File: tvisibilitymodifier.cpp

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (277 lines) | stat: -rw-r--r-- 12,992 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

#include <boost/test/unit_test.hpp>
#include <boost/mpl/list.hpp>

#include "../../gridding/visibilitymodifier.h"

namespace wsclean {

BOOST_AUTO_TEST_SUITE(visibility_modifier)

namespace {
constexpr size_t kNChannels = 1;
constexpr size_t kNStations = 2;
constexpr std::complex<float> kAntenna1BeamGainX = {0.5, 0.0};
constexpr std::complex<float> kAntenna2BeamGainX = {3.0, 4.0};
constexpr std::complex<float> kAntenna1ParmGainX = {0.25, -0.25};
constexpr std::complex<float> kAntenna2ParmGainX = {5.0, -1.0};
constexpr std::complex<float> kAntenna1BeamGainY = {1.0, 0.0};
constexpr std::complex<float> kAntenna2BeamGainY = {1.0, -1.0};
constexpr std::complex<float> kAntenna1ParmGainY = {3.0, -0.5};
constexpr std::complex<float> kAntenna2ParmGainY = {-1.0, 7.0};
constexpr size_t kAntenna1 = 0;
constexpr size_t kAntenna2 = 1;
constexpr size_t kMsIndex = 0;
constexpr size_t kNPolarizations = 2;
constexpr float kWeights[kNPolarizations * kNChannels] = {1.0, 1.0};
constexpr float kImageWeights[kNChannels] = {1.0};
}  // namespace

template <size_t NTerms>
struct ModifierFixture {
 public:
  static_assert(NTerms == 2 || NTerms == 4);
  ModifierFixture() {
    const std::vector<std::complex<double>> beam_response = {
        kAntenna1BeamGainX, 0.0, 0.0, kAntenna1BeamGainY,  // antenna 1
        kAntenna2BeamGainX, 0.0, 0.0, kAntenna2BeamGainY   // antenna 2
    };
    const std::vector<std::complex<float>> parm_response =
     NTerms == 2 ? std::vector<std::complex<float>>{
        kAntenna1ParmGainX, kAntenna1ParmGainY, // antenna 1
        kAntenna2ParmGainX, kAntenna2ParmGainY // antenna 2
    } : std::vector<std::complex<float>>{
        kAntenna1ParmGainX, 0.0, 0.0, kAntenna1ParmGainY, // antenna 1
        kAntenna2ParmGainX, 0.0, 0.0, kAntenna2ParmGainY // antenna 2
    };
    gain_types.push_back(NTerms == 2
                             ? schaapcommon::h5parm::GainType::kDiagonalComplex
                             : schaapcommon::h5parm::GainType::kFullJones);
    modifier.SetH5Parm(dummy_h5parms, dummy_solutions, dummy_solutions,
                       gain_types);
    modifier.InitializeMockResponse(kNStations, kNChannels, beam_response,
                                    parm_response);
  }

  void CheckClose(std::complex<float> a, std::complex<float> b) {
    BOOST_CHECK_CLOSE_FRACTION(a.real(), b.real(), 1e-5);
    BOOST_CHECK_CLOSE_FRACTION(a.imag(), b.imag(), 1e-5);
  }

#ifdef HAVE_EVERYBEAM
  void TestApplyConjugatedDual() {
    constexpr float kXx = -1.0;
    constexpr float kYy = 2.0;
    std::complex<float> data[] = {kXx, kYy};
    modifier.ApplyConjugatedDual<ModifierBehaviour::kApplyAndSum,
                                 GainMode::k2VisDiagonal>(
        data, kWeights, kImageWeights, kNChannels, kNStations, kAntenna1,
        kAntenna2, kMsIndex, false);
    const float a1_parm_norm_x = std::norm(kAntenna1ParmGainX);
    const float a2_parm_norm_x = std::norm(kAntenna2ParmGainX);
    const float a1_beam_norm_x = std::norm(kAntenna1BeamGainX);
    const float a2_beam_norm_x = std::norm(kAntenna2BeamGainX);
    const float x_correction_reference =
        a1_parm_norm_x * a2_parm_norm_x * a1_beam_norm_x * a2_beam_norm_x;
    const float a1_parm_norm_y = std::norm(kAntenna1ParmGainY);
    const float a2_parm_norm_y = std::norm(kAntenna2ParmGainY);
    const float a1_beam_norm_y = std::norm(kAntenna1BeamGainY);
    const float a2_beam_norm_y = std::norm(kAntenna2BeamGainY);
    const float y_correction_reference =
        a1_parm_norm_y * a2_parm_norm_y * a1_beam_norm_y * a2_beam_norm_y;
    const aocommon::HMC4x4 correction =
        modifier.TotalCorrectionSum().GetMatrixValue();
    BOOST_CHECK_CLOSE_FRACTION(correction[0], x_correction_reference, 1e-5);
    BOOST_CHECK_CLOSE_FRACTION(correction[15], y_correction_reference, 1e-5);
    const float x_b_reference = a1_beam_norm_x * a2_beam_norm_x;
    const float y_b_reference = a1_beam_norm_y * a2_beam_norm_y;
    const aocommon::HMC4x4 beam_correction =
        modifier.BeamCorrectionSum().GetMatrixValue();
    BOOST_CHECK_CLOSE_FRACTION(beam_correction[0], x_b_reference, 1e-5);
    BOOST_CHECK_CLOSE_FRACTION(beam_correction[15], y_b_reference, 1e-5);
    const std::complex<float> backward_x =
        std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX *
        std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX;
    const std::complex<float> backward_y =
        std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY *
        std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY;
    CheckClose(data[0], kXx * backward_x);
    CheckClose(data[1], kYy * backward_y);
  }
#endif  // HAVE_EVERYBEAM

  std::vector<schaapcommon::h5parm::H5Parm> dummy_h5parms;
  std::vector<schaapcommon::h5parm::SolTab*> dummy_solutions;
  std::vector<schaapcommon::h5parm::GainType> gain_types;
  VisibilityModifier modifier;
};

BOOST_FIXTURE_TEST_CASE(apply_h5parm, ModifierFixture<2>) {
  constexpr float kXx = 7.0;
  constexpr float kYy = 8.0;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyParmResponse<GainMode::k2VisDiagonal>(
      data, 0, kNChannels, kNStations, kAntenna1, kAntenna2);
  CheckClose(data[0], kXx * kAntenna1ParmGainX * std::conj(kAntenna2ParmGainX));
  CheckClose(data[1], kYy * kAntenna1ParmGainY * std::conj(kAntenna2ParmGainY));
}

BOOST_FIXTURE_TEST_CASE(apply_conjugate_h5parm, ModifierFixture<2>) {
  constexpr float kXx = -1.0;
  constexpr float kYy = 2.0;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyConjugatedParmResponse<ModifierBehaviour::kApplyAndSum,
                                       GainMode::k2VisDiagonal>(
      data, kWeights, kImageWeights, kMsIndex, kNChannels, kNStations,
      kAntenna1, kAntenna2, false);
  const float reference_x_correction =
      std::norm(kAntenna1ParmGainX) * std::norm(kAntenna2ParmGainX);
  const float reference_y_correction =
      std::norm(kAntenna1ParmGainY) * std::norm(kAntenna2ParmGainY);
  const float reference_xy_correction =
      0.5 * (std::norm(kAntenna1ParmGainX * std::conj(kAntenna2ParmGainY)) +
             std::norm(kAntenna2ParmGainX * std::conj(kAntenna1ParmGainY)));
  const aocommon::HMC4x4 correction =
      modifier.TotalCorrectionSum().GetMatrixValue();
  BOOST_CHECK_CLOSE_FRACTION(correction[0], reference_x_correction, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction[5], reference_xy_correction, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction[10], reference_xy_correction, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction[15], reference_y_correction, 1e-5);
  CheckClose(data[0], kXx * std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX);
  CheckClose(data[1], kYy * std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY);
}

#ifdef HAVE_EVERYBEAM

BOOST_FIXTURE_TEST_CASE(apply_beam, ModifierFixture<2>) {
  constexpr float kXx = 3.14;
  constexpr float kYy = -1.0;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyBeamResponse<GainMode::k2VisDiagonal>(data, kNChannels,
                                                      kAntenna1, kAntenna2);
  CheckClose(data[0], kXx * kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX));
  CheckClose(data[1], kYy * kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY));
}

BOOST_AUTO_TEST_CASE(apply_unit_beam) {
  constexpr float kXx = 1.0;
  constexpr float kYy = 1.0;
  const std::vector<std::complex<double>> beam_response = {
      1.0, 0.0, 0.0, 1.0,  // antenna 1
      1.0, 0.0, 0.0, 1.0   // antenna 2
  };
  const std::vector<std::complex<float>> gain_response = {
      1.0, 0.0, 0.0, 1.0,  // antenna 1
      1.0, 0.0, 0.0, 1.0   // antenna 2
  };
  VisibilityModifier modifier;
  modifier.InitializeMockResponse(kNStations, kNChannels, beam_response,
                                  gain_response);
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyConjugatedBeamResponse<ModifierBehaviour::kApplyAndSum,
                                       GainMode::k2VisDiagonal>(
      data, kWeights, kImageWeights, kNChannels, kAntenna1, kAntenna2, false);
  const AverageCorrection correction = modifier.TotalCorrectionSum();
  BOOST_CHECK_CLOSE_FRACTION(correction.GetMatrixValue()[0], 1.0, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction.GetMatrixValue()[15], 1.0, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction.GetStokesIValue(), 1.0, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(data[0].real(), 1.0, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(data[1].real(), 1.0, 1e-5);
}

BOOST_FIXTURE_TEST_CASE(apply_conjugate_beam, ModifierFixture<2>) {
  constexpr float kXx = 3.14;
  constexpr float kYy = -1.0;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyConjugatedBeamResponse<ModifierBehaviour::kApplyAndSum,
                                       GainMode::k2VisDiagonal>(
      data, kWeights, kImageWeights, kNChannels, kAntenna1, kAntenna2, false);
  const float reference_x_correction =
      std::norm(kAntenna1BeamGainX) * std::norm(kAntenna2BeamGainX);
  const float reference_y_correction =
      std::norm(kAntenna1BeamGainY) * std::norm(kAntenna2BeamGainY);
  const aocommon::HMC4x4 correction =
      modifier.TotalCorrectionSum().GetMatrixValue();
  BOOST_CHECK_CLOSE_FRACTION(correction[0], reference_x_correction, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction[15], reference_y_correction, 1e-5);
  CheckClose(data[0], kXx * std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX);
  CheckClose(data[1], kYy * std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY);
}

BOOST_FIXTURE_TEST_CASE(apply_dual, ModifierFixture<2>) {
  constexpr float kXx = 1e3;
  constexpr float kYy = 1e-3;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyBeamResponse<GainMode::k2VisDiagonal>(data, kNChannels,
                                                      kAntenna1, kAntenna2);
  modifier.ApplyParmResponse<GainMode::k2VisDiagonal>(
      data, 0, kNChannels, kNStations, kAntenna1, kAntenna2);
  const std::complex<float> forward_x =
      kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX) * kAntenna1ParmGainX *
      std::conj(kAntenna2ParmGainX);
  const std::complex<float> forward_y =
      kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY) * kAntenna1ParmGainY *
      std::conj(kAntenna2ParmGainY);
  CheckClose(data[0], kXx * forward_x);
  CheckClose(data[1], kYy * forward_y);
}

BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_2_terms, ModifierFixture<2>) {
  TestApplyConjugatedDual();
}

BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_4_terms, ModifierFixture<4>) {
  TestApplyConjugatedDual();
}

BOOST_FIXTURE_TEST_CASE(apply_conjugated_dual_forward, ModifierFixture<2>) {
  constexpr float kXx = -1.0;
  constexpr float kYy = 2.0;
  std::complex<float> data[] = {kXx, kYy};
  modifier.ApplyConjugatedDual<ModifierBehaviour::kApplyAndSum,
                               GainMode::k2VisDiagonal>(
      data, kWeights, kImageWeights, kNChannels, kNStations, kAntenna1,
      kAntenna2, kMsIndex, true);
  const float a1_parm_norm_x = std::norm(kAntenna1ParmGainX);
  const float a2_parm_norm_x = std::norm(kAntenna2ParmGainX);
  const float a1_beam_norm_x = std::norm(kAntenna1BeamGainX);
  const float a2_beam_norm_x = std::norm(kAntenna2BeamGainX);
  const float x_correction_reference =
      a1_parm_norm_x * a2_parm_norm_x * a1_beam_norm_x * a2_beam_norm_x;
  const float a1_parm_norm_y = std::norm(kAntenna1ParmGainY);
  const float a2_parm_norm_y = std::norm(kAntenna2ParmGainY);
  const float a1_beam_norm_y = std::norm(kAntenna1BeamGainY);
  const float a2_beam_norm_y = std::norm(kAntenna2BeamGainY);
  const float y_correction_reference =
      a1_parm_norm_y * a2_parm_norm_y * a1_beam_norm_y * a2_beam_norm_y;
  const aocommon::HMC4x4 correction =
      modifier.TotalCorrectionSum().GetMatrixValue();
  BOOST_CHECK_CLOSE_FRACTION(correction[0], x_correction_reference, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(correction[15], y_correction_reference, 1e-5);
  const float x_b_reference = a1_beam_norm_x * a2_beam_norm_x;
  const float y_b_reference = a1_beam_norm_y * a2_beam_norm_y;
  const aocommon::HMC4x4 beam_correction =
      modifier.BeamCorrectionSum().GetMatrixValue();
  BOOST_CHECK_CLOSE_FRACTION(beam_correction[0], x_b_reference, 1e-5);
  BOOST_CHECK_CLOSE_FRACTION(beam_correction[15], y_b_reference, 1e-5);
  const std::complex<float> backward_x =
      std::conj(kAntenna1BeamGainX) * kAntenna2BeamGainX *
      std::conj(kAntenna1ParmGainX) * kAntenna2ParmGainX;
  const std::complex<float> backward_y =
      std::conj(kAntenna1BeamGainY) * kAntenna2BeamGainY *
      std::conj(kAntenna1ParmGainY) * kAntenna2ParmGainY;
  const std::complex<float> forward_x =
      kAntenna1BeamGainX * std::conj(kAntenna2BeamGainX) * kAntenna1ParmGainX *
      std::conj(kAntenna2ParmGainX);
  const std::complex<float> forward_y =
      kAntenna1BeamGainY * std::conj(kAntenna2BeamGainY) * kAntenna1ParmGainY *
      std::conj(kAntenna2ParmGainY);
  CheckClose(data[0], kXx * backward_x * forward_x);
  CheckClose(data[1], kYy * backward_y * forward_y);
}

#endif  // HAVE_EVERYBEAM

BOOST_AUTO_TEST_SUITE_END()

}  // namespace wsclean