1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#include <boost/test/unit_test.hpp>
#include <boost/mpl/list.hpp>
#include "../../gridding/visibilitymodifier.h"
namespace wsclean {
BOOST_AUTO_TEST_SUITE(visibility_modifier)
namespace {
constexpr size_t kNChannels = 1;
constexpr size_t kNStations = 2;
constexpr std::complex<float> kAntenna1BeamGainX = {0.5, 0.0};
constexpr std::complex<float> kAntenna2BeamGainX = {3.0, 4.0};
constexpr std::complex<float> kAntenna1ParmGainX = {0.25, -0.25};
constexpr std::complex<float> kAntenna2ParmGainX = {5.0, -1.0};
constexpr std::complex<float> kAntenna1BeamGainY = {1.0, 0.0};
constexpr std::complex<float> kAntenna2BeamGainY = {1.0, -1.0};
constexpr std::complex<float> kAntenna1ParmGainY = {3.0, -0.5};
constexpr std::complex<float> kAntenna2ParmGainY = {-1.0, 7.0};
constexpr size_t kAntenna1 = 0;
constexpr size_t kAntenna2 = 1;
constexpr size_t kMsIndex = 0;
constexpr size_t kNPolarizations = 2;
constexpr float kWeights[kNPolarizations * kNChannels] = {1.0, 1.0};
constexpr float kImageWeights[kNChannels] = {1.0};
} // namespace
template <size_t NTerms>
struct ModifierFixture {
public:
static_assert(NTerms == 2 || NTerms == 4);
ModifierFixture() {
const std::vector<std::complex<double>> beam_response = {
kAntenna1BeamGainX, 0.0, 0.0, kAntenna1BeamGainY, // antenna 1
kAntenna2BeamGainX, 0.0, 0.0, kAntenna2BeamGainY // antenna 2
};
const std::vector<std::complex<float>> parm_response =
NTerms == 2 ? std::vector<std::complex<float>>{
kAntenna1ParmGainX, kAntenna1ParmGainY, // antenna 1
kAntenna2ParmGainX, kAntenna2ParmGainY // antenna 2
} : std::vector<std::complex<float>>{
kAntenna1ParmGainX, 0.0, 0.0, kAntenna1ParmGainY, // antenna 1
kAntenna2ParmGainX, 0.0, 0.0, kAntenna2ParmGainY // antenna 2
};
gain_types.push_back(NTerms == 2
? schaapcommon::h5parm::GainType::kDiagonalComplex
: schaapcommon::h5parm::GainType::kFullJones);
modifier.SetH5Parm(dummy_h5parms, dummy_solutions, dummy_solutions,
gain_types);
modifier.InitializeMockResponse(kNStations, kNChannels, beam_response,
parm_response);
}
void CheckClose(std::complex<float> a, std::complex<float> b) {
BOOST_CHECK_CLOSE_FRACTION(a.real(), b.real(), 1e-5);
BOOST_CHECK_CLOSE_FRACTION(a.imag(), b.imag(), 1e-5);
}
#ifdef HAVE_EVERYBEAM
void TestApplyConjugatedDual() {
constexpr float kXx = -1.0;
constexpr float kYy = 2.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyConjugatedDual<ModifierBehaviour::kApplyAndSum,
GainMode::k2VisDiagonal>(
data, kWeights, kImageWeights, kNChannels, kNStations, kAntenna1,
kAntenna2, kMsIndex, false);
const float a1_parm_norm_x = std::norm(kAntenna1ParmGainX);
const float a2_parm_norm_x = std::norm(kAntenna2ParmGainX);
const float a1_beam_norm_x = std::norm(kAntenna1BeamGainX);
const float a2_beam_norm_x = std::norm(kAntenna2BeamGainX);
const float x_correction_reference =
a1_parm_norm_x * a2_parm_norm_x * a1_beam_norm_x * a2_beam_norm_x;
const float a1_parm_norm_y = std::norm(kAntenna1ParmGainY);
const float a2_parm_norm_y = std::norm(kAntenna2ParmGainY);
const float a1_beam_norm_y = std::norm(kAntenna1BeamGainY);
const float a2_beam_norm_y = std::norm(kAntenna2BeamGainY);
const float y_correction_reference =
a1_parm_norm_y * a2_parm_norm_y * a1_beam_norm_y * a2_beam_norm_y;
const aocommon::HMC4x4 correction =
modifier.TotalCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(correction[0], x_correction_reference, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[15], y_correction_reference, 1e-5);
const float x_b_reference = a1_beam_norm_x * a2_beam_norm_x;
const float y_b_reference = a1_beam_norm_y * a2_beam_norm_y;
const aocommon::HMC4x4 beam_correction =
modifier.BeamCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(beam_correction[0], x_b_reference, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(beam_correction[15], y_b_reference, 1e-5);
const std::complex<float> backward_x =
std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX *
std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX;
const std::complex<float> backward_y =
std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY *
std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY;
CheckClose(data[0], kXx * backward_x);
CheckClose(data[1], kYy * backward_y);
}
#endif // HAVE_EVERYBEAM
std::vector<schaapcommon::h5parm::H5Parm> dummy_h5parms;
std::vector<schaapcommon::h5parm::SolTab*> dummy_solutions;
std::vector<schaapcommon::h5parm::GainType> gain_types;
VisibilityModifier modifier;
};
BOOST_FIXTURE_TEST_CASE(apply_h5parm, ModifierFixture<2>) {
constexpr float kXx = 7.0;
constexpr float kYy = 8.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyParmResponse<GainMode::k2VisDiagonal>(
data, 0, kNChannels, kNStations, kAntenna1, kAntenna2);
CheckClose(data[0], kXx * kAntenna1ParmGainX * std::conj(kAntenna2ParmGainX));
CheckClose(data[1], kYy * kAntenna1ParmGainY * std::conj(kAntenna2ParmGainY));
}
BOOST_FIXTURE_TEST_CASE(apply_conjugate_h5parm, ModifierFixture<2>) {
constexpr float kXx = -1.0;
constexpr float kYy = 2.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyConjugatedParmResponse<ModifierBehaviour::kApplyAndSum,
GainMode::k2VisDiagonal>(
data, kWeights, kImageWeights, kMsIndex, kNChannels, kNStations,
kAntenna1, kAntenna2, false);
const float reference_x_correction =
std::norm(kAntenna1ParmGainX) * std::norm(kAntenna2ParmGainX);
const float reference_y_correction =
std::norm(kAntenna1ParmGainY) * std::norm(kAntenna2ParmGainY);
const float reference_xy_correction =
0.5 * (std::norm(kAntenna1ParmGainX * std::conj(kAntenna2ParmGainY)) +
std::norm(kAntenna2ParmGainX * std::conj(kAntenna1ParmGainY)));
const aocommon::HMC4x4 correction =
modifier.TotalCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(correction[0], reference_x_correction, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[5], reference_xy_correction, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[10], reference_xy_correction, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[15], reference_y_correction, 1e-5);
CheckClose(data[0], kXx * std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX);
CheckClose(data[1], kYy * std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY);
}
#ifdef HAVE_EVERYBEAM
BOOST_FIXTURE_TEST_CASE(apply_beam, ModifierFixture<2>) {
constexpr float kXx = 3.14;
constexpr float kYy = -1.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyBeamResponse<GainMode::k2VisDiagonal>(data, kNChannels,
kAntenna1, kAntenna2);
CheckClose(data[0], kXx * kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX));
CheckClose(data[1], kYy * kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY));
}
BOOST_AUTO_TEST_CASE(apply_unit_beam) {
constexpr float kXx = 1.0;
constexpr float kYy = 1.0;
const std::vector<std::complex<double>> beam_response = {
1.0, 0.0, 0.0, 1.0, // antenna 1
1.0, 0.0, 0.0, 1.0 // antenna 2
};
const std::vector<std::complex<float>> gain_response = {
1.0, 0.0, 0.0, 1.0, // antenna 1
1.0, 0.0, 0.0, 1.0 // antenna 2
};
VisibilityModifier modifier;
modifier.InitializeMockResponse(kNStations, kNChannels, beam_response,
gain_response);
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyConjugatedBeamResponse<ModifierBehaviour::kApplyAndSum,
GainMode::k2VisDiagonal>(
data, kWeights, kImageWeights, kNChannels, kAntenna1, kAntenna2, false);
const AverageCorrection correction = modifier.TotalCorrectionSum();
BOOST_CHECK_CLOSE_FRACTION(correction.GetMatrixValue()[0], 1.0, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction.GetMatrixValue()[15], 1.0, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction.GetStokesIValue(), 1.0, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(data[0].real(), 1.0, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(data[1].real(), 1.0, 1e-5);
}
BOOST_FIXTURE_TEST_CASE(apply_conjugate_beam, ModifierFixture<2>) {
constexpr float kXx = 3.14;
constexpr float kYy = -1.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyConjugatedBeamResponse<ModifierBehaviour::kApplyAndSum,
GainMode::k2VisDiagonal>(
data, kWeights, kImageWeights, kNChannels, kAntenna1, kAntenna2, false);
const float reference_x_correction =
std::norm(kAntenna1BeamGainX) * std::norm(kAntenna2BeamGainX);
const float reference_y_correction =
std::norm(kAntenna1BeamGainY) * std::norm(kAntenna2BeamGainY);
const aocommon::HMC4x4 correction =
modifier.TotalCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(correction[0], reference_x_correction, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[15], reference_y_correction, 1e-5);
CheckClose(data[0], kXx * std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX);
CheckClose(data[1], kYy * std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY);
}
BOOST_FIXTURE_TEST_CASE(apply_dual, ModifierFixture<2>) {
constexpr float kXx = 1e3;
constexpr float kYy = 1e-3;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyBeamResponse<GainMode::k2VisDiagonal>(data, kNChannels,
kAntenna1, kAntenna2);
modifier.ApplyParmResponse<GainMode::k2VisDiagonal>(
data, 0, kNChannels, kNStations, kAntenna1, kAntenna2);
const std::complex<float> forward_x =
kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX) * kAntenna1ParmGainX *
std::conj(kAntenna2ParmGainX);
const std::complex<float> forward_y =
kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY) * kAntenna1ParmGainY *
std::conj(kAntenna2ParmGainY);
CheckClose(data[0], kXx * forward_x);
CheckClose(data[1], kYy * forward_y);
}
BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_2_terms, ModifierFixture<2>) {
TestApplyConjugatedDual();
}
BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_4_terms, ModifierFixture<4>) {
TestApplyConjugatedDual();
}
BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_forward, ModifierFixture<2>) {
constexpr float kXx = -1.0;
constexpr float kYy = 2.0;
std::complex<float> data[] = {kXx, kYy};
modifier.ApplyConjugatedDual<ModifierBehaviour::kApplyAndSum,
GainMode::k2VisDiagonal>(
data, kWeights, kImageWeights, kNChannels, kNStations, kAntenna1,
kAntenna2, kMsIndex, true);
const float a1_parm_norm_x = std::norm(kAntenna1ParmGainX);
const float a2_parm_norm_x = std::norm(kAntenna2ParmGainX);
const float a1_beam_norm_x = std::norm(kAntenna1BeamGainX);
const float a2_beam_norm_x = std::norm(kAntenna2BeamGainX);
const float x_correction_reference =
a1_parm_norm_x * a2_parm_norm_x * a1_beam_norm_x * a2_beam_norm_x;
const float a1_parm_norm_y = std::norm(kAntenna1ParmGainY);
const float a2_parm_norm_y = std::norm(kAntenna2ParmGainY);
const float a1_beam_norm_y = std::norm(kAntenna1BeamGainY);
const float a2_beam_norm_y = std::norm(kAntenna2BeamGainY);
const float y_correction_reference =
a1_parm_norm_y * a2_parm_norm_y * a1_beam_norm_y * a2_beam_norm_y;
const aocommon::HMC4x4 correction =
modifier.TotalCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(correction[0], x_correction_reference, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(correction[15], y_correction_reference, 1e-5);
const float x_b_reference = a1_beam_norm_x * a2_beam_norm_x;
const float y_b_reference = a1_beam_norm_y * a2_beam_norm_y;
const aocommon::HMC4x4 beam_correction =
modifier.BeamCorrectionSum().GetMatrixValue();
BOOST_CHECK_CLOSE_FRACTION(beam_correction[0], x_b_reference, 1e-5);
BOOST_CHECK_CLOSE_FRACTION(beam_correction[15], y_b_reference, 1e-5);
const std::complex<float> backward_x =
std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX *
std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX;
const std::complex<float> backward_y =
std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY *
std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY;
const std::complex<float> forward_x =
kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX) * kAntenna1ParmGainX *
std::conj(kAntenna2ParmGainX);
const std::complex<float> forward_y =
kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY) * kAntenna1ParmGainY *
std::conj(kAntenna2ParmGainY);
CheckClose(data[0], kXx * backward_x * forward_x);
CheckClose(data[1], kYy * backward_y * forward_y);
}
#endif // HAVE_EVERYBEAM
BOOST_AUTO_TEST_SUITE_END()
} // namespace wsclean
|