1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
#include "idgmsgridder.h"
#include "../msproviders/msreaders/timestepbufferreader.h"
#include <cmath>
#include <thread>
#include <idg-api.h>
#include <aocommon/coordinatesystem.h>
#include <aocommon/fits/fitsreader.h>
#include <aocommon/logger.h>
#include "../msproviders/msprovider.h"
#include "../msproviders/timestepbuffer.h"
#include "../io/findmwacoefffile.h"
#include "../io/imagefilename.h"
#include "../io/parsetreader.h"
#include "../structures/imagingtable.h"
#include "../main/settings.h"
#include "averagebeam.h"
#include "idgconfiguration.h"
#ifdef HAVE_EVERYBEAM
#include <EveryBeam/aterms/atermconfig.h>
#include <EveryBeam/options.h>
#include <EveryBeam/load.h>
using everybeam::ATermSettings;
using everybeam::aterms::ATermBase;
using everybeam::aterms::ATermBeam;
using everybeam::aterms::ATermConfig;
#endif // HAVE_EVERYBEAM
using aocommon::CoordinateSystem;
using aocommon::Image;
using aocommon::Logger;
namespace wsclean {
namespace {
constexpr const size_t kGridderIndex = 0;
}
IdgMsGridder::IdgMsGridder(const Settings& settings, const Resources& resources,
MsProviderCollection& ms_provider_collection)
: MsGridder(settings, ms_provider_collection),
_averageBeam(nullptr),
_outputProvider(nullptr),
_proxyType(idg::api::Type::CPU_OPTIMIZED),
_buffersize(0),
_resources(resources) {
IdgConfiguration::Read(_proxyType, _buffersize, _options);
setIdgType();
_bufferset = std::unique_ptr<idg::api::BufferSet>(
idg::api::BufferSet::create(_proxyType));
if (settings.gridWithBeam || !settings.atermConfigFilename.empty())
_options["a_term_kernel_size"] = float(GetSettings().atermKernelSize);
_options["max_threads"] = int(resources.NCpus());
if (settings.gridMode == GriddingKernelMode::BlackmanHarris)
_options["taper"] = std::string("blackman-harris");
}
IdgMsGridder::~IdgMsGridder() {
Logger::Info << "Gridding: " << _griddingWatch.ToString()
<< ", degridding: " << _degriddingWatch.ToString() << '\n';
}
size_t IdgMsGridder::GetNInversionPasses() const {
if (GetPsfMode() == PsfMode::kNone && _averageBeam->Empty()) {
// Two passes are used for this case: i) average beam creation; ii)
// gridding.
return 2;
}
return 1;
}
void IdgMsGridder::StartInversion() {
const size_t untrimmed_width = ImageWidth();
assert(TrimWidth() == TrimHeight());
assert(untrimmed_width == ImageHeight());
_options["padded_size"] = untrimmed_width;
_options["stokes_I_only"] =
(Polarization() == aocommon::Polarization::StokesI);
if (!_averageBeam) _averageBeam.reset(new AverageBeam());
double max_w = 0;
for (size_t i = 0; i != GetMsCount(); ++i) {
max_w = std::max(max_w, GetMsData(i).max_w_with_flags);
}
const double shift_l = LShift();
const double shift_m = MShift();
const double shift_p =
std::sqrt(1.0 - shift_l * shift_l - shift_m * shift_m) - 1.0;
_bufferset->init(TrimWidth(), ActualPixelSizeX(), max_w + 1.0, shift_l,
shift_m, shift_p, _options);
Logger::Debug << "IDG subgrid size: " << _bufferset->get_subgridsize()
<< '\n';
if (GetPsfMode() != PsfMode::kNone) {
// Computing the PSF
// For the PSF the aterm is not applied
_bufferset->set_apply_aterm(false);
_bufferset->unset_matrix_inverse_beam();
} else {
// Compute a dirty/residual image
// with application of the a term
_bufferset->set_apply_aterm(true);
// Because compensation for the average beam happens at subgrid level
// it needs to be known in advance.
// If it is not in the cache it needs to be computed first, which will occur
// inside StartInversionPass().
if (!_averageBeam->Empty()) {
// Set avg beam from cache
Logger::Debug << "Using average beam from cache.\n";
_bufferset->set_scalar_beam(_averageBeam->ScalarBeam());
_bufferset->set_matrix_inverse_beam(_averageBeam->MatrixInverseBeam());
}
}
}
void IdgMsGridder::StartInversionPass(size_t pass_index) {
if (pass_index == 0 && GetNInversionPasses() == 2) {
// Compute avg beam
Logger::Debug << "Computing average beam.\n";
_bufferset->init_compute_avg_beam(idg::api::compute_flags::compute_only);
} else {
ResetVisibilityCounters();
}
}
void IdgMsGridder::FinishInversionPass(size_t pass_index) {
if (pass_index == 0 && GetNInversionPasses() == 2) {
_bufferset->finalize_compute_avg_beam();
Logger::Debug << "Finished computing average beam.\n";
_averageBeam->SetScalarBeam(_bufferset->get_scalar_beam(), TrimWidth(),
TrimHeight());
_averageBeam->SetMatrixInverseBeam(_bufferset->get_matrix_inverse_beam(),
_bufferset->get_subgridsize(),
_bufferset->get_subgridsize());
}
}
void IdgMsGridder::FinishInversion() {
const size_t n_image_polarizations = _options["stokes_I_only"] ? 1 : 4;
// GridMeasurementSet calls have added the gridding result to _image member
_image.assign(n_image_polarizations * TrimWidth() * TrimHeight(), 0.0);
_bufferset->get_image(_image.data());
if (GetPsfMode() != PsfMode::kNone) {
Logger::Debug << "Total weight: " << ImageWeight() << '\n';
}
// result is now in _image member
// Can be accessed by subsequent calls to ResultImages()
}
size_t IdgMsGridder::GridMeasurementSet(
const MsProviderCollection::MsData& ms_data) {
aocommon::UVector<std::complex<float>> aterm_buffer;
#ifdef HAVE_EVERYBEAM
std::unique_ptr<ATermBase> aterm_maker;
if (!prepareForMeasurementSet(ms_data, aterm_maker, aterm_buffer,
idg::api::BufferSetType::gridding))
return 0;
#else
if (!prepareForMeasurementSet(ms_data, aterm_buffer,
idg::api::BufferSetType::gridding))
return 0;
#endif
const size_t n_vis_polarizations = ms_data.ms_provider->NPolarizations();
constexpr size_t n_idg_polarizations = 4;
const size_t data_size = _selectedBand.ChannelCount() * n_idg_polarizations;
aocommon::UVector<float> weight_buffer(data_size);
aocommon::UVector<std::complex<float>> model_buffer(data_size);
aocommon::UVector<bool> selection_buffer(_selectedBand.ChannelCount(), true);
_griddingWatch.Start();
// The gridder doesn't need to know the absolute time index; this value
// indexes relatively to where we start in the measurement set, and only
// increases when the time changes.
int time_index = -1;
double current_time = -1.0;
aocommon::UVector<double> uvws(ms_data.ms_provider->NAntennas() * 3, 0.0);
TimestepBuffer timestep_buffer(ms_data.ms_provider, DoSubtractModel());
std::unique_ptr<MSReader> ms_reader = timestep_buffer.MakeReader();
TimestepBufferReader& timestep_reader =
static_cast<TimestepBufferReader&>(*ms_reader);
aocommon::UVector<std::complex<float>> row_visibilities(data_size);
IDGInversionRow row_data;
row_data.data = row_visibilities.data();
while (ms_reader->CurrentRowAvailable()) {
MSProvider::MetaData metadata;
timestep_reader.ReadMeta(metadata);
if (current_time != metadata.time) {
current_time = metadata.time;
time_index++;
#ifdef HAVE_EVERYBEAM
if (aterm_maker) {
timestep_reader.GetUVWsForTimestep(uvws);
if (aterm_maker->Calculate(aterm_buffer.data(), current_time,
_selectedBand.CentreFrequency(),
metadata.fieldId, uvws.data())) {
_bufferset->get_gridder(kGridderIndex)
->set_aterm(time_index, aterm_buffer.data());
Logger::Debug << "Calculated a-terms for timestep " << time_index
<< "\n";
}
}
#endif
}
row_data.uvw[0] = metadata.uInM;
row_data.uvw[1] = metadata.vInM;
row_data.uvw[2] = metadata.wInM;
row_data.antenna1 = metadata.antenna1;
row_data.antenna2 = metadata.antenna2;
row_data.timeIndex = time_index;
if (n_vis_polarizations == 1) {
GetInstrumentalVisibilities<1>(*ms_reader, ms_data.antenna_names.size(),
row_data, _selectedBand,
weight_buffer.data(), model_buffer.data(),
selection_buffer.data(), metadata);
// The data is placed in the first quarter of the buffers: reverse copy it
// and expand it to 4 polarizations. TODO at a later time, IDG should
// be able to directly accept 1 polarization instead of 4.
size_t source_index = row_visibilities.size() / 4;
for (size_t i = row_visibilities.size(); i != 0; i -= 4) {
row_visibilities[i - 1] = row_visibilities[source_index - 1];
row_visibilities[i - 2] = 0.0;
row_visibilities[i - 3] = 0.0;
row_visibilities[i - 4] = row_visibilities[source_index - 1];
weight_buffer[i - 1] = weight_buffer[source_index - 1];
weight_buffer[i - 2] = weight_buffer[source_index - 1];
weight_buffer[i - 3] = weight_buffer[source_index - 1];
weight_buffer[i - 4] = weight_buffer[source_index - 1];
source_index--;
}
} else if (n_vis_polarizations == 2) {
GetInstrumentalVisibilities<2>(*ms_reader, ms_data.antenna_names.size(),
row_data, _selectedBand,
weight_buffer.data(), model_buffer.data(),
selection_buffer.data(), metadata);
// The data is placed in the first half of the buffers: reverse copy it
// and expand it to 4 polarizations. TODO at a later time, IDG should
// be able to directly accept 2 pols instead of 4.
size_t source_index = row_visibilities.size() / 2;
for (size_t i = row_visibilities.size(); i != 0; i -= 4) {
row_visibilities[i - 1] = row_visibilities[source_index - 1];
row_visibilities[i - 2] = 0.0;
row_visibilities[i - 3] = 0.0;
row_visibilities[i - 4] = row_visibilities[source_index - 2];
weight_buffer[i - 1] = weight_buffer[source_index - 1];
weight_buffer[i - 2] = weight_buffer[source_index - 1];
weight_buffer[i - 3] = weight_buffer[source_index - 2];
weight_buffer[i - 4] = weight_buffer[source_index - 2];
source_index -= 2;
}
} else {
assert(n_vis_polarizations == 4);
GetInstrumentalVisibilities<4>(*ms_reader, ms_data.antenna_names.size(),
row_data, _selectedBand,
weight_buffer.data(), model_buffer.data(),
selection_buffer.data(), metadata);
}
row_data.uvw[1] = -metadata.vInM; // DEBUG vdtol, flip axis
row_data.uvw[2] = -metadata.wInM; //
_bufferset->get_gridder(kGridderIndex)
->grid_visibilities(time_index, metadata.antenna1, metadata.antenna2,
row_data.uvw, row_data.data, weight_buffer.data());
ms_reader->NextInputRow();
}
_bufferset->finished();
_griddingWatch.Pause();
return 0;
}
void IdgMsGridder::StartPredict(std::vector<Image>&& images) {
if (images.size() == 2)
throw std::runtime_error("IDG gridder cannot make complex images");
const size_t untrimmed_width = ImageWidth();
const size_t width = TrimWidth();
const size_t height = TrimHeight();
assert(width == height);
assert(untrimmed_width == ImageHeight());
_options["padded_size"] = untrimmed_width;
const bool stokes_I_only =
(Polarization() == aocommon::Polarization::StokesI);
_options["stokes_I_only"] = stokes_I_only;
const size_t n_image_polarizations = stokes_I_only ? 1 : 4;
_image.assign(n_image_polarizations * width * height, 0.0);
if (!_averageBeam) {
Logger::Debug << "No average beam in cache, creating an empty one.\n";
_averageBeam.reset(new AverageBeam());
}
assert(images.size() == n_image_polarizations);
if (Polarization() == aocommon::Polarization::FullStokes) {
for (size_t polarization_index = 0;
polarization_index != n_image_polarizations; ++polarization_index) {
std::copy_n(images[polarization_index].Data(), width * height,
_image.data() + polarization_index * width * height);
}
} else {
const size_t stokes_index =
aocommon::Polarization::StokesToIndex(Polarization());
std::copy_n(images[0].Data(), width * height,
_image.data() + stokes_index * width * height);
}
bool do_scale = false;
if (!_averageBeam->Empty()) {
// Set avg beam from cache
Logger::Debug << "Average beam is already in cache.\n";
_bufferset->set_scalar_beam(_averageBeam->ScalarBeam());
do_scale = true;
}
double max_w = 0;
for (size_t i = 0; i != GetMsCount(); ++i) {
max_w = std::max(max_w, GetMsData(i).max_w_with_flags);
}
const double shift_l = LShift();
const double shift_m = MShift();
const double shift_p =
std::sqrt(1.0 - shift_l * shift_l - shift_m * shift_m) - 1.0;
_bufferset->init(width, ActualPixelSizeX(), max_w + 1.0, shift_l, shift_m,
shift_p, _options);
_bufferset->set_image(_image.data(), do_scale);
}
void IdgMsGridder::FinishPredict() {}
void IdgMsGridder::setIdgType() {
switch (GetSettings().idgMode) {
default:
return;
case Settings::IDG_CPU:
_proxyType = idg::api::Type::CPU_OPTIMIZED;
return;
case Settings::IDG_GPU:
_proxyType = idg::api::Type::CUDA_GENERIC;
return;
case Settings::IDG_HYBRID:
_proxyType = idg::api::Type::HYBRID_CUDA_CPU_OPTIMIZED;
return;
}
}
size_t IdgMsGridder::PredictMeasurementSet(
const MsProviderCollection::MsData& ms_data) {
aocommon::UVector<std::complex<float>> aterm_buffer;
#ifdef HAVE_EVERYBEAM
std::unique_ptr<ATermBase> aterm_maker;
if (!prepareForMeasurementSet(ms_data, aterm_maker, aterm_buffer,
idg::api::BufferSetType::degridding))
return 0;
#else
if (!prepareForMeasurementSet(ms_data, aterm_buffer,
idg::api::BufferSetType::degridding))
return 0;
#endif
ms_data.ms_provider->ReopenRW();
_outputProvider = ms_data.ms_provider;
constexpr size_t n_idg_polarizations = 4;
aocommon::UVector<std::complex<float>> buffer(_selectedBand.ChannelCount() *
n_idg_polarizations);
_degriddingWatch.Start();
int time_index = -1;
double current_time = -1.0;
aocommon::UVector<double> uvws(ms_data.ms_provider->NAntennas() * 3, 0.0);
TimestepBuffer timestep_buffer(ms_data.ms_provider, false);
timestep_buffer.ResetWritePosition();
for (std::unique_ptr<MSReader> ms_reader = timestep_buffer.MakeReader();
ms_reader->CurrentRowAvailable(); ms_reader->NextInputRow()) {
TimestepBufferReader& timestep_reader =
static_cast<TimestepBufferReader&>(*ms_reader);
MSProvider::MetaData metadata;
timestep_reader.ReadMeta(metadata);
const size_t provRowId = timestep_reader.RowId();
if (current_time != metadata.time) {
current_time = metadata.time;
time_index++;
#ifdef HAVE_EVERYBEAM
if (aterm_maker) {
timestep_reader.GetUVWsForTimestep(uvws);
if (aterm_maker->Calculate(aterm_buffer.data(), current_time,
_selectedBand.CentreFrequency(),
metadata.fieldId, uvws.data())) {
_bufferset->get_degridder(kGridderIndex)
->set_aterm(time_index, aterm_buffer.data());
Logger::Debug << "Calculated new a-terms for timestep " << time_index
<< "\n";
}
}
#endif
}
IDGPredictionRow row;
row.uvw[0] = metadata.uInM;
row.uvw[1] = -metadata.vInM;
row.uvw[2] = -metadata.wInM;
row.antenna1 = metadata.antenna1;
row.antenna2 = metadata.antenna2;
row.timeIndex = time_index;
row.rowId = provRowId;
predictRow(row, ms_data.antenna_names);
}
computePredictionBuffer(ms_data.antenna_names);
return 0;
}
void IdgMsGridder::predictRow(IDGPredictionRow& row,
const std::vector<std::string>& antenna_names) {
while (_bufferset->get_degridder(kGridderIndex)
->request_visibilities(row.rowId, row.timeIndex, row.antenna1,
row.antenna2, row.uvw)) {
computePredictionBuffer(antenna_names);
}
}
void IdgMsGridder::computePredictionBuffer(
const std::vector<std::string>& antenna_names) {
auto available_row_ids = _bufferset->get_degridder(kGridderIndex)->compute();
Logger::Debug << "Computed " << available_row_ids.size() << " rows.\n";
const size_t n_vis_polarizations = _outputProvider->NPolarizations();
for (std::pair<long unsigned, std::complex<float>*>& row :
available_row_ids) {
MSProvider::MetaData metaData;
ReadPredictMetaData(metaData);
if (n_vis_polarizations == 1) {
// Place Stokes I in the first quarter of the array
for (size_t i = 0; i != _selectedBand.ChannelCount(); ++i) {
row.second[i] = (row.second[i * 4] + row.second[i * 4 + 3]) / 2.0f;
}
} else if (n_vis_polarizations == 2) {
// Remove the XY/YX pols from the data and place the result in the first
// half of the array
for (size_t i = 0; i != _selectedBand.ChannelCount(); ++i) {
row.second[i * 2] = row.second[i * 4];
row.second[i * 2 + 1] = row.second[i * 4 + 3];
}
} else {
assert(n_vis_polarizations == 4);
}
WriteInstrumentalVisibilities(*_outputProvider, antenna_names.size(),
_selectedBand, row.second, metaData);
}
_bufferset->get_degridder(kGridderIndex)->finished_reading();
_degriddingWatch.Pause();
}
std::vector<Image> IdgMsGridder::ResultImages() {
const size_t width = TrimWidth();
const size_t height = TrimHeight();
std::vector<Image> images;
if (Polarization() == aocommon::Polarization::FullStokes) {
images.reserve(4);
for (size_t polIndex = 0; polIndex != 4; ++polIndex) {
images.emplace_back(width, height);
std::copy_n(_image.data() + polIndex * width * height, width * height,
images[polIndex].Data());
}
} else {
size_t polIndex = aocommon::Polarization::StokesToIndex(Polarization());
images.emplace_back(width, height);
std::copy_n(_image.data() + polIndex * width * height, width * height,
images[0].Data());
}
return images;
}
void IdgMsGridder::SetAverageBeam(std::unique_ptr<AverageBeam> average_beam) {
_averageBeam = std::move(average_beam);
}
std::unique_ptr<AverageBeam> IdgMsGridder::ReleaseAverageBeam() {
return std::move(_averageBeam);
}
void IdgMsGridder::SaveBeamImage(const ImagingTableEntry& entry,
ImageFilename& filename,
const Settings& settings, double ra,
double dec, double pdl, double pdm,
const AverageBeam& average_beam) {
aocommon::FitsWriter writer;
writer.SetImageDimensions(settings.trimmedImageWidth,
settings.trimmedImageHeight, ra, dec,
settings.pixelScaleX, settings.pixelScaleY);
writer.SetPhaseCentreShift(pdl, pdm);
ImageFilename polName(filename);
polName.SetPolarization(aocommon::Polarization::StokesI);
writer.SetPolarization(aocommon::Polarization::StokesI);
writer.SetFrequency(entry.CentralFrequency(),
entry.bandEndFrequency - entry.bandStartFrequency);
writer.Write(polName.GetBeamPrefix(settings) + ".fits",
average_beam.ScalarBeam()->data());
}
void IdgMsGridder::SavePBCorrectedImages(aocommon::FitsWriter& writer,
const ImageFilename& filename,
const std::string& filenameKind,
const Settings& settings) {
ImageFilename beamName(filename);
beamName.SetPolarization(aocommon::Polarization::StokesI);
aocommon::FitsReader reader(beamName.GetBeamPrefix(settings) + ".fits");
Image beam(reader.ImageWidth(), reader.ImageHeight());
reader.Read(beam.Data());
Image image;
for (size_t polIndex = 0; polIndex != 4; ++polIndex) {
aocommon::PolarizationEnum pol =
aocommon::Polarization::IndexToStokes(polIndex);
ImageFilename name(filename);
name.SetPolarization(pol);
aocommon::FitsReader reader(name.GetPrefix(settings) + "-" + filenameKind +
".fits");
if (image.Empty()) image = Image(reader.ImageWidth(), reader.ImageHeight());
reader.Read(image.Data());
for (size_t i = 0; i != reader.ImageWidth() * reader.ImageHeight(); ++i) {
if (beam[i] > 1e-6)
image[i] /= beam[i];
else
image[i] = std::numeric_limits<double>::quiet_NaN();
}
writer.SetPolarization(pol);
writer.Write(name.GetPrefix(settings) + "-" + filenameKind + "-pb.fits",
image.Data());
}
}
#ifdef HAVE_EVERYBEAM
bool IdgMsGridder::prepareForMeasurementSet(
const MsProviderCollection::MsData& ms_data,
std::unique_ptr<ATermBase>& aTermMaker,
aocommon::UVector<std::complex<float>>& aTermBuffer,
idg::api::BufferSetType bufferSetType) {
#else
bool IdgMsGridder::prepareForMeasurementSet(
const MsProviderCollection::MsData& ms_data,
aocommon::UVector<std::complex<float>>& aTermBuffer,
idg::api::BufferSetType bufferSetType) {
#endif // HAVE_EVERYBEAM
const float max_baseline = ms_data.max_baseline_meters;
// Skip this ms if there is no data in it
if (!max_baseline) return false;
_selectedBand = ms_data.SelectedBand();
// TODO for now we map the ms antennas directly to the gridder's antenna,
// including non-selected antennas. Later this can be made more efficient.
const size_t nStations = ms_data.ms_provider->MS()->antenna().nrow();
std::vector<std::vector<double>> bands;
bands.emplace_back(_selectedBand.begin(), _selectedBand.end());
const size_t nChannels = _selectedBand.ChannelCount();
// Only one-third of the mem is allocated to the buffers, so that memory
// remains available for the images and other things done by IDG.
// Never use more than 16 GB
const size_t memSize = std::min<uint64_t>(16ul * 1024ul * 1024ul * 1024ul,
_resources.Memory() / 3);
uint64_t memPerTimestep =
idg::api::BufferSet::get_memory_per_timestep(nStations, nChannels);
#ifdef HAVE_EVERYBEAM
aTermMaker = getATermMaker(ms_data);
if (aTermMaker) {
const size_t subgridsize = _bufferset->get_subgridsize();
aTermBuffer.resize(subgridsize * subgridsize * 4 * nStations);
// When a-terms are used, they will also take memory. Here we calculate
// their approx contribution.
double avgUpdate = aTermMaker->AverageUpdateTime();
Logger::Debug << "A-terms change on average every " << avgUpdate
<< " s, once every " << (avgUpdate / ms_data.integration_time)
<< " timesteps.\n";
const uint64_t atermMemPerTimestep =
subgridsize * subgridsize * nStations * // size of grid x nr of grids
(4 * 8) * // 4 pol, 8 bytes per complex value
(ms_data.integration_time /
avgUpdate); // Average number of aterms per timestep
Logger::Debug << "A-terms increase mem per timestep from " << memPerTimestep
<< " bytes to " << (memPerTimestep + atermMemPerTimestep)
<< " bytes.\n";
memPerTimestep += atermMemPerTimestep;
}
#else
if (!GetSettings().atermConfigFilename.empty() ||
GetSettings().gridWithBeam) {
throw std::runtime_error(
"ATerm correction requested, but the software has been compiled "
"without EveryBeam. Recompile your software and make sure that "
"cmake finds the EveryBeam library.");
}
#endif // HAVE_EVERYBEAM
// IDG can allocate two visibility buffers: (for parallel processing)
memPerTimestep *= 2;
_buffersize = std::max<size_t>(1, memSize / memPerTimestep);
Logger::Debug << "Allocatable timesteps (" << nStations << " stations, "
<< nChannels << " channels, " << memSize / (1024 * 1024 * 1024)
<< " GB mem): " << _buffersize << '\n';
_bufferset->init_buffers(_buffersize, bands, nStations, max_baseline,
_options, bufferSetType);
return true;
}
#ifdef HAVE_EVERYBEAM
std::unique_ptr<class ATermBase> IdgMsGridder::getATermMaker(
const MsProviderCollection::MsData& ms_data) {
SynchronizedMS ms = ms_data.ms_provider->MS();
size_t nr_stations = ms->antenna().nrow();
if (!GetSettings().atermConfigFilename.empty() ||
GetSettings().gridWithBeam) {
// IDG uses a flipped coordinate system which is moved by half a pixel:
CoordinateSystem system;
system.width = _bufferset->get_subgridsize();
system.height = system.width;
system.ra = PhaseCentreRA();
system.dec = PhaseCentreDec();
system.dl = -_bufferset->get_subgrid_pixelsize();
system.dm = -_bufferset->get_subgrid_pixelsize();
system.l_shift = LShift() - 0.5 * system.dl;
system.m_shift = MShift() + 0.5 * system.dm;
everybeam::ATermSettings aterm_settings;
aterm_settings.save_aterms_prefix = GetSettings().prefixName;
aterm_settings.data_column_name = GetSettings().dataColumnName;
aterm_settings.filenames = GetSettings().filenames;
aterm_settings.aterm_update_interval = GetSettings().beamAtermUpdateTime;
aterm_settings.padded_image_width = GetSettings().paddedImageWidth;
aterm_settings.trimmed_image_width = GetSettings().trimmedImageWidth;
aterm_settings.max_support = GetSettings().atermKernelSize;
if (!GetSettings().atermConfigFilename.empty()) {
ParsetReader parset_aterms(GetSettings().atermConfigFilename);
// If MWA MS and "beam" in aterms, get the path to the coefficient file
if (everybeam::GetTelescopeType(*ms) ==
everybeam::TelescopeType::kMWATelescope) {
std::vector<std::string> aterms = parset_aterms.GetStringList("aterms");
if (std::find(aterms.begin(), aterms.end(), "beam") != aterms.end()) {
aterm_settings.coeff_path =
wsclean::mwa::FindCoeffFile(GetSettings().mwaPath);
}
}
std::unique_ptr<ATermConfig> config(
new ATermConfig(nr_stations, system, aterm_settings));
config->SetSaveATerms(GetSettings().saveATerms, GetSettings().prefixName);
config->Read(*ms, parset_aterms, ms.Filename());
return config;
} else {
// If MWA MS, get the path to the coefficient file
if (everybeam::GetTelescopeType(*ms) ==
everybeam::TelescopeType::kMWATelescope) {
aterm_settings.coeff_path =
wsclean::mwa::FindCoeffFile(GetSettings().mwaPath);
}
bool frequencyInterpolation = true;
bool useChannelFrequency = true;
std::string elementResponseModel = !GetSettings().beamModel.empty()
? GetSettings().beamModel
: "DEFAULT";
std::unique_ptr<ATermBeam> beam = ATermConfig::GetATermBeam(
*ms, system, aterm_settings, frequencyInterpolation,
GetSettings().beamNormalisationMode, useChannelFrequency,
elementResponseModel, GetSettings().beamMode);
beam->SetSaveATerms(GetSettings().saveATerms, GetSettings().prefixName);
beam->SetUpdateInterval(GetSettings().beamAtermUpdateTime);
return beam;
}
} else {
return std::unique_ptr<ATermBase>();
}
}
#endif // HAVE_EVERYBEAM
} // namespace wsclean
|