1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#ifndef MODELSOURCE_H
#define MODELSOURCE_H
#include <algorithm>
#include <string>
#include <sstream>
#include "modelcomponent.h"
namespace wsclean {
class ModelSource {
public:
typedef std::vector<ModelComponent>::iterator iterator;
typedef std::vector<ModelComponent>::const_iterator const_iterator;
ModelSource() : _name(), _components(), _userdata(nullptr) {}
ModelSource(const ModelSource& source)
: _name(source._name),
_components(source._components),
_userdata(source._userdata),
_clusterName(source._clusterName) {}
~ModelSource() {}
ModelSource& operator=(const ModelSource& source) {
_name = source._name;
_components = source._components;
_userdata = source._userdata;
_clusterName = source._clusterName;
return *this;
}
const std::string& Name() const { return _name; }
void SetName(const std::string& name) { _name = name; }
/**
* Returns nullptr in case the source is not part of a cluster.
*/
const std::string& ClusterName() const { return _clusterName; }
void SetClusterName(const std::string& clusterName) {
_clusterName = clusterName;
}
std::string ToString() const;
bool operator<(const ModelSource& rhs) const {
return TotalFlux(aocommon::Polarization::StokesI) <
rhs.TotalFlux(aocommon::Polarization::StokesI);
}
void operator+=(const ModelComponent& rhs) {
for (iterator i = begin(); i != end(); ++i) {
if (rhs.PosDec() == i->PosDec() && rhs.PosRA() == i->PosRA()) {
i->SED() += rhs.SED();
return;
}
}
_components.push_back(rhs);
}
void operator+=(const ModelSource& rhs) {
for (const ModelComponent& c : rhs) (*this) += c;
}
void operator*=(double factor) {
for (iterator i = begin(); i != end(); ++i) (*i) *= factor;
}
void CombineMeasurements(const ModelSource& source) {
for (const_iterator i = source.begin(); i != source.end(); ++i)
CombineMeasurements(*i);
}
void CombineMeasurements(const ModelComponent& component) {
for (iterator i = begin(); i != end(); ++i) {
if (component.PosDec() == i->PosDec() &&
component.PosRA() == i->PosRA()) {
i->MSED().CombineMeasurements(component.MSED());
return;
}
}
throw std::runtime_error(
"Combining measurements while not same sources were measured!");
}
iterator begin() { return _components.begin(); }
iterator end() { return _components.end(); }
const_iterator begin() const { return _components.begin(); }
const_iterator end() const { return _components.end(); }
ModelComponent& front() { return _components.front(); }
const ModelComponent& front() const { return _components.front(); }
const ModelComponent& Peak() const { return *begin(); }
ModelComponent& Peak() { return *begin(); }
void AddComponent(const ModelComponent& component) {
_components.push_back(component);
}
void ClearComponents() { _components.clear(); }
double TotalFlux(double frequencyStartHz, double frequencyEndHz,
aocommon::PolarizationEnum polarization) const {
double flux = 0.0;
for (const_iterator i = begin(); i != end(); ++i)
flux += i->SED().IntegratedFlux(frequencyStartHz, frequencyEndHz,
polarization);
return flux;
}
double TotalFlux(double frequency,
aocommon::PolarizationEnum polarization) const {
double flux = 0.0;
for (const_iterator i = begin(); i != end(); ++i)
flux += i->SED().FluxAtFrequency(frequency, polarization);
return flux;
}
double TotalFlux(aocommon::PolarizationEnum polarization) const {
if (_components.empty())
return 0.0;
else
return TotalFlux(begin()->SED().ReferenceFrequencyHz(), polarization);
}
size_t ComponentCount() const { return _components.size(); }
const class ModelComponent& Component(size_t index) const {
return _components[index];
}
void* UserData() const { return _userdata; }
void SetUserData(void* userData) { _userdata = userData; }
/*void MakeUnitFlux()
{
double totalFlux = 0.0;
double freq = (Peak().MSED().LowestFrequency() +
Peak().MSED().HighestFrequency()) * 0.5; for(iterator i=begin(); i!=end();
++i)
{
totalFlux += TotalFlux(freq, aocommon::Polarization::StokesI);
}
for(iterator i=begin(); i!=end(); ++i)
{
double thisFlux = i->SED().FluxAtFrequency(freq,
aocommon::Polarization::StokesI); i->SetSED(MeasuredSED(thisFlux / totalFlux,
freq));
}
}*/
void SetConstantTotalFlux(double newFlux, double frequency) {
double totalFlux = 0.0;
for (iterator i = begin(); i != end(); ++i) {
totalFlux += TotalFlux(frequency, aocommon::Polarization::StokesI);
}
double scaleFactor = newFlux / totalFlux;
for (iterator i = begin(); i != end(); ++i) {
double thisFlux =
i->SED().FluxAtFrequency(frequency, aocommon::Polarization::StokesI);
i->SetSED(MeasuredSED(thisFlux * scaleFactor, frequency));
}
}
void SetConstantTotalFlux(const double* newFluxes, double frequency) {
double totalFlux =
fabs(TotalFlux(frequency, aocommon::Polarization::StokesI));
if (totalFlux == 0.0) {
for (iterator i = begin(); i != end(); ++i) {
Measurement m;
m.SetFrequencyHz(frequency);
for (size_t p = 0; p != 4; ++p)
m.SetFluxDensityFromIndex(p, newFluxes[p] / (double)ComponentCount());
MeasuredSED sed;
sed.AddMeasurement(m);
i->SetSED(sed);
}
} else {
totalFlux *= 0.5;
double scaleFactor[4];
for (size_t p = 0; p != 4; ++p) scaleFactor[p] = newFluxes[p] / totalFlux;
for (iterator i = begin(); i != end(); ++i) {
Measurement m;
m.SetFrequencyHz(frequency);
double thisFlux =
0.5 * (i->SED().FluxAtFrequency(frequency,
aocommon::Polarization::StokesI));
for (size_t p = 0; p != 4; ++p) {
m.SetFluxDensityFromIndex(p, thisFlux * scaleFactor[p]);
}
MeasuredSED sed;
sed.AddMeasurement(m);
i->SetSED(sed);
}
}
}
double MeanRA() const {
std::vector<double> raValues;
raValues.reserve(_components.size());
for (const_iterator c = begin(); c != end(); ++c)
raValues.push_back(c->PosRA());
return aocommon::ImageCoordinates::MeanRA(raValues);
}
double MeanDec() const {
double sum = 0.0;
for (const_iterator c = begin(); c != end(); ++c) sum += c->PosDec();
return sum / _components.size();
}
void SortComponents() { std::sort(_components.rbegin(), _components.rend()); }
bool HasValidMeasurement() const {
for (const_iterator i = begin(); i != end(); ++i)
if (i->HasValidMeasurement()) return true;
return false;
}
MeasuredSED GetIntegratedMSED() const {
if (_components.empty()) return MeasuredSED();
const_iterator i = begin();
MeasuredSED sum(i->MSED());
++i;
while (i != end()) {
const MeasuredSED& sed = i->MSED();
MeasuredSED::const_iterator sedIter = sed.begin();
MeasuredSED::iterator sumIter = sum.begin();
while (sedIter != sed.end() && sumIter != sum.end()) {
double frequency = sumIter->second.FrequencyHz();
if (sedIter->second.FrequencyHz() != frequency)
throw std::runtime_error(
"GetIntegratedSED() called for source with components having "
"different SED frequency gridding");
sumIter->second += sedIter->second;
++sedIter;
++sumIter;
}
++i;
}
return sum;
}
private:
std::string _name;
std::vector<ModelComponent> _components;
void* _userdata;
std::string _clusterName;
};
class ModelCluster {
public:
const std::string& Name() const { return _name; }
void SetName(const std::string& name) { _name = name; }
private:
std::string _name;
};
class SourceGroup {
public:
typedef std::vector<ModelSource>::iterator iterator;
typedef std::vector<ModelSource>::const_iterator const_iterator;
iterator begin() { return _sources.begin(); }
iterator end() { return _sources.end(); }
const_iterator begin() const { return _sources.begin(); }
const_iterator end() const { return _sources.end(); }
size_t SourceCount() const { return _sources.size(); }
void AddSource(const ModelSource& source) { _sources.push_back(source); }
double TotalFlux(aocommon::PolarizationEnum polarization) const {
double f = 0.0;
for (const_iterator s = _sources.begin(); s != _sources.end(); ++s)
f += s->TotalFlux(polarization);
return f;
}
double MeanRA() const {
std::vector<double> raValues;
raValues.reserve(_sources.size());
for (const_iterator s = begin(); s != end(); ++s)
raValues.push_back(s->MeanRA());
return aocommon::ImageCoordinates::MeanRA(raValues);
}
double MeanDec() const {
double sum = 0.0;
for (const_iterator s = _sources.begin(); s != _sources.end(); ++s)
sum += s->MeanDec();
return sum / _sources.size();
}
private:
std::vector<ModelSource> _sources;
};
inline std::string ModelSource::ToString() const {
std::stringstream s;
s << "source {\n name \"" << _name << "\"\n";
if (!_clusterName.empty()) s << " cluster \"" << _clusterName << "\"\n";
for (const_iterator i = begin(); i != end(); ++i) s << i->ToString();
s << "}\n";
return s.str();
}
} // namespace wsclean
#endif
|