1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#include "threadedscheduler.h"
#include "../gridding/msgridder.h"
#include "../main/settings.h"
#include <aocommon/logger.h>
#include <string>
namespace wsclean {
ThreadedScheduler::ThreadedScheduler(const Settings& settings)
: GriddingTaskManager{settings},
// When using the ThreadedScheduler as the main scheduler, limit the
// number of tasks in the queue to one per thread. When stacking too many
// tasks, memory usage could become an issue.
// When using the ThreadedScheduler as a local scheduler with the
// MPIScheduler, the MPIScheduler manages the task distribution.
// The ThreadedScheduler should always queue new tasks in that case.
task_queue_(settings.UseMpi() ? TaskQueueType()
: TaskQueueType(settings.parallelGridding)),
resources_per_task_(GetResources().GetPart(settings.parallelGridding)) {
for (size_t i = 0; i < settings.parallelGridding; ++i) {
thread_list_.emplace_back(&ThreadedScheduler::ProcessQueue, this);
}
}
ThreadedScheduler::~ThreadedScheduler() {
try {
Finish();
} catch (std::exception& e) {
// Normally, the user of the ThreadedScheduler calls Finish(), which
// rethrows any exception caught in a thread.
// We are in a destructor, so all that can be done is report the error.
using namespace std::string_literals;
aocommon::Logger::Error
<< "Exception caught during destruction of ThreadedScheduler:\n"s +
e.what() + '\n';
}
task_queue_.Finish(); // Make all threads exit.
for (std::thread& thread : thread_list_) thread.join();
}
void ThreadedScheduler::Run(
GriddingTask&& task, std::function<void(GriddingResult&)> finish_callback) {
const std::size_t task_id = task.unique_id;
const std::size_t facet_count = task.facets.size();
TaskData* task_data;
// Add an entry in task_data_map_ for the task.
{
std::lock_guard<std::mutex> lock(mutex_);
assert(task_data_map_.count(task_id) == 0);
task_data = &task_data_map_[task_id];
}
task_data->task = std::move(task);
task_data->result.facets.resize(facet_count);
task_data->callback = std::move(finish_callback);
if (!GetSettings().shared_facet_reads) {
// Add sub-tasks for each facet to the task queue.
for (std::size_t facet_index = 0; facet_index < facet_count;
++facet_index) {
task_queue_.Emplace(task_id, std::vector<size_t>{facet_index});
}
} else {
// Set the amount of parallel gridders for this task
task_data->task.num_parallel_gridders_ = std::min(
GetSettings().parallelGridding, std::max(facet_count, size_t{1}));
// Each facet group is only one task, the task will handle splitting
// resources between facets internally If we are not using compound tasks
// then we end up here for each individual facet and thereby create one task
// per facet
if (facet_count > 1) {
// Wait tasks call WaitForCompletion() on
// lock_excess_scheduler_tasks_ which will pause/freeze/block them until
// SignalCompletion() is called
task_data->task.lock_excess_scheduler_tasks_ =
std::make_shared<CompletionSignal>();
// There must be N-1 blocker tasks before we can run, giving us N threads
// in total as requested Set up locks so that we only start operating once
// we have the resources The scheduler will allocate us resources when the
// dummy tasks are placed in the queue
for (size_t wait_task_index = 0;
wait_task_index < task_data->task.num_parallel_gridders_ - 1;
++wait_task_index) {
// Exact id doesn't really matter we just need to ensure that id is
// unique
const size_t wait_task_id = std::numeric_limits<size_t>::max() -
(task_data->task.unique_id * 1000) -
wait_task_index;
TaskData* wait_task_data;
{
std::lock_guard<std::mutex> lock(mutex_);
assert(task_data_map_.count(wait_task_id) == 0);
wait_task_data = &task_data_map_[wait_task_id];
}
GriddingTask wait_task;
wait_task.operation = GriddingTask::Wait;
wait_task.lock_excess_scheduler_tasks_ =
task_data->task.lock_excess_scheduler_tasks_;
wait_task_data->task = std::move(wait_task);
task_queue_.Emplace(wait_task_id, std::vector<size_t>{0});
}
std::vector<size_t> facet_indexes(facet_count);
std::iota(facet_indexes.begin(), facet_indexes.end(), 0);
assert(!facet_indexes.empty());
task_queue_.Emplace(task_id, facet_indexes);
} else {
assert(0);
task_queue_.Emplace(task_id, std::vector<size_t>{0});
}
}
ProcessReadyList();
}
void ThreadedScheduler::ProcessQueue() {
std::pair<size_t, std::vector<size_t>> facet_task_pair;
while (task_queue_.Pop(facet_task_pair)) {
const size_t task_id = facet_task_pair.first;
const std::vector<size_t>& facet_indexes = facet_task_pair.second;
TaskData& task_data = task_data_map_[task_id];
try {
assert(!facet_indexes.empty());
// As the gridder manager will potentially be running/managing N parallel
// gridding tasks internally instead of just a single on it is n ecessary
// to allocate it the appropriate resources for all N tasks
Resources task_resources = resources_per_task_.GetCombined(
task_data.task.num_parallel_gridders_);
RunDirect(task_data.task, facet_indexes, task_resources, task_data.result,
task_data.result_mutex);
} catch (std::exception&) {
std::lock_guard<std::mutex> lock(mutex_);
latest_exception_ = std::current_exception();
}
if (task_data.task.operation == GriddingTask::Wait) {
std::lock_guard<std::mutex> lock(mutex_);
task_data_map_.erase(task_id);
continue;
}
// Extract the new value from task_data.finished_facet_count directly.
// When extracting the new value later, another thread may also have
// incremented the atomic value in the mean time, and multiple threads
// will think they have processed the last facet.
bool process = false;
{
std::lock_guard<std::mutex> result_lock(task_data.result_mutex);
task_data.finished_facet_count += facet_indexes.size();
process =
(task_data.finished_facet_count == task_data.task.facets.size());
}
if (process) {
if (GetSettings().UseMpi()) {
// Execute callback immediately, from the processing thread.
// The MPIScheduler stores the result at the main node.
// The MPIWorkerScheduler sends the result to the main node.
task_data.callback(task_data.result);
std::lock_guard<std::mutex> lock(mutex_);
task_data_map_.erase(task_id);
} else {
// Store the task id and execute the callback on the main thread.
std::lock_guard<std::mutex> lock(mutex_);
ready_list_.emplace_back(task_id);
}
}
}
}
void ThreadedScheduler::Start(size_t nWriterGroups) {
assert(ready_list_.empty());
GriddingTaskManager::Start(nWriterGroups);
if (writer_group_locks_.size() < nWriterGroups)
writer_group_locks_ = std::vector<std::mutex>(nWriterGroups);
}
std::unique_ptr<GriddingTaskManager::WriterLock> ThreadedScheduler::GetLock(
size_t writer_group_index) {
assert(writer_group_index < writer_group_locks_.size());
return std::make_unique<ThreadedWriterLock>(*this, writer_group_index);
}
void ThreadedScheduler::Finish() {
task_queue_.WaitForIdle(GetSettings().parallelGridding);
ProcessReadyList();
}
void ThreadedScheduler::ProcessReadyList() {
std::vector<std::size_t> local_ready_list;
std::exception_ptr local_exception;
// Move the ready_list_ and latest_exception_ to local variables so we can
// release the lock while the callbacks run / while throwing the exception.
{
std::lock_guard<std::mutex> lock{mutex_};
local_ready_list = std::move(ready_list_);
ready_list_.clear();
local_exception = std::move(latest_exception_);
latest_exception_ = std::exception_ptr();
}
// Check for exceptions before calling callbacks, since results
// are typically invalid when an exception occurred.
if (local_exception) std::rethrow_exception(local_exception);
// Call callbacks for any finished tasks
for (std::size_t task_id : local_ready_list) {
TaskData& task_data = task_data_map_[task_id];
task_data.callback(task_data.result);
}
// Remove the finished tasks from task_data_map_.
if (!local_ready_list.empty()) {
std::lock_guard<std::mutex> lock{mutex_};
for (std::size_t task_id : local_ready_list) {
task_data_map_.erase(task_id);
}
}
}
} // namespace wsclean
|