File: idgmsgridder.cpp

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (721 lines) | stat: -rw-r--r-- 27,887 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#include "idgmsgridder.h"

#include "../msproviders/msreaders/timestepbufferreader.h"

#include <cmath>
#include <thread>

#include <idg-api.h>

#include <aocommon/coordinatesystem.h>
#include <aocommon/fits/fitsreader.h>
#include <aocommon/logger.h>

#include "../msproviders/msprovider.h"
#include "../msproviders/timestepbuffer.h"

#include "../io/findmwacoefffile.h"
#include "../io/imagefilename.h"
#include "../io/parsetreader.h"

#include "../structures/imagingtable.h"

#include "../main/settings.h"

#include "averagebeam.h"
#include "idgconfiguration.h"

#ifdef HAVE_EVERYBEAM
#include <EveryBeam/aterms/atermconfig.h>
#include <EveryBeam/options.h>
#include <EveryBeam/load.h>

using everybeam::ATermSettings;
using everybeam::aterms::ATermBase;
using everybeam::aterms::ATermBeam;
using everybeam::aterms::ATermConfig;
#endif  // HAVE_EVERYBEAM

using aocommon::CoordinateSystem;
using aocommon::Image;
using aocommon::Logger;

namespace wsclean {

namespace {
constexpr const size_t kGridderIndex = 0;
}

IdgMsGridder::IdgMsGridder(const Settings& settings, const Resources& resources,
                           MsProviderCollection& ms_provider_collection)
    : MsGridder(settings, ms_provider_collection),
      _averageBeam(nullptr),
      _outputProvider(nullptr),
      _proxyType(idg::api::Type::CPU_OPTIMIZED),
      _buffersize(0),
      _resources(resources) {
  IdgConfiguration::Read(_proxyType, _buffersize, _options);
  setIdgType();
  _bufferset = std::unique_ptr<idg::api::BufferSet>(
      idg::api::BufferSet::create(_proxyType));
  if (settings.gridWithBeam || !settings.atermConfigFilename.empty())
    _options["a_term_kernel_size"] = float(GetSettings().atermKernelSize);
  _options["max_threads"] = int(resources.NCpus());
  if (settings.gridMode == GriddingKernelMode::BlackmanHarris)
    _options["taper"] = std::string("blackman-harris");
}

IdgMsGridder::~IdgMsGridder() {
  Logger::Info << "Gridding: " << _griddingWatch.ToString()
               << ", degridding: " << _degriddingWatch.ToString() << '\n';
}

size_t IdgMsGridder::GetNInversionPasses() const {
  if (GetPsfMode() == PsfMode::kNone && _averageBeam->Empty()) {
    // Two passes are used for this case: i) average beam creation; ii)
    // gridding.
    return 2;
  }
  return 1;
}

void IdgMsGridder::StartInversion() {
  const size_t untrimmed_width = ImageWidth();

  assert(TrimWidth() == TrimHeight());
  assert(untrimmed_width == ImageHeight());

  _options["padded_size"] = untrimmed_width;

  _options["stokes_I_only"] =
      (Polarization() == aocommon::Polarization::StokesI);

  if (!_averageBeam) _averageBeam.reset(new AverageBeam());

  double max_w = 0;
  for (size_t i = 0; i != GetMsCount(); ++i) {
    max_w = std::max(max_w, GetMsData(i).max_w_with_flags);
  }

  const double shift_l = LShift();
  const double shift_m = MShift();
  const double shift_p =
      std::sqrt(1.0 - shift_l * shift_l - shift_m * shift_m) - 1.0;
  _bufferset->init(TrimWidth(), ActualPixelSizeX(), max_w + 1.0, shift_l,
                   shift_m, shift_p, _options);
  Logger::Debug << "IDG subgrid size: " << _bufferset->get_subgridsize()
                << '\n';

  if (GetPsfMode() != PsfMode::kNone) {
    // Computing the PSF
    // For the PSF the aterm is not applied
    _bufferset->set_apply_aterm(false);
    _bufferset->unset_matrix_inverse_beam();
  } else {
    // Compute a dirty/residual image
    // with application of the a term
    _bufferset->set_apply_aterm(true);

    // Because compensation for the average beam happens at subgrid level
    // it needs to be known in advance.
    // If it is not in the cache it needs to be computed first, which will occur
    // inside StartInversionPass().
    if (!_averageBeam->Empty()) {
      // Set avg beam from cache
      Logger::Debug << "Using average beam from cache.\n";
      _bufferset->set_scalar_beam(_averageBeam->ScalarBeam());
      _bufferset->set_matrix_inverse_beam(_averageBeam->MatrixInverseBeam());
    }
  }
}

void IdgMsGridder::StartInversionPass(size_t pass_index) {
  if (pass_index == 0 && GetNInversionPasses() == 2) {
    // Compute avg beam
    Logger::Debug << "Computing average beam.\n";
    _bufferset->init_compute_avg_beam(idg::api::compute_flags::compute_only);
  } else {
    ResetVisibilityCounters();
  }
}

void IdgMsGridder::FinishInversionPass(size_t pass_index) {
  if (pass_index == 0 && GetNInversionPasses() == 2) {
    _bufferset->finalize_compute_avg_beam();
    Logger::Debug << "Finished computing average beam.\n";
    _averageBeam->SetScalarBeam(_bufferset->get_scalar_beam(), TrimWidth(),
                                TrimHeight());
    _averageBeam->SetMatrixInverseBeam(_bufferset->get_matrix_inverse_beam(),
                                       _bufferset->get_subgridsize(),
                                       _bufferset->get_subgridsize());
  }
}

void IdgMsGridder::FinishInversion() {
  const size_t n_image_polarizations = _options["stokes_I_only"] ? 1 : 4;

  // GridMeasurementSet calls have added the gridding result to _image member
  _image.assign(n_image_polarizations * TrimWidth() * TrimHeight(), 0.0);
  _bufferset->get_image(_image.data());
  if (GetPsfMode() != PsfMode::kNone) {
    Logger::Debug << "Total weight: " << ImageWeight() << '\n';
  }
  // result is now in _image member
  // Can be accessed by subsequent calls to ResultImages()
}

size_t IdgMsGridder::GridMeasurementSet(
    const MsProviderCollection::MsData& ms_data) {
  aocommon::UVector<std::complex<float>> aterm_buffer;
#ifdef HAVE_EVERYBEAM
  std::unique_ptr<ATermBase> aterm_maker;
  if (!prepareForMeasurementSet(ms_data, aterm_maker, aterm_buffer,
                                idg::api::BufferSetType::gridding))
    return 0;
#else
  if (!prepareForMeasurementSet(ms_data, aterm_buffer,
                                idg::api::BufferSetType::gridding))
    return 0;
#endif

  const size_t n_vis_polarizations = ms_data.ms_provider->NPolarizations();
  constexpr size_t n_idg_polarizations = 4;
  const size_t data_size = _selectedBand.ChannelCount() * n_idg_polarizations;
  aocommon::UVector<float> weight_buffer(data_size);
  aocommon::UVector<std::complex<float>> model_buffer(data_size);
  aocommon::UVector<bool> selection_buffer(_selectedBand.ChannelCount(), true);

  _griddingWatch.Start();

  // The gridder doesn't need to know the absolute time index; this value
  // indexes relatively to where we start in the measurement set, and only
  // increases when the time changes.
  int time_index = -1;
  double current_time = -1.0;
  aocommon::UVector<double> uvws(ms_data.ms_provider->NAntennas() * 3, 0.0);

  TimestepBuffer timestep_buffer(ms_data.ms_provider, DoSubtractModel());
  std::unique_ptr<MSReader> ms_reader = timestep_buffer.MakeReader();
  TimestepBufferReader& timestep_reader =
      static_cast<TimestepBufferReader&>(*ms_reader);
  aocommon::UVector<std::complex<float>> row_visibilities(data_size);
  IDGInversionRow row_data;
  row_data.data = row_visibilities.data();

  while (ms_reader->CurrentRowAvailable()) {
    MSProvider::MetaData metadata;
    timestep_reader.ReadMeta(metadata);

    if (current_time != metadata.time) {
      current_time = metadata.time;
      time_index++;
#ifdef HAVE_EVERYBEAM
      if (aterm_maker) {
        timestep_reader.GetUVWsForTimestep(uvws);
        if (aterm_maker->Calculate(aterm_buffer.data(), current_time,
                                   _selectedBand.CentreFrequency(),
                                   metadata.fieldId, uvws.data())) {
          _bufferset->get_gridder(kGridderIndex)
              ->set_aterm(time_index, aterm_buffer.data());
          Logger::Debug << "Calculated a-terms for timestep " << time_index
                        << "\n";
        }
      }
#endif
    }

    row_data.uvw[0] = metadata.uInM;
    row_data.uvw[1] = metadata.vInM;
    row_data.uvw[2] = metadata.wInM;

    row_data.antenna1 = metadata.antenna1;
    row_data.antenna2 = metadata.antenna2;
    row_data.timeIndex = time_index;

    if (n_vis_polarizations == 1) {
      GetInstrumentalVisibilities<1>(*ms_reader, ms_data.antenna_names.size(),
                                     row_data, _selectedBand,
                                     weight_buffer.data(), model_buffer.data(),
                                     selection_buffer.data(), metadata);
      // The data is placed in the first quarter of the buffers: reverse copy it
      // and expand it to 4 polarizations. TODO at a later time, IDG should
      // be able to directly accept 1 polarization instead of 4.
      size_t source_index = row_visibilities.size() / 4;
      for (size_t i = row_visibilities.size(); i != 0; i -= 4) {
        row_visibilities[i - 1] = row_visibilities[source_index - 1];
        row_visibilities[i - 2] = 0.0;
        row_visibilities[i - 3] = 0.0;
        row_visibilities[i - 4] = row_visibilities[source_index - 1];
        weight_buffer[i - 1] = weight_buffer[source_index - 1];
        weight_buffer[i - 2] = weight_buffer[source_index - 1];
        weight_buffer[i - 3] = weight_buffer[source_index - 1];
        weight_buffer[i - 4] = weight_buffer[source_index - 1];
        source_index--;
      }
    } else if (n_vis_polarizations == 2) {
      GetInstrumentalVisibilities<2>(*ms_reader, ms_data.antenna_names.size(),
                                     row_data, _selectedBand,
                                     weight_buffer.data(), model_buffer.data(),
                                     selection_buffer.data(), metadata);
      // The data is placed in the first half of the buffers: reverse copy it
      // and expand it to 4 polarizations. TODO at a later time, IDG should
      // be able to directly accept 2 pols instead of 4.
      size_t source_index = row_visibilities.size() / 2;
      for (size_t i = row_visibilities.size(); i != 0; i -= 4) {
        row_visibilities[i - 1] = row_visibilities[source_index - 1];
        row_visibilities[i - 2] = 0.0;
        row_visibilities[i - 3] = 0.0;
        row_visibilities[i - 4] = row_visibilities[source_index - 2];
        weight_buffer[i - 1] = weight_buffer[source_index - 1];
        weight_buffer[i - 2] = weight_buffer[source_index - 1];
        weight_buffer[i - 3] = weight_buffer[source_index - 2];
        weight_buffer[i - 4] = weight_buffer[source_index - 2];
        source_index -= 2;
      }
    } else {
      assert(n_vis_polarizations == 4);
      GetInstrumentalVisibilities<4>(*ms_reader, ms_data.antenna_names.size(),
                                     row_data, _selectedBand,
                                     weight_buffer.data(), model_buffer.data(),
                                     selection_buffer.data(), metadata);
    }

    row_data.uvw[1] = -metadata.vInM;  // DEBUG vdtol, flip axis
    row_data.uvw[2] = -metadata.wInM;  //

    _bufferset->get_gridder(kGridderIndex)
        ->grid_visibilities(time_index, metadata.antenna1, metadata.antenna2,
                            row_data.uvw, row_data.data, weight_buffer.data());

    ms_reader->NextInputRow();
  }
  _bufferset->finished();

  _griddingWatch.Pause();

  return 0;
}

void IdgMsGridder::StartPredict(std::vector<Image>&& images) {
  if (images.size() == 2)
    throw std::runtime_error("IDG gridder cannot make complex images");
  const size_t untrimmed_width = ImageWidth();
  const size_t width = TrimWidth();
  const size_t height = TrimHeight();

  assert(width == height);
  assert(untrimmed_width == ImageHeight());

  _options["padded_size"] = untrimmed_width;

  const bool stokes_I_only =
      (Polarization() == aocommon::Polarization::StokesI);
  _options["stokes_I_only"] = stokes_I_only;
  const size_t n_image_polarizations = stokes_I_only ? 1 : 4;

  _image.assign(n_image_polarizations * width * height, 0.0);
  if (!_averageBeam) {
    Logger::Debug << "No average beam in cache, creating an empty one.\n";
    _averageBeam.reset(new AverageBeam());
  }

  assert(images.size() == n_image_polarizations);
  if (Polarization() == aocommon::Polarization::FullStokes) {
    for (size_t polarization_index = 0;
         polarization_index != n_image_polarizations; ++polarization_index) {
      std::copy_n(images[polarization_index].Data(), width * height,
                  _image.data() + polarization_index * width * height);
    }
  } else {
    const size_t stokes_index =
        aocommon::Polarization::StokesToIndex(Polarization());
    std::copy_n(images[0].Data(), width * height,
                _image.data() + stokes_index * width * height);
  }

  bool do_scale = false;
  if (!_averageBeam->Empty()) {
    // Set avg beam from cache
    Logger::Debug << "Average beam is already in cache.\n";
    _bufferset->set_scalar_beam(_averageBeam->ScalarBeam());
    do_scale = true;
  }

  double max_w = 0;
  for (size_t i = 0; i != GetMsCount(); ++i) {
    max_w = std::max(max_w, GetMsData(i).max_w_with_flags);
  }

  const double shift_l = LShift();
  const double shift_m = MShift();
  const double shift_p =
      std::sqrt(1.0 - shift_l * shift_l - shift_m * shift_m) - 1.0;
  _bufferset->init(width, ActualPixelSizeX(), max_w + 1.0, shift_l, shift_m,
                   shift_p, _options);
  _bufferset->set_image(_image.data(), do_scale);
}

void IdgMsGridder::FinishPredict() {}

void IdgMsGridder::setIdgType() {
  switch (GetSettings().idgMode) {
    default:
      return;
    case Settings::IDG_CPU:
      _proxyType = idg::api::Type::CPU_OPTIMIZED;
      return;
    case Settings::IDG_GPU:
      _proxyType = idg::api::Type::CUDA_GENERIC;
      return;
    case Settings::IDG_HYBRID:
      _proxyType = idg::api::Type::HYBRID_CUDA_CPU_OPTIMIZED;
      return;
  }
}

size_t IdgMsGridder::PredictMeasurementSet(
    const MsProviderCollection::MsData& ms_data) {
  aocommon::UVector<std::complex<float>> aterm_buffer;
#ifdef HAVE_EVERYBEAM
  std::unique_ptr<ATermBase> aterm_maker;
  if (!prepareForMeasurementSet(ms_data, aterm_maker, aterm_buffer,
                                idg::api::BufferSetType::degridding))
    return 0;
#else
  if (!prepareForMeasurementSet(ms_data, aterm_buffer,
                                idg::api::BufferSetType::degridding))
    return 0;
#endif

  ms_data.ms_provider->ReopenRW();

  _outputProvider = ms_data.ms_provider;

  constexpr size_t n_idg_polarizations = 4;
  aocommon::UVector<std::complex<float>> buffer(_selectedBand.ChannelCount() *
                                                n_idg_polarizations);
  _degriddingWatch.Start();

  int time_index = -1;
  double current_time = -1.0;
  aocommon::UVector<double> uvws(ms_data.ms_provider->NAntennas() * 3, 0.0);

  TimestepBuffer timestep_buffer(ms_data.ms_provider, false);
  timestep_buffer.ResetWritePosition();
  for (std::unique_ptr<MSReader> ms_reader = timestep_buffer.MakeReader();
       ms_reader->CurrentRowAvailable(); ms_reader->NextInputRow()) {
    TimestepBufferReader& timestep_reader =
        static_cast<TimestepBufferReader&>(*ms_reader);

    MSProvider::MetaData metadata;
    timestep_reader.ReadMeta(metadata);

    const size_t provRowId = timestep_reader.RowId();
    if (current_time != metadata.time) {
      current_time = metadata.time;
      time_index++;

#ifdef HAVE_EVERYBEAM
      if (aterm_maker) {
        timestep_reader.GetUVWsForTimestep(uvws);
        if (aterm_maker->Calculate(aterm_buffer.data(), current_time,
                                   _selectedBand.CentreFrequency(),
                                   metadata.fieldId, uvws.data())) {
          _bufferset->get_degridder(kGridderIndex)
              ->set_aterm(time_index, aterm_buffer.data());
          Logger::Debug << "Calculated new a-terms for timestep " << time_index
                        << "\n";
        }
      }
#endif
    }

    IDGPredictionRow row;
    row.uvw[0] = metadata.uInM;
    row.uvw[1] = -metadata.vInM;
    row.uvw[2] = -metadata.wInM;
    row.antenna1 = metadata.antenna1;
    row.antenna2 = metadata.antenna2;
    row.timeIndex = time_index;
    row.rowId = provRowId;
    predictRow(row, ms_data.antenna_names);
  }

  computePredictionBuffer(ms_data.antenna_names);
  return 0;
}

void IdgMsGridder::predictRow(IDGPredictionRow& row,
                              const std::vector<std::string>& antenna_names) {
  while (_bufferset->get_degridder(kGridderIndex)
             ->request_visibilities(row.rowId, row.timeIndex, row.antenna1,
                                    row.antenna2, row.uvw)) {
    computePredictionBuffer(antenna_names);
  }
}

void IdgMsGridder::computePredictionBuffer(
    const std::vector<std::string>& antenna_names) {
  auto available_row_ids = _bufferset->get_degridder(kGridderIndex)->compute();
  Logger::Debug << "Computed " << available_row_ids.size() << " rows.\n";
  const size_t n_vis_polarizations = _outputProvider->NPolarizations();
  for (std::pair<long unsigned, std::complex<float>*>& row :
       available_row_ids) {
    MSProvider::MetaData metaData;
    ReadPredictMetaData(metaData);
    if (n_vis_polarizations == 1) {
      // Place Stokes I in the first quarter of the array
      for (size_t i = 0; i != _selectedBand.ChannelCount(); ++i) {
        row.second[i] = (row.second[i * 4] + row.second[i * 4 + 3]) / 2.0f;
      }

    } else if (n_vis_polarizations == 2) {
      // Remove the XY/YX pols from the data and place the result in the first
      // half of the array
      for (size_t i = 0; i != _selectedBand.ChannelCount(); ++i) {
        row.second[i * 2] = row.second[i * 4];
        row.second[i * 2 + 1] = row.second[i * 4 + 3];
      }
    } else {
      assert(n_vis_polarizations == 4);
    }
    WriteInstrumentalVisibilities(*_outputProvider, antenna_names.size(),
                                  _selectedBand, row.second, metaData);
  }
  _bufferset->get_degridder(kGridderIndex)->finished_reading();
  _degriddingWatch.Pause();
}

std::vector<Image> IdgMsGridder::ResultImages() {
  const size_t width = TrimWidth();
  const size_t height = TrimHeight();
  std::vector<Image> images;
  if (Polarization() == aocommon::Polarization::FullStokes) {
    images.reserve(4);
    for (size_t polIndex = 0; polIndex != 4; ++polIndex) {
      images.emplace_back(width, height);
      std::copy_n(_image.data() + polIndex * width * height, width * height,
                  images[polIndex].Data());
    }
  } else {
    size_t polIndex = aocommon::Polarization::StokesToIndex(Polarization());
    images.emplace_back(width, height);
    std::copy_n(_image.data() + polIndex * width * height, width * height,
                images[0].Data());
  }
  return images;
}

void IdgMsGridder::SetAverageBeam(std::unique_ptr<AverageBeam> average_beam) {
  _averageBeam = std::move(average_beam);
}

std::unique_ptr<AverageBeam> IdgMsGridder::ReleaseAverageBeam() {
  return std::move(_averageBeam);
}

void IdgMsGridder::SaveBeamImage(const ImagingTableEntry& entry,
                                 ImageFilename& filename,
                                 const Settings& settings, double ra,
                                 double dec, double pdl, double pdm,
                                 const AverageBeam& average_beam) {
  aocommon::FitsWriter writer;
  writer.SetImageDimensions(settings.trimmedImageWidth,
                            settings.trimmedImageHeight, ra, dec,
                            settings.pixelScaleX, settings.pixelScaleY);
  writer.SetPhaseCentreShift(pdl, pdm);
  ImageFilename polName(filename);
  polName.SetPolarization(aocommon::Polarization::StokesI);
  writer.SetPolarization(aocommon::Polarization::StokesI);
  writer.SetFrequency(entry.CentralFrequency(),
                      entry.bandEndFrequency - entry.bandStartFrequency);
  writer.Write(polName.GetBeamPrefix(settings) + ".fits",
               average_beam.ScalarBeam()->data());
}

void IdgMsGridder::SavePBCorrectedImages(aocommon::FitsWriter& writer,
                                         const ImageFilename& filename,
                                         const std::string& filenameKind,
                                         const Settings& settings) {
  ImageFilename beamName(filename);
  beamName.SetPolarization(aocommon::Polarization::StokesI);
  aocommon::FitsReader reader(beamName.GetBeamPrefix(settings) + ".fits");

  Image beam(reader.ImageWidth(), reader.ImageHeight());
  reader.Read(beam.Data());

  Image image;
  for (size_t polIndex = 0; polIndex != 4; ++polIndex) {
    aocommon::PolarizationEnum pol =
        aocommon::Polarization::IndexToStokes(polIndex);
    ImageFilename name(filename);
    name.SetPolarization(pol);
    aocommon::FitsReader reader(name.GetPrefix(settings) + "-" + filenameKind +
                                ".fits");
    if (image.Empty()) image = Image(reader.ImageWidth(), reader.ImageHeight());
    reader.Read(image.Data());

    for (size_t i = 0; i != reader.ImageWidth() * reader.ImageHeight(); ++i) {
      if (beam[i] > 1e-6)
        image[i] /= beam[i];
      else
        image[i] = std::numeric_limits<double>::quiet_NaN();
    }

    writer.SetPolarization(pol);
    writer.Write(name.GetPrefix(settings) + "-" + filenameKind + "-pb.fits",
                 image.Data());
  }
}

#ifdef HAVE_EVERYBEAM
bool IdgMsGridder::prepareForMeasurementSet(
    const MsProviderCollection::MsData& ms_data,
    std::unique_ptr<ATermBase>& aTermMaker,
    aocommon::UVector<std::complex<float>>& aTermBuffer,
    idg::api::BufferSetType bufferSetType) {
#else
bool IdgMsGridder::prepareForMeasurementSet(
    const MsProviderCollection::MsData& ms_data,
    aocommon::UVector<std::complex<float>>& aTermBuffer,
    idg::api::BufferSetType bufferSetType) {
#endif  // HAVE_EVERYBEAM
  const float max_baseline = ms_data.max_baseline_meters;
  // Skip this ms if there is no data in it
  if (!max_baseline) return false;

  _selectedBand = ms_data.SelectedBand();

  // TODO for now we map the ms antennas directly to the gridder's antenna,
  // including non-selected antennas. Later this can be made more efficient.
  const size_t nStations = ms_data.ms_provider->MS()->antenna().nrow();

  std::vector<std::vector<double>> bands;
  bands.emplace_back(_selectedBand.begin(), _selectedBand.end());
  const size_t nChannels = _selectedBand.ChannelCount();

  // Only one-third of the mem is allocated to the buffers, so that memory
  // remains available for the images and other things done by IDG.
  // Never use more than 16 GB
  const size_t memSize = std::min<uint64_t>(16ul * 1024ul * 1024ul * 1024ul,
                                            _resources.Memory() / 3);
  uint64_t memPerTimestep =
      idg::api::BufferSet::get_memory_per_timestep(nStations, nChannels);
#ifdef HAVE_EVERYBEAM
  aTermMaker = getATermMaker(ms_data);
  if (aTermMaker) {
    const size_t subgridsize = _bufferset->get_subgridsize();
    aTermBuffer.resize(subgridsize * subgridsize * 4 * nStations);
    // When a-terms are used, they will also take memory. Here we calculate
    // their approx contribution.
    double avgUpdate = aTermMaker->AverageUpdateTime();
    Logger::Debug << "A-terms change on average every " << avgUpdate
                  << " s, once every " << (avgUpdate / ms_data.integration_time)
                  << " timesteps.\n";
    const uint64_t atermMemPerTimestep =
        subgridsize * subgridsize * nStations *  // size of grid x nr of grids
        (4 * 8) *  // 4 pol, 8 bytes per complex value
        (ms_data.integration_time /
         avgUpdate);  // Average number of aterms per timestep
    Logger::Debug << "A-terms increase mem per timestep from " << memPerTimestep
                  << " bytes to " << (memPerTimestep + atermMemPerTimestep)
                  << " bytes.\n";
    memPerTimestep += atermMemPerTimestep;
  }
#else
  if (!GetSettings().atermConfigFilename.empty() ||
      GetSettings().gridWithBeam) {
    throw std::runtime_error(
        "ATerm correction requested, but the software has been compiled "
        "without EveryBeam. Recompile your software and make sure that "
        "cmake finds the EveryBeam library.");
  }
#endif  // HAVE_EVERYBEAM

  // IDG can allocate two visibility buffers: (for parallel processing)
  memPerTimestep *= 2;

  _buffersize = std::max<size_t>(1, memSize / memPerTimestep);

  Logger::Debug << "Allocatable timesteps (" << nStations << " stations, "
                << nChannels << " channels, " << memSize / (1024 * 1024 * 1024)
                << " GB mem): " << _buffersize << '\n';
  _bufferset->init_buffers(_buffersize, bands, nStations, max_baseline,
                           _options, bufferSetType);

  return true;
}

#ifdef HAVE_EVERYBEAM
std::unique_ptr<class ATermBase> IdgMsGridder::getATermMaker(
    const MsProviderCollection::MsData& ms_data) {
  SynchronizedMS ms = ms_data.ms_provider->MS();
  size_t nr_stations = ms->antenna().nrow();
  if (!GetSettings().atermConfigFilename.empty() ||
      GetSettings().gridWithBeam) {
    // IDG uses a flipped coordinate system which is moved by half a pixel:
    CoordinateSystem system;
    system.width = _bufferset->get_subgridsize();
    system.height = system.width;
    system.ra = PhaseCentreRA();
    system.dec = PhaseCentreDec();
    system.dl = -_bufferset->get_subgrid_pixelsize();
    system.dm = -_bufferset->get_subgrid_pixelsize();
    system.l_shift = LShift() - 0.5 * system.dl;
    system.m_shift = MShift() + 0.5 * system.dm;

    everybeam::ATermSettings aterm_settings;
    aterm_settings.save_aterms_prefix = GetSettings().prefixName;
    aterm_settings.data_column_name = GetSettings().dataColumnName;
    aterm_settings.filenames = GetSettings().filenames;
    aterm_settings.aterm_update_interval = GetSettings().beamAtermUpdateTime;
    aterm_settings.padded_image_width = GetSettings().paddedImageWidth;
    aterm_settings.trimmed_image_width = GetSettings().trimmedImageWidth;
    aterm_settings.max_support = GetSettings().atermKernelSize;

    if (!GetSettings().atermConfigFilename.empty()) {
      ParsetReader parset_aterms(GetSettings().atermConfigFilename);
      // If MWA MS and "beam" in aterms, get the path to the coefficient file
      if (everybeam::GetTelescopeType(*ms) ==
          everybeam::TelescopeType::kMWATelescope) {
        std::vector<std::string> aterms = parset_aterms.GetStringList("aterms");
        if (std::find(aterms.begin(), aterms.end(), "beam") != aterms.end()) {
          aterm_settings.coeff_path =
              wsclean::mwa::FindCoeffFile(GetSettings().mwaPath);
        }
      }

      std::unique_ptr<ATermConfig> config(
          new ATermConfig(nr_stations, system, aterm_settings));
      config->SetSaveATerms(GetSettings().saveATerms, GetSettings().prefixName);
      config->Read(*ms, parset_aterms, ms.Filename());
      return config;
    } else {
      // If MWA MS, get the path to the coefficient file
      if (everybeam::GetTelescopeType(*ms) ==
          everybeam::TelescopeType::kMWATelescope) {
        aterm_settings.coeff_path =
            wsclean::mwa::FindCoeffFile(GetSettings().mwaPath);
      }
      bool frequencyInterpolation = true;
      bool useChannelFrequency = true;
      std::string elementResponseModel = !GetSettings().beamModel.empty()
                                             ? GetSettings().beamModel
                                             : "DEFAULT";

      std::unique_ptr<ATermBeam> beam = ATermConfig::GetATermBeam(
          *ms, system, aterm_settings, frequencyInterpolation,
          GetSettings().beamNormalisationMode, useChannelFrequency,
          elementResponseModel, GetSettings().beamMode);
      beam->SetSaveATerms(GetSettings().saveATerms, GetSettings().prefixName);
      beam->SetUpdateInterval(GetSettings().beamAtermUpdateTime);
      return beam;
    }
  } else {
    return std::unique_ptr<ATermBase>();
  }
}

#endif  // HAVE_EVERYBEAM

}  // namespace wsclean