (lane_write_buffer<InversionWorkSample>& lane : buffered_lanes)
lane.write_end();
throw;
}
finishInversionWorkThreads();
return n_total_rows_read;
}
void WSMSGridder::startInversionWorkThreads(size_t maxChannelCount) {
_inversionCPULanes.resize(_resources.NCpus());
_threadGroup.clear();
for (size_t i = 0; i != _resources.NCpus(); ++i) {
_inversionCPULanes[i].resize(maxChannelCount * _laneBufferSize);
set_lane_debug_name(
_inversionCPULanes[i],
"Work lane (buffered) containing individual visibility samples");
_threadGroup.emplace_back(&WSMSGridder::workThreadPerSample, this,
&_inversionCPULanes[i]);
}
}
void WSMSGridder::finishInversionWorkThreads() {
for (std::thread& thrd : _threadGroup) thrd.join();
_threadGroup.clear();
_inversionCPULanes.clear();
}
void WSMSGridder::workThreadPerSample(
aocommon::Lane<InversionWorkSample>* workLane) {
size_t bufferSize = std::max<size_t>(8u, workLane->capacity() / 8);
bufferSize =
std::min<size_t>(128, std::min(bufferSize, workLane->capacity()));
lane_read_buffer<InversionWorkSample> buffer(workLane, bufferSize);
InversionWorkSample sampleData;
while (buffer.read(sampleData)) {
_gridder->AddDataSample(sampleData.sample, sampleData.uInLambda,
sampleData.vInLambda, sampleData.wInLambda);
}
}
size_t WSMSGridder::PredictMeasurementSet(
const MsProviderCollection::MsData& ms_data) {
ms_data.ms_provider->ReopenRW();
ms_data.ms_provider->ResetWritePosition();
const aocommon::BandData selected_band(ms_data.SelectedBand());
_gridder->PrepareBand(selected_band);
size_t n_total_rows_processed = 0;
aocommon::Lane<PredictionWorkItem> lane(_laneBufferSize + _resources.NCpus());
aocommon::Lane<PredictionWorkItem> write_lane(_laneBufferSize);
set_lane_debug_name(
lane, "Prediction calculation lane (buffered) containing full row data");
set_lane_debug_name(write_lane,
"Prediction write lane containing full row data");
lane_write_buffer<PredictionWorkItem> buffered_lane(&lane, _laneBufferSize);
std::thread writeThread(&WSMSGridder::predictWriteThread, this, &write_lane,
&ms_data, &selected_band,
SelectGainMode(Polarization(), 1));
std::vector<std::thread> calcThreads;
for (size_t i = 0; i != _resources.NCpus(); ++i)
calcThreads.emplace_back(&WSMSGridder::predictCalcThread, this, &lane,
&write_lane, &selected_band);
/* Start by reading the u,v,ws in, so we don't need IO access
* from this thread during further processing */
std::vector<std::array<double, 3>> uvws;
std::vector<size_t> row_ids;
std::unique_ptr<MSReader> ms_reader = ms_data.ms_provider->MakeReader();
while (ms_reader->CurrentRowAvailable()) {
double u_in_meters;
double v_in_meters;
double w_in_meters;
ms_reader->ReadMeta(u_in_meters, v_in_meters, w_in_meters);
uvws.push_back({u_in_meters, v_in_meters, w_in_meters});
row_ids.push_back(ms_reader->RowId());
++n_total_rows_processed;
ms_reader->NextInputRow();
}
for (size_t i = 0; i != uvws.size(); ++i) {
PredictionWorkItem new_item;
new_item.uvw = uvws[i];
new_item.data.reset(new std::complex<float>[selected_band.ChannelCount()]);
new_item.rowId = row_ids[i];
buffered_lane.write(std::move(new_item));
}
if (IsFirstTask())
Logger::Info << "Rows that were required: " << n_total_rows_processed << '/'
<< ms_data.matching_rows << '\n';
buffered_lane.write_end();
for (std::thread& thr : calcThreads) thr.join();
write_lane.write_end();
writeThread.join();
return n_total_rows_processed;
}
void WSMSGridder::predictCalcThread(
aocommon::Lane<PredictionWorkItem>* inputLane,
aocommon::Lane<PredictionWorkItem>* outputLane,
const aocommon::BandData* bandData) {
lane_write_buffer<PredictionWorkItem> writeBuffer(outputLane,
_laneBufferSize);
PredictionWorkItem item;
while (inputLane->read(item)) {
_gridder->SampleData(item.data.get(), item.uvw[0], item.uvw[1],
item.uvw[2]);
if (HasDenormalPhaseCentre()) {
const double shiftFactor =
2.0 * M_PI * (item.uvw[0] * LShift() + item.uvw[1] * MShift());
RotateVisibilities<1>(*bandData, shiftFactor, item.data.get());
}
writeBuffer.write(std::move(item));
}
}
void WSMSGridder::predictWriteThread(
aocommon::Lane<PredictionWorkItem>* predictionWorkLane,
const MsProviderCollection::MsData* msData,
const aocommon::BandData* bandData, GainMode gain_mode) {
lane_read_buffer<PredictionWorkItem> buffer(
predictionWorkLane,
std::min(_laneBufferSize, predictionWorkLane->capacity()));
PredictionWorkItem workItem;
auto comparison = [](const PredictionWorkItem& lhs,
const PredictionWorkItem& rhs) -> bool {
return lhs.rowId > rhs.rowId;
};
std::priority_queue<PredictionWorkItem, std::vector<PredictionWorkItem>,
decltype(comparison)>
queue(comparison);
size_t nextRowId = 0;
while (buffer.read(workItem)) {
queue.emplace(std::move(workItem));
while (!queue.empty() && queue.top().rowId == nextRowId) {
MSProvider::MetaData metaData;
ReadPredictMetaData(metaData);
WriteCollapsedVisibilities(*msData->ms_provider,
msData->antenna_names.size(), *bandData,
queue.top().data.get(), metaData);
queue.pop();
++nextRowId;
}
}
assert(queue.empty());
}
void WSMSGridder::StartInversion() {
_gridder = std::make_unique<GridderType>(
ActualInversionWidth(), ActualInversionHeight(), ActualPixelSizeX(),
ActualPixelSizeY(), _resources.NCpus(), AntialiasingKernelSize(),
OverSamplingFactor());
_gridder->SetGridMode(GetGridMode());
if (HasDenormalPhaseCentre())
_gridder->SetDenormalPhaseCentre(LShift(), MShift());
_gridder->SetIsComplex(IsComplex());
//_imager->SetImageConjugatePart(Polarization() == aocommon::Polarization::YX
//&& IsComplex());
_gridder->PrepareWLayers(ActualWGridSize(),
double(_resources.Memory()) * (6.0 / 10.0), MinW(),
MaxW());
if (IsFirstTask()) {
Logger::Info << "Will process "
<< (_gridder->NWLayers() / _gridder->NPasses()) << "/"
<< _gridder->NWLayers() << " w-layers per pass.\n";
}
if (IsFirstTask() && Logger::IsVerbose()) {
for (size_t i = 0; i != GetMsCount(); ++i)
countSamplesPerLayer(GetMsData(i));
}
ResetVisibilityCounters();
}
void WSMSGridder::StartInversionPass(size_t pass_index) {
Logger::Info << "Gridding pass " << pass_index << "... ";
if (IsFirstTask())
Logger::Info << '\n';
else
Logger::Info.Flush();
_gridder->StartInversionPass(pass_index);
}
void WSMSGridder::FinishInversionPass(size_t pass_index) {
Logger::Info << "Fourier transforms...\n";
_gridder->FinishInversionPass();
}
void WSMSGridder::FinishInversion() {
if (IsFirstTask()) {
size_t total_rows_processed = 0;
size_t total_rows_matching = 0;
for (size_t i = 0; i != GetMsCount(); ++i) {
const MsProviderCollection::MsData& ms_data = GetMsData(i);
total_rows_processed += ms_data.total_rows_processed;
total_rows_matching += ms_data.matching_rows;
}
Logger::Debug << "Total rows read: " << total_rows_processed;
if (total_rows_matching != 0)
Logger::Debug << " (overhead: "
<< std::max(0.0, round(total_rows_processed * 100.0 /
total_rows_matching -
100.0))
<< "%)";
Logger::Debug << '\n';
}
_gridder->FinalizeImage(1.0 / ImageWeight());
if (IsFirstTask()) {
std::string log_message =
"Gridded visibility count: " + std::to_string(GriddedVisibilityCount());
if (Weighting().IsNatural()) {
log_message += ", effective count after weighting: " +
std::to_string(EffectiveGriddedVisibilityCount());
}
Logger::Info << log_message + '\n';
}
_realImage = _gridder->RealImageFloat();
if (IsComplex())
_imaginaryImage = _gridder->ImaginaryImageFloat();
else
_imaginaryImage = Image();
if (ImageWidth() != ActualInversionWidth() ||
ImageHeight() != ActualInversionHeight()) {
// Interpolate the image
// The input is of size ActualInversionWidth() x ActualInversionHeight()
schaapcommon::math::Resampler resampler(
ActualInversionWidth(), ActualInversionHeight(), ImageWidth(),
ImageHeight(), _resources.NCpus());
if (IsComplex()) {
Image resized_real(ImageWidth(), ImageHeight());
Image resized_imaginary(ImageWidth(), ImageHeight());
resampler.Start();
resampler.AddTask(_realImage.Data(), resized_real.Data());
resampler.AddTask(_imaginaryImage.Data(), resized_imaginary.Data());
resampler.Finish();
_realImage = std::move(resized_real);
_imaginaryImage = std::move(resized_imaginary);
} else {
Image resized(ImageWidth(), ImageHeight());
resampler.Resample(_realImage.Data(), resized.Data());
_realImage = std::move(resized);
}
}
if (TrimWidth() != ImageWidth() || TrimHeight() != ImageHeight()) {
Logger::Debug << "Trimming " << ImageWidth() << " x " << ImageHeight()
<< " -> " << TrimWidth() << " x " << TrimHeight() << '\n';
_realImage = _realImage.Trim(TrimWidth(), TrimHeight());
if (IsComplex()) {
_imaginaryImage = _imaginaryImage.Trim(TrimWidth(), TrimHeight());
}
}
Logger::Debug << "Inversion finished.\n";
}
void WSMSGridder::StartPredict(std::vector<Image>&& images) {
if (images.size() != 2 && IsComplex())
throw std::runtime_error("Missing imaginary in complex prediction");
if (images.size() != 1 && !IsComplex())
throw std::runtime_error("Imaginary specified in non-complex prediction");
_gridder = std::make_unique<GridderType>(
ActualInversionWidth(), ActualInversionHeight(), ActualPixelSizeX(),
ActualPixelSizeY(), _resources.NCpus(), AntialiasingKernelSize(),
OverSamplingFactor());
_gridder->SetGridMode(GetGridMode());
if (HasDenormalPhaseCentre())
_gridder->SetDenormalPhaseCentre(LShift(), MShift());
_gridder->SetIsComplex(IsComplex());
//_imager->SetImageConjugatePart(Polarization() == aocommon::Polarization::YX
//&& IsComplex());
_gridder->PrepareWLayers(ActualWGridSize(),
double(_resources.Memory()) * (6.0 / 10.0), MinW(),
MaxW());
if (IsFirstTask()) {
for (size_t i = 0; i != GetMsCount(); ++i)
countSamplesPerLayer(GetMsData(i));
}
if (TrimWidth() != ImageWidth() || TrimHeight() != ImageHeight()) {
Logger::Debug << "Untrimming " << TrimWidth() << " x " << TrimHeight()
<< " -> " << ImageWidth() << " x " << ImageHeight() << '\n';
// Undo trimming (i.e., extend with zeros)
// The input is of size TrimWidth() x TrimHeight()
// This will make the model image of size ImageWidth() x ImageHeight()
for (Image& image : images) {
image = image.Untrim(ImageWidth(), ImageHeight());
}
}
if (ImageWidth() != ActualInversionWidth() ||
ImageHeight() != ActualInversionHeight()) {
// Decimate the image
// Input is ImageWidth() x ImageHeight()
schaapcommon::math::Resampler resampler(
ImageWidth(), ImageHeight(), ActualInversionWidth(),
ActualInversionHeight(), _resources.NCpus());
if (images.size() == 1) {
Image resampled(ImageWidth(), ImageHeight());
resampler.Resample(images[0].Data(), resampled.Data());
images[0] = std::move(resampled);
} else {
std::vector<Image> resampled;
resampled.reserve(images.size());
resampler.Start();
for (Image& image : images) {
resampled.emplace_back(ImageWidth(), ImageHeight());
resampler.AddTask(image.Data(), resampled.back().Data());
}
resampler.Finish();
for (size_t i = 0; i != images.size(); ++i)
images[i] = std::move(resampled[i]);
}
}
if (images.size() == 1)
_gridder->InitializePrediction(images[0]);
else
_gridder->InitializePrediction(images[0], images[1]);
}
void WSMSGridder::StartPredictPass(size_t pass_index) {
Logger::Info << "Fourier transforms for pass " << pass_index << "... ";
if (IsFirstTask())
Logger::Info << '\n';
else
Logger::Info.Flush();
_gridder->StartPredictionPass(pass_index);
Logger::Info << "Predicting...\n";
}
void WSMSGridder::FinishPredictPass() {}
void WSMSGridder::FinishPredict() {
size_t total_rows_processed = 0;
size_t total_rows_matching = 0;
for (size_t i = 0; i != GetMsCount(); ++i) {
const MsProviderCollection::MsData& ms_data = GetMsData(i);
total_rows_processed += ms_data.total_rows_processed;
total_rows_matching += ms_data.matching_rows;
}
Logger::Debug << "Total rows written: " << total_rows_processed;
if (total_rows_matching != 0)
Logger::Debug << " (overhead: "
<< std::max(0.0, round(total_rows_processed * 100.0 /
total_rows_matching -
100.0))
<< "%)";
Logger::Debug << '\n';
}
} // namespace wsclean
|