1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
import shutil
import sys
import casacore.tables
import h5py
import numpy as np
import pytest
from astropy.io import fits
from astropy.wcs import WCS
from utils import (
assert_taql,
basic_image_check,
check_and_remove_files,
compare_rms_fits,
compute_rms,
validate_call,
)
# Append current directory to system path in order to import testconfig
sys.path.append(".")
# Import configuration variables as test configuration (tcf)
import config_vars as tcf
def gridders():
return {
"wstacking": "-gridder wstacking",
"wgridder": "-gridder wgridder",
"idg": "-gridder idg",
}
def predict_full_image(ms, gridder):
"""Predict full image"""
s = f"{tcf.WSCLEAN} -predict -gridder {gridder} -name point-source {ms}"
validate_call(s.split())
def predict_facet_image(
ms, gridder="wgridder", apply_beam=False, wsclean_command=tcf.WSCLEAN
):
name = "point-source"
facet_beam = "-apply-facet-beam -mwa-path ." if apply_beam else ""
if apply_beam:
shutil.copyfile(f"{name}-model.fits", f"{name}-model-fpb.fits")
# Predict facet based image
s = (
f"{wsclean_command} -predict -gridder {gridder} {facet_beam} "
f"-facet-regions {tcf.FACETFILE_4FACETS} -name {name} {ms}"
)
validate_call(s.split())
def deconvolve_facets(ms, gridder, reorder, mpi, apply_beam=False):
nthreads = 4
mpi_cmd = f"mpirun -tag-output -np {nthreads} {tcf.WSCLEAN_MP}"
thread_cmd = f"{tcf.WSCLEAN} -parallel-gridding {nthreads}"
reorder_ms = "-reorder" if reorder else "-no-reorder"
facet_beam = "-mwa-path . -apply-facet-beam" if apply_beam else ""
s = (
f"{mpi_cmd if mpi else thread_cmd} -gridder {gridder} {reorder_ms} "
f"{tcf.DIMS_SMALL} -niter 1000000 -auto-threshold 5 -mgain 0.8 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {facet_beam} "
f"-name facet-imaging{reorder_ms} -v {ms}"
)
validate_call(s.split())
def create_pointsource_grid_skymodel(
skymodel_filename, grid_size, nr_pixels, wcs
):
"""
Writes a skymodel file for a square grid of point sources in a square image.
Parameters
----------
skymodel_filename: str
grid_size: int
Number of point sources (in one direction)
nr_pixels: int
Number of pixels in the image (in one direction)
wcs: astropy.wcs.WCS
World coordinate system of the image
Returns
-------
list of tuples
A list of source/pixel positions of length grid_size*grid_size
"""
source_positions = []
source_pixel_index_range = (np.arange(grid_size)) * (
nr_pixels // grid_size
) + (nr_pixels // grid_size // 2)
with open(skymodel_filename, "w") as sky_model_file:
print(
"Format = Name, Patch, Type, Ra, Dec, I, SpectralIndex, LogarithmicSI, ReferenceFrequency='150000000', MajorAxis, MinorAxis, Orientation",
file=sky_model_file,
)
for i, idx0 in enumerate(source_pixel_index_range):
for j, idx1 in enumerate(source_pixel_index_range):
sky = wcs.pixel_to_world(idx0, idx1, 0, 0)
print(
f",direction_{i}{j},,{sky[0].ra.rad},{sky[0].dec.rad},,,,,,,",
file=sky_model_file,
)
print(
f"source-{i}-{j},direction_{i}{j},POINT,{sky[0].ra.rad},{sky[0].dec.rad},1.0,[],false,150000000,,,",
file=sky_model_file,
)
source_positions.append((idx0, idx1))
return source_positions
@pytest.mark.usefixtures(
"prepare_mock_ms", "prepare_model_image", "prepare_mock_soltab"
)
class TestFacets:
def test_makepsfonly(self):
"""
Test that wsclean with the -make-psf-only flag exits gracefully and
that the psf passes basic checks.
"""
s = (
f"{tcf.WSCLEAN} -name facet-psf-only -make-psf-only "
f"-facet-regions {tcf.FACETFILE_4FACETS} "
f"{tcf.DIMS_SMALL} {tcf.MWA_MOCK_MS}"
)
validate_call(s.split())
basic_image_check("facet-psf-only-psf.fits")
# Test assumes that IDG and EveryBeam are installed
@pytest.mark.parametrize("gridder", gridders().items())
def test_stitching(self, gridder):
"""Test stitching of the facets"""
prefix = f"facet-stitch-{gridder[0]}"
s = [
tcf.WSCLEAN,
"-quiet",
gridder[1],
tcf.DIMS_SMALL,
"" if (gridder[0] == "idg") else "-pol XX,YY",
f"-facet-regions {tcf.FACETFILE_2FACETS}",
f"-name {prefix}",
tcf.MWA_MOCK_MS,
]
validate_call(" ".join(s).split())
fpaths = (
[prefix + "-dirty.fits", prefix + "-image.fits"]
if (gridder[0] == "idg")
else [
prefix + "-XX-dirty.fits",
prefix + "-YY-dirty.fits",
prefix + "-XX-image.fits",
prefix + "-YY-image.fits",
]
)
check_and_remove_files(fpaths, remove=True)
# FIXME: we should test wstacking here too
# but it fails on the taql assertion
@pytest.mark.parametrize("gridder", ["wgridder"])
@pytest.mark.parametrize("apply_facet_beam", [False, True])
def test_predict(self, gridder, apply_facet_beam, tmp_mwa_mock_facet):
"""
Test predict only run
Parameters
----------
gridder : str
wsclean compatible description of gridder to be used.
"""
predict_facet_image(tmp_mwa_mock_facet, gridder, apply_facet_beam)
# A numerical check can only be performed in case no DD effects were applied.
if not apply_facet_beam:
predict_full_image(tcf.MWA_MOCK_FULL, gridder)
taql_command = f"select from {tcf.MWA_MOCK_FULL} t1, {tmp_mwa_mock_facet} t2 where not all(near(t1.MODEL_DATA,t2.MODEL_DATA,5e-3))"
assert_taql(taql_command)
@pytest.mark.parametrize("gridder", ["wgridder"])
@pytest.mark.parametrize("reorder", [False, True])
@pytest.mark.parametrize("mpi", [False, True])
def test_facetdeconvolution(self, gridder, reorder, mpi):
"""
Test facet-based deconvolution
Parameters
----------
gridder : str
wsclean compatible description of gridder to be used.
reorder : bool
Reorder MS?
mpi : bool
True: Use MPI for parallel gridding.
False: Use multi-threading for parallel gridding.
"""
# Parametrization causes some overhead in that predict of full image is run for
# every parametrization
predict_full_image(tcf.MWA_MOCK_FULL, gridder)
# Make sure old versions of the facet mock ms are removed
shutil.rmtree(tcf.MWA_MOCK_FACET)
# Copy output to new MS, swap DATA column, and remove MODEL_DATA
validate_call(
f"cp -r {tcf.MWA_MOCK_FULL} {tcf.MWA_MOCK_FACET}".split()
)
assert shutil.which("taql") is not None, "taql executable not found!"
validate_call(
[
"taql",
"-noph",
f"UPDATE {tcf.MWA_MOCK_FACET} SET DATA=MODEL_DATA",
]
)
validate_call(
[
"taql",
"-noph",
f"ALTER TABLE {tcf.MWA_MOCK_FACET} DROP COLUMN MODEL_DATA",
]
)
taql_command = f"select from {tcf.MWA_MOCK_FULL} t1, {tcf.MWA_MOCK_FACET} t2 where not all(near(t1.MODEL_DATA,t2.DATA, 4e-3))"
assert_taql(taql_command)
deconvolve_facets(tcf.MWA_MOCK_FACET, gridder, reorder, mpi)
taql_command = f"select from {tcf.MWA_MOCK_FACET} where not all(near(DATA,MODEL_DATA, 4e-3))"
assert_taql(taql_command)
def test_read_only_ms(self):
chmod = f"chmod a-w -R {tcf.MWA_MOCK_FULL}"
validate_call(chmod.split())
try:
# When "-no-update-model-required" is specified, processing a read-only measurement set should be possible.
s = (
f"{tcf.WSCLEAN} -name facet-readonly-ms -interval 10 20 "
"-no-update-model-required -auto-threshold 0.5 -auto-mask 3 "
"-mgain 0.95 -nmiter 2 -multiscale -niter 100000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} "
f"{tcf.DIMS_SMALL} {tcf.MWA_MOCK_FULL}"
)
validate_call(s.split())
finally:
chmod = f"chmod u+w -R {tcf.MWA_MOCK_FULL}"
validate_call(chmod.split())
@pytest.mark.parametrize("mpi", [False, True])
def test_facetbeamimages(self, mpi, tmp_mwa_mock_facet):
"""
Basic checks of the generated images when using facet beams. For each image,
test that the pixel values are valid (not NaN/Inf) and check the percentage
of zero pixels.
"""
deconvolve_facets(tmp_mwa_mock_facet, "wgridder", True, mpi, True)
basic_image_check("facet-imaging-reorder-psf.fits")
basic_image_check("facet-imaging-reorder-dirty.fits")
def test_multi_channel(self):
# Test for issue 122. Only test if no crash occurs.
validate_call(
(
f"{tcf.WSCLEAN} -name multi-channel-faceting "
"-parallel-gridding 3 -channels-out 2 "
"-pol xx,yy -join-polarizations "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} "
"-interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 "
f"{tcf.MWA_MOCK_MS}"
).split()
)
def test_diagonal_solutions(self):
validate_call(
(
f"{tcf.WSCLEAN} -name faceted-diagonal-solutions "
"-parallel-gridding 3 -channels-out 2 "
"-diagonal-solutions "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} "
"-interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 "
f"{tcf.MWA_MOCK_MS}"
).split()
)
def test_diagonal_solutions_with_beam(self):
validate_call(
(
f"{tcf.WSCLEAN} -name faceted-diagonal-solutions "
"-parallel-gridding 3 -channels-out 2 "
"-diagonal-solutions -mwa-path . -apply-facet-beam "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} "
"-interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 "
f"{tcf.MWA_MOCK_MS}"
).split()
)
def test_parallel_gridding(self):
"""
Run a single gridding cycle (no deconvolution / degridding).
Compare serial, threaded and mpi run for facet based imaging
with h5 corrections. Number of used threads/processes is
deliberately chosen smaller than the number of facets.
"""
names = [
"facets-h5-serial",
"facets-h5-threaded",
"facets-h5-mpi",
"facets-h5-hybrid",
]
# Using only 2 threads/gridder yields relatively stable results.
wsclean_commands = [
f"{tcf.WSCLEAN} -j 2",
f"{tcf.WSCLEAN} -j 6 -parallel-gridding 3",
f"mpirun -np 3 {tcf.WSCLEAN_MP} -j 2 -max-mpi-message-size 42k",
f"mpirun -np 3 {tcf.WSCLEAN_MP} -j 6 -parallel-gridding 3",
]
for name, command in zip(names, wsclean_commands):
s = (
f"{command} -name {name} "
"-pol xx,yy -join-polarizations "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} "
f"-interval 10 14 {tcf.MWA_MOCK_MS}"
)
validate_call(s.split())
# All images will be compared against the first image.
# For the first image itself, only test whether the image is finite.
if name == names[0]:
rms = compute_rms(f"{names[0]}-YY-image.fits")
assert np.isfinite(rms)
else:
# Typical rms difference is about 1.0e-7
threshold = 3.0e-7
compare_rms_fits(
f"{names[0]}-YY-image.fits",
f"{name}-YY-image.fits",
threshold,
)
@pytest.mark.parametrize("compound_tasks", [False, True])
def test_parallel_predict(
self, compound_tasks, tmp_path, tmp_mwa_mock_facet
):
"""
Run a single predict/degridding cycle (no deconvolution / gridding).
Compare serial, threaded, mpi and hybrid runs.
Do all parallel runs with and without enabling compound tasks.
"""
names = ["threaded", "mpi", "hybrid"]
wsclean_commands = [
f"{tcf.WSCLEAN} -j 3 -parallel-gridding 3",
f"mpirun -np 3 {tcf.WSCLEAN_MP} -max-mpi-message-size 42k",
f"mpirun -np 3 {tcf.WSCLEAN_MP} -j 3 -parallel-gridding 3",
]
# Create reference output using a basic sequential run.
predict_facet_image(tmp_mwa_mock_facet)
# Run various alternatives and compare output against the reference.
for name, command in zip(names, wsclean_commands):
name = "test_" + name + "_degridding"
if compound_tasks:
name += "_compound"
command += " -compound-tasks"
ms = tmp_path / name
shutil.copytree(tcf.MWA_MOCK_FACET, ms)
predict_facet_image(ms, wsclean_command=command)
assert_taql(
f"select from {tmp_mwa_mock_facet} t1, {ms} t2 "
"where not all(near(t1.MODEL_DATA,t2.MODEL_DATA,5e-3))"
)
def test_compound_tasks(self):
"""
Run a single gridding cycle (no deconvolution / degridding).
Compares a basic serial run without compound tasks to
runs with compound tasks.
"""
names = [
"facets-h5-nocompound-sequential",
"facets-h5-compound-sequential",
"facets-h5-compound-threaded",
"facets-h5-compound-sequential-mpi-local",
"facets-h5-compound-threaded-mpi-remote",
]
# Because of the static channel-to-node map, using more than
# 2 processes makes no sense: This test only has a single channel.
# The MPI tests either run everything 'local'ly or 'remote'ly.
mpi_cmd = f"mpirun -np 2 {tcf.WSCLEAN_MP}"
# Using 5 tasks/node makes the main node send the compound tasks for
# the yy polarization while the task for xx is not yet finished
# Using only 1 thread/gridder yields very stable results: It allows
# using zero tolerance when comparing sequential runs (see below).
pg = "-j 5 -parallel-gridding 5"
wsclean_commands = [
f"{tcf.WSCLEAN} -j 1",
f"{tcf.WSCLEAN} -j 1 -compound-tasks",
f"{tcf.WSCLEAN} {pg} -compound-tasks",
f"{mpi_cmd} -j 1 -compound-tasks",
f"{mpi_cmd} {pg} -compound-tasks -no-work-on-master",
]
for name, command in zip(names, wsclean_commands):
s = (
f"{command} -name {name} "
"-pol xx,yy -join-polarizations "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} "
f"-interval 10 14 {tcf.MWA_MOCK_MS}"
)
validate_call(s.split())
# All images will be compared against the first image.
# For the first image itself, only test whether the image is finite.
if name == names[0]:
rms = compute_rms(f"{names[0]}-YY-image.fits")
assert np.isfinite(rms)
else:
# Pure sequential tests should produce equal results.
# In parallel tests, typical RMS difference is about 1.0e-7.
threshold = 3.0e-7 if pg in command else 0.0
compare_rms_fits(
f"{names[0]}-YY-image.fits",
f"{name}-YY-image.fits",
threshold,
)
@pytest.mark.parametrize("beam", [False, True])
@pytest.mark.parametrize(
"h5file",
[
None,
[tcf.MOCK_SOLTAB_2POL],
[tcf.MOCK_SOLTAB_2POL, tcf.MOCK_SOLTAB_2POL],
],
)
def test_multi_ms(self, beam, h5file):
"""
Check that identical images are obtained in case multiple (identical) MSets and H5Parm
files are provided compared to imaging one MSet
"""
# Make a new copy of tcf.MWA_MOCK_MS into two MSets
validate_call(f"cp -r {tcf.MWA_MOCK_MS} {tcf.MWA_MOCK_COPY_1}".split())
validate_call(f"cp -r {tcf.MWA_MOCK_MS} {tcf.MWA_MOCK_COPY_2}".split())
names = ["facets-single-ms", "facets-multiple-ms"]
commands = [
f"{tcf.MWA_MOCK_MS}",
f"{tcf.MWA_MOCK_COPY_1} {tcf.MWA_MOCK_COPY_2}",
]
if beam:
commands = [
"-mwa-path . -apply-facet-beam " + command
for command in commands
]
if h5file is not None:
commands[0] = (
f"-apply-facet-solutions {h5file[0]} ampl000,phase000 "
+ commands[0]
)
commands[1] = (
f"-apply-facet-solutions {','.join(h5file)} ampl000,phase000 "
+ commands[1]
)
# Note: -j 1 enabled to ensure deterministic iteration over visibilities
for name, command in zip(names, commands):
s = f"{tcf.WSCLEAN} -j 1 -nmiter 2 -gridder wgridder -name {name} -facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_SMALL} -interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 {command}"
validate_call(s.split())
# Compare images.
threshold = 1.0e-6
compare_rms_fits(
f"{names[0]}-image.fits", f"{names[1]}-image.fits", threshold
)
# Model data columns should be equal
taql_commands = [
f"select from {tcf.MWA_MOCK_MS} t1, {tcf.MWA_MOCK_COPY_1} t2 where not all(near(t1.MODEL_DATA,t2.MODEL_DATA,1e-6))"
]
taql_commands.append(
f"select from {tcf.MWA_MOCK_COPY_1} t1, {tcf.MWA_MOCK_COPY_2} t2 where not all(near(t1.MODEL_DATA,t2.MODEL_DATA,1e-6))"
)
# assert_taql(taql_command for taql_command in taql_commands)
for taql_command in taql_commands:
assert_taql(taql_command)
def test_diagonal_solutions(self):
# Initialize random rumber generator
rng = np.random.default_rng(1)
# Strip unused stations from mock measurement set
s = f"DP3 msin={tcf.MWA_MOCK_MS} msout=diagonal_solutions.ms msout.overwrite=True steps=[filter] filter.remove=True"
validate_call(s.split())
# Fill WEIGHT_SPECTRUM with random values
with casacore.tables.table(
"diagonal_solutions.ms", readonly=False
) as t:
weight_spectrum_shape = np.concatenate(
(
np.array([t.nrows()]),
t.getcoldesc("WEIGHT_SPECTRUM")["shape"],
)
)
weights = rng.uniform(0, 1, weight_spectrum_shape) + np.array(
[1, 2, 3, 4], ndmin=3
)
t.putcol("WEIGHT_SPECTRUM", weights)
# Create a template image
s = (
f"{tcf.WSCLEAN} -gridder wgridder -name template-diagonal-solutions "
f"{tcf.DIMS_SMALL} -interval 0 1 diagonal_solutions.ms"
)
validate_call(s.split())
# Use template image to create a sky model consisting of a grid of point sources
with fits.open("template-diagonal-solutions-image.fits") as f:
wcs = WCS(f[0].header)
nr_pixels = f[0].shape[-1]
pointsource_grid_size = 2
source_positions = create_pointsource_grid_skymodel(
"diagonal-solutions-skymodel.txt",
pointsource_grid_size,
nr_pixels,
wcs,
)
# Predict (without solutions)
s = f"DP3 msin=diagonal_solutions.ms msout= steps=[predict] predict.sourcedb=diagonal-solutions-skymodel.txt"
validate_call(s.split())
# Image (without solutions)
s = (
f"{tcf.WSCLEAN} -name diagonal-solutions-reference -no-reorder "
f"{tcf.DIMS_SMALL} diagonal_solutions.ms"
)
validate_call(s.split())
# Create template solutions .h5 file
s = "DP3 msin=diagonal_solutions.ms msout= steps=[ddecal] ddecal.sourcedb=diagonal-solutions-skymodel.txt ddecal.h5parm=diagonal-solutions.h5 ddecal.mode=complexgain"
validate_call(s.split())
# Fill the template solutions file with random data
with h5py.File("diagonal-solutions.h5", mode="r+") as f:
f["sol000"]["phase000"]["val"][:] = rng.uniform(
-np.pi, np.pi, f["sol000"]["phase000"]["val"].shape
)
f["sol000"]["phase000"]["weight"][:] = 1.0
f["sol000"]["amplitude000"]["val"][:] = rng.uniform(
0.5, 3, f["sol000"]["amplitude000"]["val"].shape
)
f["sol000"]["amplitude000"]["weight"][:] = 1.0
# Predict with (random) solutions
s = (
"DP3 msin=diagonal_solutions.ms msout= steps=[h5parmpredict] "
"h5parmpredict.sourcedb=diagonal-solutions-skymodel.txt "
"h5parmpredict.applycal.parmdb=diagonal-solutions.h5 "
"h5parmpredict.applycal.steps=[ampl,phase] "
"h5parmpredict.applycal.ampl.correction=amplitude000 "
"h5parmpredict.applycal.phase.correction=phase000 "
"h5parmpredict.applycal.correction=amplitude000"
)
validate_call(s.split())
# Image data predicted with solutions applied,
# without applying corrections for the solutions while imaging
s = (
f"{tcf.WSCLEAN} -name diagonal-solutions-no-correction -no-reorder "
f"{tcf.DIMS_SMALL} diagonal_solutions.ms"
)
validate_call(s.split())
# Image data predicted with solutions applied,
# while applying corrections
s = (
f"{tcf.WSCLEAN} -name diagonal-solutions -no-reorder "
"-parallel-gridding 3 "
f"{tcf.DIMS_SMALL} -mgain 0.8 -threshold 10mJy -niter 10000 "
f"-facet-regions {tcf.FACETFILE_4FACETS} "
"-apply-facet-solutions diagonal-solutions.h5 "
"amplitude000,phase000 -diagonal-solutions "
"diagonal_solutions.ms"
)
validate_call(s.split())
# Compare reference, uncorrection and corrected fluxes
reference_image_data = fits.getdata(
"diagonal-solutions-reference-image.fits"
)[0, 0]
no_correction_image_data = fits.getdata(
"diagonal-solutions-no-correction-image.fits"
)[0, 0]
image_data = fits.getdata("diagonal-solutions-image-pb.fits")[0, 0]
# loop over input sources
for idx0, idx1 in source_positions:
# Assert that without corrections less than 5 percent flux is recovered
assert np.abs(no_correction_image_data[idx0, idx1]) < 5e-2
# Assert that with corrections the recovered flux is within 2 percent of the reference
assert np.isclose(
reference_image_data[idx0, idx1],
image_data[idx0, idx1],
rtol=2e-2,
)
def test_dd_psfs_with_faceting(self):
validate_call(
(
f"{tcf.WSCLEAN} -name dd-psfs-with-faceting "
f"-dd-psf-grid 3 3 -parallel-gridding 5 {tcf.DIMS_SMALL} "
"-parallel-deconvolution 100 -channels-out 2 -join-channels "
"-niter 100 -mgain 0.8 -apply-facet-beam -mwa-path . "
f"-facet-regions {tcf.FACETFILE_4FACETS} {tcf.MWA_MOCK_MS}"
).split()
)
import os.path
basic_image_check("dd-psfs-with-faceting-MFS-image.fits")
for i in range(9):
assert os.path.isfile(
f"dd-psfs-with-faceting-d000{i}-0000-psf.fits"
)
assert os.path.isfile(
f"dd-psfs-with-faceting-d000{i}-0001-psf.fits"
)
assert os.path.isfile(
f"dd-psfs-with-faceting-d000{i}-MFS-psf.fits"
)
assert not os.path.isfile(f"dd-psfs-with-faceting-0000-psf.fits")
assert not os.path.isfile(f"dd-psfs-with-faceting-0001-psf.fits")
assert not os.path.isfile(f"dd-psfs-with-faceting-MFS-psf.fits")
def test_predict_with_solutions(self):
# This is a more advanced prediction run which at some point failed
shutil.copyfile(
"point-source-model.fits", "point-source-0000-model-fpb.fits"
)
shutil.copyfile(
"point-source-model.fits", "point-source-0001-model-fpb.fits"
)
validate_call(
(
f"{tcf.WSCLEAN} -name point-source -v -predict -reorder "
"-parallel-gridding 4 -channels-out 2 -diagonal-solutions "
"-apply-facet-beam -facet-beam-update 60 "
f"-facet-regions {tcf.FACETFILE_4FACETS} "
f"-apply-facet-solutions {tcf.MOCK_SOLTAB_2POL} ampl000,phase000 "
f"-mwa-path . {tcf.MWA_MOCK_FACET}"
).split()
)
def test_facet_continuing(self):
nthreads = 4
s = (
f"{tcf.WSCLEAN} -parallel-gridding {nthreads} "
f"{tcf.DIMS_SMALL} -niter 100 -auto-threshold 5 -mgain 0.8 -channels-out 2 "
f"-facet-regions {tcf.FACETFILE_4FACETS} "
f"-name facet-continuing-a {tcf.MWA_MOCK_FULL}"
)
validate_call(s.split())
s = (
f"{tcf.WSCLEAN} -reuse-psf facet-continuing-a -reuse-dirty facet-continuing-a "
f"-parallel-gridding {nthreads} {tcf.DIMS_SMALL} -niter 100 "
f"-auto-threshold 5 -mgain 0.8 -channels-out 2 -facet-regions {tcf.FACETFILE_4FACETS} "
f"-name facet-continuing-b -v {tcf.MWA_MOCK_FULL}"
)
validate_call(s.split())
basic_image_check("facet-continuing-b-0000-dirty.fits")
basic_image_check("facet-continuing-b-0000-image.fits")
basic_image_check("facet-continuing-b-0000-psf.fits")
basic_image_check("facet-continuing-b-0000-residual.fits")
basic_image_check("facet-continuing-b-0001-dirty.fits")
basic_image_check("facet-continuing-b-0001-image.fits")
basic_image_check("facet-continuing-b-0001-psf.fits")
basic_image_check("facet-continuing-b-0001-residual.fits")
|