1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
#include "primarybeam.h"
#include "../msproviders/msreaders/msreader.h"
#include "../main/settings.h"
#include "../structures/imageweights.h"
#include "../msproviders/msdatadescription.h"
#include "../io/findmwacoefffile.h"
#include <aocommon/image.h>
#include <aocommon/logger.h>
#include <aocommon/multibanddata.h>
#include <schaapcommon/facets/facetimage.h>
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <optional>
#include <stdexcept>
#ifdef HAVE_EVERYBEAM
#include <EveryBeam/aterms/atermconfig.h>
#include <EveryBeam/griddedresponse/griddedresponse.h>
using everybeam::ATermSettings;
using everybeam::aterms::ATermConfig;
#endif
using aocommon::CoordinateSystem;
using aocommon::Image;
using aocommon::Logger;
using aocommon::Polarization;
using aocommon::PolarizationEnum;
using schaapcommon::reordering::MSSelection;
namespace wsclean {
namespace {
/// Returns a fitswriter initialized for the given coordinates and entry.
aocommon::FitsWriter MakeWriter(const CoordinateSystem& coordinates,
const ImagingTableEntry& entry) {
aocommon::FitsWriter writer;
writer.SetImageDimensions(coordinates.width, coordinates.height,
coordinates.ra, coordinates.dec, coordinates.dl,
coordinates.dm);
writer.SetPhaseCentreShift(coordinates.l_shift, coordinates.m_shift);
writer.SetFrequency(entry.CentralFrequency(),
entry.bandEndFrequency - entry.bandStartFrequency);
return writer;
}
std::string BeamFilename(const Settings& settings,
const ImageFilename& image_name,
std::optional<size_t> element_index) {
const std::string prefix = image_name.GetBeamPrefix(settings);
return element_index ? prefix + "-" + std::to_string(*element_index) + ".fits"
: prefix + ".fits";
}
/**
* @param element_index when given, the index is used in the filename (e.g.
* "wsclean-beam-3.fits"). Otherwise, a filename without index is used (e.g.
* "wsclean-beam.fits").
*/
void WriteBeamElement(const ImageFilename& image_name, const Image& beam_image,
const Settings& settings,
std::optional<size_t> element_index,
const aocommon::FitsWriter& writer) {
const std::string filename =
BeamFilename(settings, image_name, element_index);
writer.Write(filename, beam_image.Data());
}
aocommon::Image Load(const Settings& settings, const ImageFilename& image_name,
std::optional<size_t> element_index) {
const std::string filename =
BeamFilename(settings, image_name, element_index);
if (boost::filesystem::exists(filename)) {
aocommon::FitsReader reader(filename);
Image image(reader.ImageWidth(), reader.ImageHeight());
reader.Read(image.Data());
return image;
} else {
return aocommon::Image();
}
}
#ifdef HAVE_EVERYBEAM
void WriteBeamImages(const ImageFilename& image_name,
std::vector<aocommon::HMC4x4>&& beam,
const Settings& settings, const ImagingTableEntry& entry,
const CoordinateSystem& coordinates,
size_t undersampling_factor) {
using everybeam::griddedresponse::GriddedResponse;
const bool use_squared_beam = settings.UseFacetCorrections();
const aocommon::FitsWriter writer = MakeWriter(coordinates, entry);
Image upsampled(coordinates.width, coordinates.height);
if (use_squared_beam) {
for (aocommon::HMC4x4& pixel : beam) {
if (pixel.Invert()) {
const double stokes_i_sqrt = std::sqrt(
0.5 * (pixel.Data(0) + 2.0 * pixel.Data(9) + pixel.Data(15)));
pixel.Data(0) = stokes_i_sqrt == 0.0 ? 0.0 : 1.0 / stokes_i_sqrt;
} else {
pixel.Data(0) = 0.0;
}
}
GriddedResponse::UpsampleCorrection(upsampled.Data(), 0, coordinates.width,
coordinates.height, beam,
undersampling_factor);
WriteBeamElement(image_name, upsampled, settings, {}, writer);
} else {
std::vector<size_t> required_elements;
const bool pseudo_correction = settings.polarizations.size() == 1 &&
(entry.polarization == Polarization::RR ||
entry.polarization == Polarization::LL);
const bool stokes_i_correction =
settings.polarizations.size() == 1 &&
entry.polarization == Polarization::StokesI;
const bool diagonal_correction =
settings.polarizations ==
std::set{aocommon::Polarization::XX, aocommon::Polarization::YY};
if (pseudo_correction || stokes_i_correction) {
// Require: m_00, m_03, m_30 and m_33 ; see aocommon::HMC4x4::Data()
// m_03 is complex conjugate of m_30. The imaginary value is not
// necessary for Stokes I correction as it cancels out.
required_elements = {0, 9, 15};
} else if (diagonal_correction) {
// In diagonal (=xx,yy) correction, a 2x2 matrix with the xx-to-xx,
// xx-to-yy, yy-to-xx and yy-to-yy values needs to be inverted. This
// matrix inversion is affected (I think) by the imaginary value of
// the off-diagonal, so we need image 10 too.
required_elements = {0, 9, 10, 15};
} else {
required_elements = {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15};
}
for (size_t element : required_elements) {
Logger::Debug << "Upsampling beam element " << element << "...\n";
GriddedResponse::UpsampleCorrection(upsampled.Data(), element,
coordinates.width, coordinates.height,
beam, undersampling_factor);
WriteBeamElement(image_name, upsampled, settings, element, writer);
}
}
}
#endif
void ApplyFacetCorrections(const ImageFilename& image_name,
const Settings& settings,
const CoordinateSystem& coordinates,
const ImagingTable::Group& group,
const OutputChannelInfo& channel_info) {
schaapcommon::facets::FacetImage facet_image(coordinates.width,
coordinates.height, 1);
// group.front() can be used, because the central frequency and start/end
// frequency are equal inside a FacetGroup
const aocommon::FitsWriter writer = MakeWriter(coordinates, *group.front());
// When facet corrections are applied, only a scalar correction is left to
// be applied on the images.
Image beam_image = Load(settings, image_name, {});
if (!beam_image.Empty()) {
std::vector<float*> image_pointer = {beam_image.Data()};
for (const std::shared_ptr<ImagingTableEntry>& entry : group) {
// The visibilities are weighted by the beam and h5 facet solutions
// when gridding, and the visibilities themselves are "apparent"
// causing the images to be weighted by the square of those gains.
// The images are then per facet fully Mueller corrected to make them
// flat gain (=true instrinsic flux), after which they are again divided
// by the sqrt of the Stokes I gain (a scalar correction) to make them
// approximately flat noise for deconvolution. What's left to do here is
// therefore to take out that sqrt of Stokes I gain. This is done in
// two steps: an estimate of the average squared beam is corrected as a
// smooth image correction, whereas the residual facet solution gains
// are facet-based. In case the facet gains are near unity, this would
// result in a smooth image. Otherwise, the beam and solution
// contributions aren't easily separable (as they are averages of
// squares), so we just use (full_correction / beam_correction) as
// factor. The final image needs to be divided by this factor. However,
// since we are scaling the beam images, we need to apply the inverse of
// that.
const double beam_factor =
channel_info.averageBeamFacetCorrection[entry->facetIndex]
.GetStokesIValue();
const double full_factor =
channel_info.averageFacetCorrection[entry->facetIndex]
.GetStokesIValue();
const double correction =
beam_factor == 0.0 ? full_factor : full_factor / beam_factor;
facet_image.SetFacet(*entry->facet, true);
facet_image.MultiplyImageInsideFacet(image_pointer,
std::sqrt(correction));
}
WriteBeamElement(image_name, beam_image, settings, {}, writer);
}
}
#ifdef HAVE_EVERYBEAM
std::unique_ptr<everybeam::telescope::Telescope> PrepareEveryBeam(
SynchronizedMS& ms, const Settings& settings,
everybeam::TelescopeType telescope_type) {
// Pass the settings to EveryBeam::Options struct
const bool frequency_interpolation = true;
const bool use_channel_frequency = true;
const std::string element_response_model = settings.beamModel;
const std::string coefficients_path =
(telescope_type == everybeam::TelescopeType::kMWATelescope)
? wsclean::mwa::FindCoeffFile(settings.mwaPath)
: "";
ATermSettings aterm_settings;
aterm_settings.coeff_path = coefficients_path;
aterm_settings.data_column_name = settings.dataColumnName;
const everybeam::Options options = ATermConfig::ConvertToEBOptions(
*ms, aterm_settings, frequency_interpolation,
settings.beamNormalisationMode, use_channel_frequency,
element_response_model, settings.beamMode);
// Make telescope
return everybeam::Load(ms.MS(), options);
}
#endif // HAVE_EVERYBEAM
} // namespace
/**
* Returns the intervals to which a beam is calculated over.
* The returned vector holds for each interval the start and
* end row indices, as well as the central time of the interval.
*/
std::vector<BeamInterval> GetBeamIntervals(MSProvider& ms_provider,
double seconds_before_beam_update) {
double start_time = 0.0;
double previous_time = 0.0;
std::unique_ptr<MSReader> ms_reader = ms_provider.MakeReader();
size_t row = 0;
size_t start_row = 0;
std::vector<BeamInterval> result;
if (ms_reader->CurrentRowAvailable()) {
MSProvider::MetaData meta;
ms_reader->ReadMeta(meta);
start_time = meta.time;
previous_time = meta.time;
ms_reader->NextInputRow();
++row;
while (ms_reader->CurrentRowAvailable()) {
ms_reader->ReadMeta(meta);
if (std::abs(meta.time - start_time) > seconds_before_beam_update) {
result.emplace_back(BeamInterval{start_row, row - 1,
(start_time + previous_time) * 0.5});
start_row = row;
start_time = meta.time;
}
previous_time = meta.time;
ms_reader->NextInputRow();
++row;
}
if (row - 1 != start_row)
result.emplace_back(
BeamInterval{start_row, row - 1, (start_time + previous_time) * 0.5});
}
return result;
}
PrimaryBeam::PrimaryBeam(const Settings& settings)
: settings_(settings),
phase_centre_ra_(0.0),
phase_centre_dec_(0.0),
l_shift_(0.0),
m_shift_(0.0),
undersample_(computeUndersamplingFactor(settings)),
seconds_before_beam_update_(settings.primaryBeamUpdateTime)
#ifdef HAVE_EVERYBEAM
,
beam_mode_(everybeam::ParseBeamMode(settings.beamMode)),
beam_normalisation_mode_(
everybeam::ParseBeamNormalisationMode(settings.beamNormalisationMode))
#endif
{
}
PrimaryBeam::~PrimaryBeam() = default;
void PrimaryBeam::AddMS(std::unique_ptr<MSDataDescription> description) {
ms_list_.emplace_back(std::move(description));
}
void PrimaryBeam::CorrectBeamForFacetGain(
const ImageFilename& image_name, const ImagingTable::Group& group,
const OutputChannelInfo& channel_info) {
const CoordinateSystem coordinates{settings_.trimmedImageWidth,
settings_.trimmedImageHeight,
phase_centre_ra_,
phase_centre_dec_,
settings_.pixelScaleX,
settings_.pixelScaleY,
l_shift_,
m_shift_};
ApplyFacetCorrections(image_name, settings_, coordinates, group,
channel_info);
}
void PrimaryBeam::CorrectImages(aocommon::FitsWriter& writer,
const ImageFilename& image_name,
const std::string& filename_kind) {
if (settings_.polarizations.size() == 1 || filename_kind == "psf") {
const PrimaryBeamImageSet beam_images = LoadStokesI(image_name);
PolarizationEnum pol = *settings_.polarizations.begin();
const bool pseudo_correction =
settings_.polarizations.size() == 1 &&
(pol == Polarization::RR || pol == Polarization::LL);
if (pseudo_correction)
Logger::Warn
<< "Warning: not all polarizations are available for full beam "
"correction, performing pseudo-Stokes I beam correction.\n";
if (pol == Polarization::StokesI || pseudo_correction) {
ImageFilename stokes_i_name(image_name);
stokes_i_name.SetPolarization(pol);
std::string prefix;
if (filename_kind == "psf")
prefix = stokes_i_name.GetPSFPrefix(settings_);
else
prefix = stokes_i_name.GetPrefix(settings_);
aocommon::FitsReader reader(prefix + "-" + filename_kind + ".fits");
Image image(reader.ImageWidth(), reader.ImageHeight());
reader.Read(image.Data());
beam_images.ApplyStokesI(image.Data(), settings_.primaryBeamLimit);
writer.Write(prefix + "-" + filename_kind + "-pb.fits", image.Data());
} else {
throw std::runtime_error(
"Primary beam correction is requested, but this is not supported "
"when imaging a single polarization that is not Stokes I. Either "
"image all four polarizations or turn off beam correction.");
}
} else if (settings_.polarizations ==
std::set<aocommon::PolarizationEnum>{aocommon::Polarization::XX,
aocommon::Polarization::YY}) {
const PrimaryBeamImageSet beam_images = LoadDiagonal(image_name);
Image images[2];
std::unique_ptr<aocommon::FitsReader> reader;
for (size_t pol_index = 0; pol_index != 2; ++pol_index) {
const aocommon::PolarizationEnum pol = (pol_index == 0)
? aocommon::Polarization::XX
: aocommon::Polarization::YY;
ImageFilename name(image_name);
name.SetPolarization(pol);
reader = std::make_unique<aocommon::FitsReader>(
name.GetPrefix(settings_) + "-" + filename_kind + ".fits");
images[pol_index] = Image(reader->ImageWidth(), reader->ImageHeight());
reader->Read(images[pol_index].Data());
}
float* image_ptrs[2] = {images[0].Data(), images[1].Data()};
beam_images.ApplyDiagonal(image_ptrs, settings_.primaryBeamLimit);
for (size_t pol_index = 0; pol_index != 2; ++pol_index) {
const aocommon::PolarizationEnum pol = (pol_index == 0)
? aocommon::Polarization::XX
: aocommon::Polarization::YY;
ImageFilename name(image_name);
name.SetPolarization(pol);
writer.SetPolarization(pol);
writer.Write(name.GetPrefix(settings_) + "-" + filename_kind + "-pb.fits",
images[pol_index].Data());
}
} else if (aocommon::Polarization::HasFullStokesPolarization(
settings_.polarizations)) {
const PrimaryBeamImageSet beam_images = LoadFull(image_name);
Image images[4];
std::unique_ptr<aocommon::FitsReader> reader;
for (size_t pol_index = 0; pol_index != 4; ++pol_index) {
aocommon::PolarizationEnum pol =
aocommon::Polarization::IndexToStokes(pol_index);
ImageFilename name(image_name);
name.SetPolarization(pol);
reader = std::make_unique<aocommon::FitsReader>(
name.GetPrefix(settings_) + "-" + filename_kind + ".fits");
images[pol_index] = Image(reader->ImageWidth(), reader->ImageHeight());
reader->Read(images[pol_index].Data());
}
float* image_ptrs[4] = {images[0].Data(), images[1].Data(),
images[2].Data(), images[3].Data()};
beam_images.ApplyFullStokes(image_ptrs, settings_.primaryBeamLimit);
for (size_t pol_index = 0; pol_index != 4; ++pol_index) {
aocommon::PolarizationEnum pol =
aocommon::Polarization::IndexToStokes(pol_index);
ImageFilename name(image_name);
name.SetPolarization(pol);
writer.SetPolarization(pol);
writer.Write(name.GetPrefix(settings_) + "-" + filename_kind + "-pb.fits",
images[pol_index].Data());
}
} else {
throw std::runtime_error(
"Primary beam correction can only be performed on Stokes I, "
"polarizations (XX,YY) or when "
"imaging all four polarizations.");
}
}
PrimaryBeamImageSet PrimaryBeam::Load(const ImageFilename& image_name,
const std::set<size_t>& elements) {
assert(!elements.empty());
// This function will be called for Stokes I, diagonal or Full Jones
// correction, so we can assume that the first element is always required:
assert(*elements.begin() == 0);
const bool use_squared_beam = settings_.UseFacetCorrections();
if (use_squared_beam || settings_.gridderType == GridderType::IDG) {
PrimaryBeamImageSet beam_images;
// IDG and facet-based imaging produce only a Stokes I beam, and images
// have already been corrected for the rest. Currently we just load that
// beam into the 4 diagonal entries. This is a bit wasteful so might
// require a better strategy for big images.
ImageFilename pol_name(image_name);
pol_name.SetPolarization(aocommon::Polarization::StokesI);
aocommon::FitsReader reader(pol_name.GetBeamPrefix(settings_) + ".fits");
beam_images[0] =
Image(settings_.trimmedImageWidth, settings_.trimmedImageHeight);
reader.Read(beam_images[0].Data());
// Copy image zero to images on the diagonal (see aocommon::HMC4x4)
const std::array<size_t, 3> diagonal_entries = {3, 8, 15};
for (size_t element : diagonal_entries) {
if (elements.count(element)) beam_images[element] = beam_images[0];
}
return beam_images;
} else {
PrimaryBeamImageSet beam_images;
for (size_t element = 0; element != beam_images.NImages(); ++element) {
if (elements.count(element)) {
beam_images[element] = wsclean::Load(settings_, image_name, element);
}
}
return beam_images;
}
}
void PrimaryBeam::MakeUnitary(const ImagingTableEntry& entry,
const ImageFilename& image_name,
const Settings& settings) {
const size_t width = settings.trimmedImageWidth;
const size_t height = settings.trimmedImageHeight;
const aocommon::CoordinateSystem coordinates{width,
height,
phase_centre_ra_,
phase_centre_dec_,
settings_.pixelScaleX,
settings_.pixelScaleY,
l_shift_,
m_shift_};
const aocommon::FitsWriter writer = MakeWriter(coordinates, entry);
const Image image(width, height, 1.0f);
Logger::Debug << "Writing unitary beam...\n";
WriteBeamElement(image_name, image, settings, {}, writer);
}
#ifndef HAVE_EVERYBEAM
void PrimaryBeam::MakeOrReuse(const ImageFilename& image_name,
const ImagingTableEntry& entry,
std::shared_ptr<ImageWeights> image_weights,
size_t field_id) {
throw std::runtime_error(
"PrimaryBeam correction requested, but the software has been compiled "
"without EveryBeam. Recompile your software and make sure that "
"cmake finds the EveryBeam library.");
}
#else
void PrimaryBeam::MakeOrReuse(const ImageFilename& image_name,
const ImagingTableEntry& entry,
std::shared_ptr<ImageWeights> image_weights,
size_t field_id) {
bool use_existing_beam = false;
if (settings_.reusePrimaryBeam) {
ImageFilename first_pol_name(image_name);
first_pol_name.SetPolarization(image_name.GetPolarization());
first_pol_name.SetIsImaginary(false);
std::string f(first_pol_name.GetBeamPrefix(settings_) + "-0.fits");
if (boost::filesystem::exists(f)) {
aocommon::FitsReader reader(f);
if (reader.ImageWidth() == settings_.trimmedImageWidth &&
reader.ImageHeight() == settings_.trimmedImageHeight) {
use_existing_beam = true;
Logger::Info << "File '" << f
<< "' exists on disk -- reusing files for primary beam.\n";
} else {
Logger::Info << "File '" << f
<< "' exists on disk but has different dimensions. Beam "
"will be recreated.\n";
}
} else {
Logger::Info << "Primary beam not yet available (file '" << f
<< "' does not exist). Beam will be created.\n";
}
}
if (!use_existing_beam) {
Logger::Info << " == Constructing primary beam ==\n";
MakeImage(image_name, entry, image_weights, field_id);
}
}
void PrimaryBeam::MakeImage(const ImageFilename& image_name,
const ImagingTableEntry& entry,
std::shared_ptr<ImageWeights> image_weights,
size_t field_id) {
const size_t width(settings_.trimmedImageWidth);
const size_t height(settings_.trimmedImageHeight);
std::vector<std::unique_ptr<MSProvider>> providers;
for (size_t i = 0; i != ms_list_.size(); ++i) {
providers.emplace_back(ms_list_[i]->GetProvider());
ms_providers_.push_back(
MSProviderInfo(providers.back().get(), &ms_list_[i]->Selection(), i));
}
aocommon::CoordinateSystem coordinates{width,
height,
phase_centre_ra_,
phase_centre_dec_,
settings_.pixelScaleX,
settings_.pixelScaleY,
l_shift_,
m_shift_};
std::vector<aocommon::HMC4x4> result;
double ms_weight_sum = 0;
for (const MSProviderInfo& ms_provider_info : ms_providers_) {
const MSSelection& selection = *ms_provider_info.selection;
double central_frequency;
{
aocommon::BandData band(ms_provider_info.provider->Band(),
selection.ChannelRangeStart(),
selection.ChannelRangeEnd());
central_frequency = band.CentreFrequency();
}
std::vector<aocommon::HMC4x4> ms_beam;
const double ms_weight =
MakeBeamForMS(ms_beam, *ms_provider_info.provider, selection,
*image_weights, coordinates, central_frequency, field_id);
if (result.empty()) {
result = std::move(ms_beam);
if (ms_weight > 0.0) {
for (aocommon::HMC4x4& m : result) {
m *= ms_weight;
}
ms_weight_sum += ms_weight;
} else {
// In case of a zero weight beam, the beam might contain NaNs or be
// otherwise bad, so explicitly set it to zero.
result.assign(result.size(), aocommon::HMC4x4::Zero());
}
} else if (ms_weight > 0.0) {
assert(ms_beam.size() == result.size());
for (size_t i = 0; i != result.size(); ++i) {
result[i] += ms_beam[i] * ms_weight;
}
ms_weight_sum += ms_weight;
}
}
// Apply MS weights
for (size_t i = 0; i != result.size(); ++i) {
result[i] /= ms_weight_sum;
}
WriteBeamImages(image_name, std::move(result), settings_, entry, coordinates,
undersample_);
}
double PrimaryBeam::MakeBeamForMS(
std::vector<aocommon::HMC4x4>& result, MSProvider& ms_provider,
const MSSelection& selection, const ImageWeights& image_weights,
const aocommon::CoordinateSystem& coordinateSystem,
double central_frequency, size_t field_id) {
Logger::Debug << "Counting timesteps...\n";
const std::vector<BeamInterval> intervals =
GetBeamIntervals(ms_provider, seconds_before_beam_update_);
Logger::Debug << "Dividing MS in " << intervals.size() << " intervals.\n";
SynchronizedMS ms = ms_provider.MS();
const everybeam::TelescopeType telescope_type =
everybeam::GetTelescopeType(*ms);
std::unique_ptr<everybeam::telescope::Telescope> telescope =
PrepareEveryBeam(ms, settings_, telescope_type);
casacore::MEpoch::ScalarColumn time_column(
*ms, ms->columnName(casacore::MSMainEnums::TIME));
std::size_t n_baselines =
telescope->GetNrStations() * (telescope->GetNrStations() + 1) / 2;
std::unique_ptr<everybeam::griddedresponse::GriddedResponse> grid_response =
telescope->GetGriddedResponse(coordinateSystem);
// Time array and baseline weights only relevant for LOFAR, MWA and SKA.
// MWA beam needs scrutiny, this telescope might be amenable to a
// more efficient implementation
double ms_weight = 0;
switch (telescope_type) {
// These are the telescopes that require time information OR are
// heterogenous (not all antennas have the same response)
case everybeam::TelescopeType::kLofarTelescope:
case everybeam::TelescopeType::kAARTFAAC:
case everybeam::TelescopeType::kMWATelescope:
case everybeam::TelescopeType::kOSKARTelescope:
case everybeam::TelescopeType::kSkaMidTelescope:
case everybeam::TelescopeType::kOvroLwaTelescope: {
std::vector<double> baseline_weights(n_baselines * intervals.size(), 0.0);
std::vector<double> time_array(intervals.size(), 0.0);
// Loop over the intervalCounts
std::unique_ptr<MSReader> reader = ms_provider.MakeReader();
size_t current_row = 0;
for (size_t interval_index = 0; interval_index != intervals.size();
++interval_index) {
const BeamInterval& interval = intervals[interval_index];
// Skip to the start row
while (current_row < interval.start_row) {
reader->NextInputRow();
++current_row;
}
// Set value in time array
time_array[interval_index] = interval.central_time;
WeightMatrix weights(telescope->GetNrStations());
CalculateStationWeights(image_weights, weights, ms, *reader, selection,
current_row, interval.end_row);
// Get the baseline weights from the baseline_weight matrix
aocommon::UVector<double> interval_weights =
weights.GetBaselineWeights();
std::copy(interval_weights.begin(), interval_weights.end(),
baseline_weights.begin() + n_baselines * interval_index);
}
// Compute MS weight
ms_weight = std::accumulate(baseline_weights.begin(),
baseline_weights.end(), 0.0);
const bool use_squared_beam = settings_.UseFacetCorrections();
result = grid_response->UndersampledIntegratedCorrection(
beam_mode_, time_array, central_frequency, field_id, undersample_,
baseline_weights, use_squared_beam);
} break;
// Using 'default:' gives compatibility with different EveryBeam versions
default: {
if (telescope_type == everybeam::TelescopeType::kATCATelescope ||
telescope_type == everybeam::TelescopeType::kGMRTTelescope) {
Logger::Warn << "Warning: ATCA and GMRT primary beam corrections have "
"not yet been tested extensively!\n";
}
// The dish response is time independent, so leaving zero is fine:
std::vector<double> time_array(1, 0);
// A weight of 1 is used for these time independent telescopes
ms_weight = 1.0;
// baseline weights have no effect on homogeneous arrays, so leave at 1
std::vector<double> baseline_weights(n_baselines, 1);
if (settings_.fieldIds[0] == MSSelection::kAllFields) {
Logger::Warn
<< "Warning: primary beam correction together with '-fields "
"ALL' is not properly supported\n";
Logger::Warn << " : The beam will be calculated only for the "
"first field!\n";
}
result = grid_response->UndersampledIntegratedCorrection(
beam_mode_, time_array, central_frequency, field_id, undersample_,
baseline_weights, false);
} break;
case everybeam::TelescopeType::kUnknownTelescope:
throw std::runtime_error(
"Unknown telescope type! If your telescope is supposed to be "
"supported, try upgrading EveryBeam.");
}
return ms_weight;
}
void PrimaryBeam::CalculateStationWeights(const ImageWeights& imageWeights,
WeightMatrix& baselineWeights,
SynchronizedMS& ms,
MSReader& ms_reader,
const MSSelection& selection,
size_t& current_row, size_t end_row) {
casacore::MSAntenna antenna_table(ms->antenna());
aocommon::UVector<double> per_antenna_weights(antenna_table.nrow(), 0.0);
aocommon::MultiBandData multi_band(ms->spectralWindow(),
ms->dataDescription());
const size_t n_channels =
selection.ChannelRangeEnd() - selection.ChannelRangeStart();
const size_t n_polarizations = ms_reader.NPolarizations();
aocommon::UVector<float> weight_array(n_channels * n_polarizations);
const aocommon::BandData band = multi_band[ms_reader.DataDescId()];
while (ms_reader.CurrentRowAvailable() && current_row <= end_row) {
MSProvider::MetaData meta_data;
ms_reader.ReadMeta(meta_data);
ms_reader.ReadWeights(weight_array.data());
for (size_t ch = 0; ch != n_channels; ++ch) {
const double u = meta_data.uInM / band.ChannelWavelength(ch);
const double v = meta_data.vInM / band.ChannelWavelength(ch);
const double iw = imageWeights.GetWeight(u, v);
const double w = weight_array[ch * n_polarizations] * iw;
baselineWeights.Value(meta_data.antenna1, meta_data.antenna2) += w;
}
ms_reader.NextInputRow();
++current_row;
}
}
#endif // HAVE_EVERYBEAM
size_t PrimaryBeam::computeUndersamplingFactor(const Settings& settings) {
return std::max(
std::min(settings.trimmedImageWidth / settings.primaryBeamGridSize,
settings.trimmedImageHeight / settings.primaryBeamGridSize),
(size_t)1);
}
} // namespace wsclean
|