1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
|
import glob
import os
import sys
from wsgiref import validate
import h5py
import numpy as np
import pytest
from astropy.io import fits
from utils import assert_taql, compute_rms, validate_call
# Append current directory to system path in order to import testconfig
sys.path.append(".")
# Import configuration variables as test configuration (tcf)
import config_vars as tcf
"""
Test script containing a collection of wsclean commands, tested on big MWA/SKA
measurement sets. Tests contained in this file can be invoked via various routes:
- execute "make longsystemcheck" in your build directory
- execute "[python3 -m] pytest [OPTIONS] source/long_system_checks.py::TestLongSystem::<test_name.py>" in your build/tests/python directory
"""
def name(name: str):
return os.path.join(tcf.RESULTS_DIR, name)
"""
Checks if a specified pixel in a fits file is within 0.03 units
of the given expected value.
"""
def check_image_pixel(position, expected_value, filename):
with fits.open(filename) as image:
value = image[0].data[position]
assert expected_value - 0.03 < value < expected_value + 0.03
def set_test_gains_in_solution_file(solution_file):
with h5py.File(solution_file, "a") as table:
solset = table["sol000"]
# times, freq, ant, dir, pol
for i in range(0, 5):
if solset["amplitude000/val"].ndim == 5:
solset["amplitude000/val"][:, :, :, i, :] = i + 2
solset["phase000/val"][:, :, :, i, :] = 0
else:
solset["amplitude000/val"][:, :, :, i] = i + 2
solset["phase000/val"][:, :, :, i] = 0
solset["amplitude000/weight"][:] = 1
solset["phase000/weight"][:] = 1
@pytest.fixture
def model_file_fixture():
model_3c196 = """Format = Name, Patch, Type, Ra, Dec, I, Q, U, V, SpectralIndex, LogarithmicSI, ReferenceFrequency='150.e6', MajorAxis, MinorAxis, Orientation
,A,POINT, 08:13:36.0, 48.13.03.000,
,B,POINT, 08:23:36.0, 48.13.03.000,
,C,POINT, 08:03:36.0, 48.13.03.000,
,D,POINT, 08:13:36.0, 49.45.00.000,
,E,POINT, 08:13:36.0, 47.15.00.000,
3c196, A, POINT, 08:13:36.0, 48.13.03.000, 0, 1, 0, 0, [0.0], false, , , ,
left, B, POINT, 08:23:36.0, 48.13.03.000, 0, 0, 1, 0, [0.0], false, , , ,
right, C, POINT, 08:03:36.0, 48.13.03.000, 0, 0, 0, 1, [0.0], false, , , ,
top, D, POINT, 08:13:36.0, 49.45.00.000, 1, 0, 0, 0, [0.0], false, , , ,
bottom, E, POINT, 08:13:36.0, 47.15.00.000, 0, -1, 0, 0, [0.0], false, , , ,
"""
with open("testmodel.txt", "w") as f:
f.write(model_3c196)
@pytest.fixture
def region_file_fixture():
# Created using:
# ds9_facet_generator.py --h5 out.h5 --ms LOFAR_3C196.ms/ --imsize 2500 --pixelscale 600 --outputfile 3c196-with-5-facets.reg
# The h5 parm can be created with Dp3, e.g.:
# DP3 msin=3c196-simulation.ms/ msout=test.ms msout.overwrite=True steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm=out.h5 ddecal.solint=100 ddecal.mode=scalar ddecal.solveralgorithm=directioniterative
facets_3c196 = """# Region file format: DS9 version 4.1
global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1
fk5
polygon(124.65026,47.72693,124.65027,48.97713,122.14973,48.97713,122.14974,47.72693)
polygon(170.51499,-18.67893,242.70949,37.18997,245.26832,39.29522,124.65027,48.97713,124.65026,47.72693,156.25106,-22.65241)
polygon(4.05193,37.22353,76.33129,-18.69386,90.54899,-22.65230,122.14974,47.72693,122.14973,48.97713,1.53191,39.29548)
polygon(1.53191,39.29548,122.14973,48.97713,124.65027,48.97713,245.26832,39.29522)
polygon(156.25106,-22.65241,124.65026,47.72693,122.14974,47.72693,90.54899,-22.65230)
"""
with open("3c196-with-5-facets.reg", "w") as f:
f.write(facets_3c196)
# Dimensions are pol, freq, y, x
i_source_pos = (0, 0, 1802, 1250)
q_source_pos = (0, 0, 1250, 1250)
negative_q_source_pos = (0, 0, 902, 1250)
u_source_pos = (0, 0, 1260, 651)
v_source_pos = (0, 0, 1260, 1850)
@pytest.mark.usefixtures("prepare_large_ms")
class TestLongSystem:
"""
Collection of long system tests.
"""
def test_dirty_image(self):
# Make dirty image
s = f"{tcf.WSCLEAN} -name {name('test-dirty')} {tcf.DIMS_LARGE} {tcf.MWA_MS}"
validate_call(s.split())
def test_clean_rectangular_unpadded_image(self):
# Clean a rectangular unpadded image
s = f"{tcf.WSCLEAN} -name {name('clean-rectangular')} -padding 1 -local-rms \
-auto-threshold 5 -mgain 0.8 -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_automask_multiscale_clean(self):
# Auto-masked multi-scale clean
s = f"{tcf.WSCLEAN} -name {name('multiscale-automasked')} -auto-threshold 0.5 -auto-mask 3 \
-mgain 0.8 -multiscale -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_multiple_intervals(self):
# Multiple intervals
s = f"{tcf.WSCLEAN} -name {name('intervals')} -intervals-out 3 \
{tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_multiple_intervals_and_channels(self):
# Multiple intervals + multiple channels with some cleaning
s = f"{tcf.WSCLEAN} -name {name('intervals-and-channels')} -intervals-out 3 \
-channels-out 2 -niter 1000 -mgain 0.8 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
validate_call(s.split())
def test_multiple_intervals_and_facets(self):
# Multiple intervals + multiple facets with some cleaning
s_base = f"{tcf.WSCLEAN} -name {name('intervals-and-facets')} -intervals-out 3 \
-facet-regions {tcf.FACETFILE_4FACETS}"
s = f"{s_base} -niter 1000 -mgain 0.8 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
validate_call(s.split())
# Run predict, using the model generated above.
s = f"{s_base} -predict {tcf.MWA_MS}"
validate_call(s.split())
def test_multifrequency_hogbom(self):
# Multi-frequency Högbom clean, no parallel gridding
s = f"{tcf.WSCLEAN} -name {name('mfhogbom')} -channels-out 4 -join-channels -auto-threshold 3 \
-mgain 0.8 -niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_multifrequency_without_joining_pol(self):
# Multi-frequency clean, no joining of pols (reproduces bug #128)
s = f"{tcf.WSCLEAN} -name {name('mf-no-join-pol')} -pol iv -channels-out 2 -join-channels -niter 1 -interval 10 13 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_multifrequency_hogbom_spectral_fit(self):
# Multi-frequency Högbom clean with spectral fitting
s = f"{tcf.WSCLEAN} -name {name('mfhogbom-fitted')} -channels-out 4 -join-channels -parallel-gridding 4 \
-fit-spectral-pol 2 -auto-threshold 3 -mgain 0.8 \
-niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_mutifrequency_multiscale_parallel(self):
# Multi-frequency multi-scale clean with spectral fitting, pallel gridding & cleaning
s = f"{tcf.WSCLEAN} -name {name('mfms-fitted')} -channels-out 4 -join-channels -parallel-gridding 4 \
-parallel-deconvolution 1000 -fit-spectral-pol 2 -multiscale -auto-threshold 0.5 \
-auto-mask 3 -mgain 0.8 -niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_save_components(self):
test_name = name("mfms-components")
# Remove old component list if it exists
component_file = test_name + "-sources.txt"
if os.path.exists(component_file):
os.remove(component_file)
# Save the list of components
s = f"{tcf.WSCLEAN} -name {test_name} -save-source-list -channels-out 4 \
-join-channels -parallel-gridding 4 -fit-spectral-pol 2 \
-auto-threshold 0.5 -auto-mask 3 -mgain 0.8 -niter 1000000 \
-multiscale -parallel-deconvolution 1000 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
validate_call(s.split())
# Check whether source files is generated
assert os.path.isfile(component_file)
def test_linear_joined_polarizations(self):
# Linear joined polarizations with 4 joined channels
s = f"{tcf.WSCLEAN} -name {name('linearpol')} -niter 1000000 -auto-threshold 3.0 \
-pol XX,YY,XY,YX -join-polarizations -join-channels -mgain 0.85 \
-channels-out 4 -parallel-gridding 16 -gridder wstacking {tcf.DIMS_LARGE} {tcf.MWA_MS}"
validate_call(s.split())
def test_two_timesteps(self):
# Image two timesteps
s = f"{tcf.WSCLEAN} -name {name('two-timesteps')} -niter 1000000 -auto-threshold 3.0 \
-intervals-out 2 -interval 20 22 -mgain 0.85 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_stop_on_negative_components(self):
# Stop on negative components
s = f"{tcf.WSCLEAN} -name {name('stop-on-negatives')} -stop-negative -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_save_imaging_weights(self):
s = f"{tcf.WSCLEAN} -name {name('store-imaging-weights')} -no-reorder -store-imaging-weights {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
@pytest.mark.parametrize(
"gridder, test_name",
(["wstacking", "shift-ws"], ["wgridder", "shift-wg"]),
)
def test_shift_image(self, gridder, test_name):
# Shift the image with w-stacking and w-gridder gridder
s = f"{tcf.WSCLEAN} -gridder {gridder} -name {name(test_name)} -mgain 0.8 -auto-threshold 5 -niter 1000000 -make-psf {tcf.DIMS_RECTANGULAR} -shift 08h09m20s -39d06m54s -no-update-model-required {tcf.MWA_MS}"
validate_call(s.split())
def test_shifted_source_list(self):
# Shift the image and check coordinates in source list
s = f"{tcf.WSCLEAN} -name {name('shifted-source-list')} -niter 1 {tcf.DIMS_RECTANGULAR} -shift 08h09m20s -39d06m54s -save-source-list {tcf.MWA_MS}"
validate_call(s.split())
source_file = f"{name('shifted-source-list')}-sources.txt"
assert os.path.isfile(source_file)
with open(source_file) as f:
lines = f.readlines()
# There should be a header line and a single source line in the file
assert len(lines) == 2
# 3rd and 4th column contain ra and dec
cols = lines[1].split(",")
assert len(cols) >= 4
ra_str = cols[2]
dec_str = cols[3]
assert ra_str[0:5] + " " + dec_str[0:6] == "07:49 -44.12"
def test_missing_channels_in_deconvolution(self):
# The test set has some missing MWA subbands. One MWA subband is 1/24 of the data (32/768 channels), so
# by imaging with -channels-out 24, it is tested what happens when an output channel has no data.
s = f"{tcf.WSCLEAN} -name {name('missing-channels-in-deconvolution')} -gridder wgridder {tcf.DIMS_LARGE} -baseline-averaging 2.0 -no-update-model-required -niter 150000 -auto-threshold 2.0 -auto-mask 5.0 -mgain 0.9 -channels-out 24 -join-channels -fit-spectral-pol 4 {tcf.MWA_MS}"
validate_call(s.split())
def test_grid_with_beam(self):
"""Requires that WSClean is compiled with IDG and EveryBeam"""
name = "idg-beam"
# Remove existing component files if present
for source_file in ["sources", "sources-pb"]:
component_file = name + "-" + source_file + ".txt"
if os.path.exists(component_file):
os.remove(component_file)
s = f"{tcf.WSCLEAN} -name {name} -use-idg -grid-with-beam -save-source-list -mgain 0.8 -auto-threshold 5 -niter 1000000 -interval 10 14 {tcf.DIMS_LARGE} -mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
for image_type in [
"psf",
"beam",
"dirty",
"image",
"image-pb",
"model",
"model-pb",
"residual",
"residual-pb",
]:
image_name = name + "-" + image_type + ".fits"
assert os.path.isfile(image_name)
# Check whether source files are generated
for source_file in ["sources", "sources-pb"]:
assert os.path.isfile(name + "-" + source_file + ".txt")
def test_two_facets(self):
# Apply the facet to the image
s = f"{tcf.WSCLEAN} -name {name('two-facets')} -facet-regions {tcf.FACETFILE_2FACETS} \
{tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
def test_nfacets_pol_xx_yy(self):
# Request two polarizations on approximately 25 facets
s = f"{tcf.WSCLEAN} -name {name('nfacets-XX_YY')} -pol XX,YY \
-facet-regions {tcf.FACETFILE_NFACETS} {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
@pytest.mark.parametrize("npol", (2, 4))
def test_facet_h5solution(self, npol):
# Test facet-based imaging and applying h5 solutions
# where the polarization axis in the h5 file has size npol
h5download = (
f"wget -N -q {tcf.WSCLEAN_DATA_URL}/mock_soltab_{npol}pol.h5"
)
validate_call(h5download.split())
name = f"facet-h5-{npol}pol"
s = f"{tcf.WSCLEAN} -gridder wgridder -name {name} -apply-facet-solutions mock_soltab_{npol}pol.h5 ampl000,phase000 -pol xx,yy -facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_LARGE} -join-polarizations -interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 {tcf.MWA_MS}"
validate_call(s.split())
# Check for output images
assert os.path.isfile(f"{name}-psf.fits")
for pol in ["XX", "YY"]:
trunk = name + "-" + pol
for image_type in [
"image",
"image-pb",
"dirty",
"model",
"model-pb",
"residual",
"residual-pb",
]:
image_name = trunk + "-" + image_type + ".fits"
assert os.path.isfile(image_name)
def test_facet_beam(self):
# Test facet beam, using 4 polarizations
s = f"{tcf.WSCLEAN} -name {name('nfacets-iquv-facet-beam')} -interval 10 14 -apply-facet-beam -pol iquv -join-polarizations \
-facet-regions {tcf.FACETFILE_NFACETS} {tcf.DIMS_RECTANGULAR} \
-mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
def test_mpi_join_channels(self):
# Test wsclean-mp command
s = f"mpirun {tcf.WSCLEAN_MP} -name {name('mpi-join')} {tcf.DIMS_RECTANGULAR} -channels-out 2 -join-channels -niter 1000000 -mgain 0.8 -auto-threshold 5 -multiscale -no-update-model-required {tcf.MWA_MS}"
validate_call(s.split())
def test_mpi_split_channels(self):
s = f"mpirun {tcf.WSCLEAN_MP} -name {name('mpi-split')} {tcf.DIMS_RECTANGULAR} -channels-out 2 -niter 1000000 -mgain 0.8 -auto-threshold 5 -multiscale -no-update-model-required {tcf.MWA_MS}"
validate_call(s.split())
def test_idg_with_reuse_psf(self):
# Test for issue #81: -reuse-psf gives segmentation fault in IDG
# First make sure input files exist:
s = f"{tcf.WSCLEAN} -name {name('idg-reuse-psf-A')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
# Model image A is copied to B-model-pb corrected image, to avoid
# issues due to NaN values in the A-model-pb.fits file.
# As such, this test is purely illlustrative.
os.rename(
name("idg-reuse-psf-A") + "-model.fits",
name("idg-reuse-psf-B") + "-model-pb.fits",
)
os.rename(
name("idg-reuse-psf-A") + "-beam.fits",
name("idg-reuse-psf-B") + "-beam.fits",
)
# Now continue:
s = f"{tcf.WSCLEAN} -name {name('idg-reuse-psf-B')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -continue -reuse-psf {name('idg-reuse-psf-A')} -mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
@pytest.mark.skip(
reason="-reuse-dirty and -grid-with-beam options conflict due to average beam computation (AST-995)"
)
def test_idg_with_reuse_dirty(self):
# Test for issue #80: -reuse-dirty option fails (#80)
# First make sure input files exist:
s = f"{tcf.WSCLEAN} -name {name('idg-reuse-dirty-A')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
# Model image A is copied to B-model-pb corrected image, to avoid
# issues due to NaN values in the A-model-pb.fits file.
# As such, this test is purely illlustrative.
os.rename(
name("idg-reuse-dirty-A") + "-model.fits",
name("idg-reuse-dirty-B") + "-model-pb.fits",
)
# Now continue:
s = f"{tcf.WSCLEAN} -name {name('idg-reuse-dirty-B')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -continue -reuse-dirty {name('idg-reuse-dirty-A')} -mwa-path . {tcf.MWA_MS}"
validate_call(s.split())
def test_masked_parallel_deconvolution(self):
# Test for two issues:
# - issue #96: Source edges in restored image after parallel deconvolution
# - issue #31: Model images are masked in parallel cleaning
# The result of this test should be a model image with an unmasked Gaussian and a
# properly residual. Before the fix, the Gaussian was masked in the model, and
# therefore only a single pixel was visible, and residual would only be updated
# on the place of the pixel.
# First create a mask image with one pixel set:
s = f"{tcf.WSCLEAN} -name {name('masked-parallel-deconvolution-prepare')} -size 256 256 -scale 1amin -interval 10 14 -niter 1 {tcf.MWA_MS}"
validate_call(s.split())
# Now use this as a mask, and force a Gaussian on the position
s = f"{tcf.WSCLEAN} -name {name('masked-parallel-deconvolution')} -size 256 256 -scale 1amin -fits-mask {name('masked-parallel-deconvolution-prepare')}-model.fits -interval 10 14 -niter 10 -parallel-deconvolution 128 -multiscale -multiscale-scales 10 {tcf.MWA_MS}"
validate_call(s.split())
for f in glob.glob(
f"{name('masked-parallel-deconvolution-prepare')}*.fits"
):
os.remove(f)
@pytest.mark.parametrize("use_beam", (False, True))
def test_idg_predict(self, use_beam):
# Check whether primary beam corrected image is used in -predict
# First make sure model images exist
run_name = name("idg-predict")
grid_with_beam = "-grid-with-beam" if use_beam else ""
s0 = f"{tcf.WSCLEAN} -name {run_name} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu {grid_with_beam} -interval 10 12 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
validate_call(s0.split())
# Remove the model image that shouldn't be needed for the predict
if use_beam:
# Move model.fits to model-pb.fits file. Formally, the model-pb.fits file
# should be used directly, but as this file can contain NaN values, a predict run
# can bail out on these NaN values.
os.rename(f"{run_name}-model.fits", f"{run_name}-model-pb.fits")
s1 = f"{tcf.WSCLEAN} -name {run_name} {tcf.DIMS_LARGE} -predict -use-idg -idg-mode cpu {grid_with_beam} -interval 10 12 -mwa-path . {tcf.MWA_MS}"
validate_call(s1.split())
def test_catch_invalid_channel_selection(self):
# Invalid selection: people often forget the second value of -channel-range is an open interval end (i.e. excluded the value itself).
s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
with pytest.raises(Exception):
validate_call(s.split())
def test_catch_invalid_channel_selection_with_gaps(self):
s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -gap-channel-division -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
with pytest.raises(Exception):
validate_call(s.split())
def test_catch_invalid_channel_selection_with_division(self):
s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -channel-division-frequencies 145e6 -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
with pytest.raises(Exception):
validate_call(s.split())
def test_multiband_no_mf_weighting(self):
# Tests issue #105: Segmentation fault (core dumped), when grouping spectral windows + no-mf-weighting Master Branch
# The issue was caused by invalid indexing into the BandData object.
s = f"{tcf.WSCLEAN} -name {name('vla-multiband-no-mf')} -size 768 768 -scale 0.05arcsec -pol QU -mgain 0.85 -niter 1000 -auto-threshold 3 -join-polarizations -squared-channel-joining -no-update-model-required -no-mf-weighting {tcf.JVLA_MS}"
validate_call(s.split())
for f in glob.glob(f"{name('vla-multiband-no-mf')}*.fits"):
os.remove(f)
def test_spectrally_fitted_with_joined_polarizations(self):
s = f"{tcf.WSCLEAN} -name {name('iv-jointly-fitted')} {tcf.DIMS_LARGE} -parallel-gridding 4 -channels-out 4 -join-channels -fit-spectral-pol 2 -pol i,v -join-polarizations -niter 1000 -auto-threshold 5 -multiscale -mgain 0.8 {tcf.MWA_MS}"
validate_call(s.split())
def test_direction_dependent_psfs(self):
"""Tests direction-dependent PSFs.
Checks that the PSF generated which lies close to the source point is more similar to the dirty image than the one lying further away.
"""
def get_peak_centered_normalized_subimage(img, subimage_size):
"""Get a subimage centered at the pixel with the heighest value
Image is normalized by the heighest pixel value
"""
# Get coordinates of the peak
center_point_x, center_point_y = np.unravel_index(
np.argmax(img, axis=None), img.shape
)
return (
img[
center_point_x
- subimage_size // 2 : center_point_x
- subimage_size // 2
+ subimage_size,
center_point_y
- subimage_size // 2 : center_point_y
- subimage_size // 2
+ subimage_size,
]
/ img[center_point_x, center_point_y]
)
# Make template model image
s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -no-reorder -size 4800 4800 -scale 5asec -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 {tcf.SKA_MS}"
validate_call(s.split())
# Fill model images with grid of point sources
f_image = fits.open(name("DD-PSFs-image.fits"))
f_beam = fits.open(name("DD-PSFs-beam.fits"))
image_size = f_image[0].data.shape[-1]
PSF_GRID_SIZE_1D = 3
point_source_spacing = image_size // PSF_GRID_SIZE_1D
position_range_1d = (
point_source_spacing // 2
+ point_source_spacing * np.arange(PSF_GRID_SIZE_1D)
)
f_image[0].data[:] = 0.0
for i in position_range_1d:
for j in position_range_1d:
f_image[0].data[0, 0, i, j] = 1.0 / f_beam[0].data[0, 0, i, j]
f_image.writeto(name("DD-PSFs-model-pb.fits"), overwrite=True)
# Predict visibilites using wsclean
# predicted visibiliies are written to the MODEL_DATA column
s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -no-reorder -predict -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -beam-aterm-update 120 {tcf.SKA_MS}"
validate_call(s.split())
# Location of a python implementation of a "deconvolution algorithm" that does
# nothing except storing its input images to disk
deconvolution_script = os.path.join(
os.path.dirname(__file__), "test_deconvolution_write_input.py"
)
# Generate the regular (direction independent) psf
s = f"{tcf.WSCLEAN} -name {name('NO-DD-PSFs')} -make-psf-only -data-column MODEL_DATA -no-reorder -size 4800 4800 -scale 5asec -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 {tcf.SKA_MS}"
validate_call(s.split())
# Generate dirty image and PSF_GRID_SIZE_1D x PSF_GRID_SIZE_1D direction-dependent PSFs
s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -data-column MODEL_DATA -parallel-deconvolution 1600 -no-reorder -size 4800 4800 -scale 5asec -mgain 0.8 -niter 10000000 -abs-threshold 10.0mJy -auto-mask 5.0 -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 -dd-psf-grid 3 3 -nmiter 1 -python-deconvolution {deconvolution_script} {tcf.SKA_MS}"
validate_call(s.split())
# Check whether the restoring beam for dd-psf and regular imaging is the same
reference_header = fits.getheader(name("NO-DD-PSFs" + "-psf.fits"))
ddpsf_header = fits.getheader(name("DD-PSFs" + "-image.fits"))
assert np.isclose(
reference_header["BMAJ"], ddpsf_header["BMAJ"], rtol=1e-3, atol=0.0
)
assert np.isclose(
reference_header["BMIN"], ddpsf_header["BMIN"], rtol=1e-3, atol=0.0
)
assert np.isclose(
reference_header["BPA"], ddpsf_header["BPA"], rtol=0.0, atol=0.1
)
SUBIMAGE_SIZE = 40
dirty = get_peak_centered_normalized_subimage(
fits.open(f"{name('DD-PSFs')}-dirty.fits")[0].data.squeeze()[
:1600, :1600
],
SUBIMAGE_SIZE,
)
psf_on_source = get_peak_centered_normalized_subimage(
fits.open(f"{name('DD-PSFs')}-d0000-psf.fits")[0].data.squeeze(),
SUBIMAGE_SIZE,
)
psf_off_source = get_peak_centered_normalized_subimage(
fits.open(f"{name('DD-PSFs')}-d0004-psf.fits")[0].data.squeeze(),
SUBIMAGE_SIZE,
)
# Verify that the psf generated at the location of a point source
# is indeed a better match then a psf for a diffetent location
expected_improvement_factor = 0.3
assert np.sqrt(
np.mean(np.square(dirty - psf_on_source))
) < expected_improvement_factor * np.sqrt(
np.mean(np.square(dirty - psf_off_source))
)
num_psfs = PSF_GRID_SIZE_1D * PSF_GRID_SIZE_1D
dirty = []
psf = []
# Load the psfs and dirty images that were stored by the dummy deconvolution algorithm
for i in range(num_psfs):
dirty.append(
get_peak_centered_normalized_subimage(
np.load(
f"{name(f'test-deconvolution-write-input-dirty-{i}.npy')}"
)[0][0],
SUBIMAGE_SIZE,
)
)
psf.append(
get_peak_centered_normalized_subimage(
np.load(
f"{name(f'test-deconvolution-write-input-psf-{i}.npy')}"
)[0],
SUBIMAGE_SIZE,
)
)
# Create a difference matrix of rms differences between all pairs of
# dirty images and psfs.
# The best match should occur when psf and dirty image index match,
# i.e. on the diagonal of the difference matrix
diff = np.zeros((num_psfs, num_psfs))
for i in range(num_psfs):
for j in range(num_psfs):
diff[i, j] = np.sqrt(np.mean(np.square(dirty[i] - psf[j])))
# Assert that for each dirty image, the best match is indeed the psf
# with the same index
assert all(np.argmin(diff, axis=0) == np.arange(num_psfs))
def test_read_only_ms(self):
chmod = f"chmod a-w -R {tcf.MWA_MS}"
validate_call(chmod.split())
try:
# When "-no-update-model-required" is specified, processing a read-only measurement set should be possible.
s = f"{tcf.WSCLEAN} -interval 10 20 -no-update-model-required -name {name('readonly-ms')} -auto-threshold 0.5 -auto-mask 3 \
-mgain 0.95 -nmiter 2 -multiscale -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
validate_call(s.split())
finally:
chmod = f"chmod u+w -R {tcf.MWA_MS}"
validate_call(chmod.split())
def test_rr_polarization(self):
s = f"{tcf.WSCLEAN} -pol rr -name {name('gmrt-rr')} -mgain 0.8 -niter 1 -size 512 512 -scale 10asec -gridder wstacking {tcf.GMRT_MS}"
validate_call(s.split())
rms_dirty = compute_rms(f"{name('gmrt-rr')}-dirty.fits")
rms_image = compute_rms(f"{name('gmrt-rr')}-image.fits")
# This was 0.215 when measured
assert rms_dirty > 0.2 and rms_dirty < 0.22
assert rms_dirty > rms_image
def test_gmrt_beam(self):
s = f"{tcf.WSCLEAN} -pol rr -name {name('gmrt-beam')} -apply-primary-beam -mgain 0.8 -size 512 512 -scale 10asec -gridder wstacking {tcf.GMRT_MS}"
validate_call(s.split())
rms_beam = compute_rms(f"{name('gmrt-beam')}-beam-0.fits")
# This was measured at 0.6306
assert rms_beam > 0.61 and rms_beam < 0.65
rms_corrected = compute_rms(f"{name('gmrt-beam')}-image-pb.fits")
# Measured at 0.45849
assert rms_corrected > 0.42 and rms_corrected < 0.49
def test_mf_full_polarization_beam_correction(self):
prefix = name("mf-full-pol-beam")
s = f"{tcf.WSCLEAN} -name {prefix} {tcf.DIMS_LARGE} -interval 10 12 -mwa-path . -channels-out 2 -apply-primary-beam -pol iquv -link-polarizations i -mgain 0.8 -niter 1000 -auto-threshold 6 -size 512 512 -scale 2amin {tcf.MWA_MS}"
validate_call(s.split())
assert os.path.isfile(prefix + "-0000-psf.fits")
assert os.path.isfile(prefix + "-0001-psf.fits")
assert os.path.isfile(prefix + "-MFS-psf.fits")
for image_type in [
"dirty",
"image",
"image-pb",
"model",
"model-pb",
"residual",
"residual-pb",
]:
for pol_type in ["I", "Q", "U", "V"]:
postfix = pol_type + "-" + image_type + ".fits"
image_name = prefix + "-0000-" + postfix
assert os.path.isfile(image_name)
image_name = prefix + "-0001-" + postfix
assert os.path.isfile(image_name)
image_name = prefix + "-MFS-" + postfix
assert os.path.isfile(image_name)
def test_iquv_facet_beam_corrections(
self, model_file_fixture, region_file_fixture
):
# Dp3 is used to predict 5 sources with different IQUV values into the measurement set
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[predict] predict.sourcedb=testmodel.txt predict.usebeammodel=True"
validate_call(dp3_run.split())
# Run a I-only deconvolution with facets and beam
base_cmd = f"""{tcf.WSCLEAN} -name facet-iquv-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-size 2500 2500 -scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8
-nmiter 1 -maxuvw-m 20000"""
cmd = base_cmd + " 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-iquv-corrections-image-pb.fits"
)
# Check consistency of Stokes I predict
predict_base_cmd = f"""{tcf.WSCLEAN} -predict -name facet-iquv-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-maxuvw-m 20000 -model-column PREDICTED_DATA"""
predict_cmd = predict_base_cmd + " 3c196-simulation.ms"
validate_call(predict_cmd.split())
taql_cmd = f"select PREDICTED_DATA-MODEL_DATA FROM 3c196-simulation.ms WHERE sumsqr(UVW) < 20000*20000 && ANY(PREDICTED_DATA-MODEL_DATA > 1e-3)"
assert_taql(taql_cmd, 0)
# Run a full IQUV deconvolution
cmd = base_cmd + " -pol iquv -join-polarizations 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-iquv-corrections-I-image-pb.fits"
)
check_image_pixel(
q_source_pos, 1.0, "facet-iquv-corrections-Q-image-pb.fits"
)
check_image_pixel(
negative_q_source_pos,
-1.0,
"facet-iquv-corrections-Q-image-pb.fits",
)
check_image_pixel(
u_source_pos, 1.0, "facet-iquv-corrections-U-image-pb.fits"
)
check_image_pixel(
v_source_pos, 1.0, "facet-iquv-corrections-V-image-pb.fits"
)
# Check consistency of IQUV predict
predict_cmd = predict_base_cmd + " -pol iquv 3c196-simulation.ms"
# TODO this is not working yet: issue with join-polarizations
# validate_call(predict_cmd.split())
# assert_taql(taql_cmd, 0)
# Run a XX,YY deconvolution
cmd = (
base_cmd
+ " -pol xx,yy -join-polarizations -squared-channel-joining 3c196-simulation.ms"
)
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-iquv-corrections-XX-image-pb.fits"
)
check_image_pixel(
i_source_pos, 1.0, "facet-iquv-corrections-YY-image-pb.fits"
)
check_image_pixel(
q_source_pos, 1.0, "facet-iquv-corrections-XX-image-pb.fits"
)
check_image_pixel(
q_source_pos, -1.0, "facet-iquv-corrections-YY-image-pb.fits"
)
check_image_pixel(
negative_q_source_pos,
-1.0,
"facet-iquv-corrections-XX-image-pb.fits",
)
check_image_pixel(
negative_q_source_pos,
1.0,
"facet-iquv-corrections-YY-image-pb.fits",
)
# Check consistency of XXYY predict
predict_cmd = (
predict_base_cmd
+ " -pol xxyy -join-polarizations 3c196-simulation.ms"
)
# TODO this is not working yet: issue with join-polarizations
# validate_call(predict_cmd.split())
# assert_taql(taql_cmd, 0)
def test_facet_scalar_corrections(
self, model_file_fixture, region_file_fixture
):
# Perform simple solve to get a hdf5 parm file
solution_file = "scalar_correction_solutions.h5"
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.mode=scalar ddecal.maxiter=1"
validate_call(dp3_run.split())
set_test_gains_in_solution_file(solution_file)
# Dp3 is used to predict 5 sources with different IQUV values into the measurement set
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=amplitude000"
validate_call(dp3_run.split())
base_cmd = f"""{tcf.WSCLEAN} -name facet-scalar-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -size 2500 2500
-apply-facet-solutions {solution_file} amplitude000,phase000
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8
-nmiter 1 -maxuvw-m 20000"""
cmd = base_cmd + " -scalar-visibilities 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-scalar-corrections-image-pb.fits"
)
# These next calls check if a predict results in the same values as what the previous deconvolution run produced
predict_cmd = f"""{tcf.WSCLEAN} -predict -name facet-scalar-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -size 2500 2500
-apply-facet-solutions {solution_file} amplitude000,phase000
-scale 10asec -maxuvw-m 20000 -model-column PREDICTED_DATA 3c196-simulation.ms"""
validate_call(predict_cmd.split())
taql_cmd = f"select PREDICTED_DATA-MODEL_DATA FROM 3c196-simulation.ms WHERE sumsqr(UVW) < 20000*20000 && ANY(PREDICTED_DATA-MODEL_DATA > 1e-3)"
assert_taql(taql_cmd, 0)
def test_iquv_facet_dual_corrections(
self, model_file_fixture, region_file_fixture
):
# Perform simple solve to get a hdf5 parm file
solution_file = "dual_correction_solutions.h5"
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.maxiter=1"
validate_call(dp3_run.split())
set_test_gains_in_solution_file(solution_file)
# Dp3 is used to predict 5 sources with different IQUV values into the measurement set
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.usebeammodel=True h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=amplitude000"
validate_call(dp3_run.split())
base_cmd = f"""{tcf.WSCLEAN} -name facet-dual-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-apply-facet-solutions {solution_file} amplitude000,phase000 -size 2500 2500
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8 -nmiter 1
-maxuvw-m 20000 -no-update-model-required"""
cmd = base_cmd + " 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-dual-corrections-image-pb.fits"
)
cmd = base_cmd + " -pol iquv -join-polarizations 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-dual-corrections-I-image-pb.fits"
)
check_image_pixel(
q_source_pos, 1.0, "facet-dual-corrections-Q-image-pb.fits"
)
check_image_pixel(
negative_q_source_pos,
-1.0,
"facet-dual-corrections-Q-image-pb.fits",
)
check_image_pixel(
u_source_pos, 1.0, "facet-dual-corrections-U-image-pb.fits"
)
check_image_pixel(
v_source_pos, 1.0, "facet-dual-corrections-V-image-pb.fits"
)
# Prepare for applying solutions to diagonal (XX,YY) vis. To do so, first
# apply the beam so that the element's projection effect are removed. For diagonal
# visibilities, we want to have as little power in xy,yx as possible, since it is 'lost'.
dp3_run = f"DP3 msin=3c196-simulation.ms msout= steps=[applybeam]"
validate_call(dp3_run.split())
cmd = base_cmd + " -diagonal-visibilities 3c196-simulation.ms"
validate_call(cmd.split())
check_image_pixel(
i_source_pos, 1.0, "facet-dual-corrections-image-pb.fits"
)
def test_full_jones_facet_corrections(
self, model_file_fixture, region_file_fixture
):
# Perform simple solve to get a hdf5 parm file
solution_file = "full_jones_correction_solutions.h5"
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.mode=fulljones ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.maxiter=1"
validate_call(dp3_run.split())
with h5py.File(solution_file, "a") as table:
solset = table["sol000"]
n_directions = solset["amplitude000/val"].shape[3]
for i in range(0, n_directions):
# times, freq, ant, dir, pol
solset["amplitude000/val"][:, :, :, i, :] = [
0,
i + 2,
i + 2,
0,
]
solset["phase000/val"][:, :, :, i, :] = [-0.1, 0.1, -0.2, 0.15]
solset["amplitude000/weight"][:] = 1
solset["phase000/weight"][:] = 1
dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.usebeammodel=True h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=fulljones h5parmpredict.applycal.soltab=[amplitude000,phase000]"
validate_call(dp3_run.split())
wsclean_run = f"""{tcf.WSCLEAN} -name full-jones-facet-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-apply-facet-solutions {solution_file} amplitude000,phase000 -size 2500 2500
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8 -nmiter 1
-maxuvw-m 20000 -no-update-model-required -pol iquv -join-polarizations
3c196-simulation.ms"""
validate_call(wsclean_run.split())
check_image_pixel(
i_source_pos, 1.0, "full-jones-facet-corrections-I-image-pb.fits"
)
check_image_pixel(
q_source_pos, 1.0, "full-jones-facet-corrections-Q-image-pb.fits"
)
check_image_pixel(
negative_q_source_pos,
-1.0,
"full-jones-facet-corrections-Q-image-pb.fits",
)
check_image_pixel(
u_source_pos, 1.0, "full-jones-facet-corrections-U-image-pb.fits"
)
check_image_pixel(
v_source_pos, 1.0, "full-jones-facet-corrections-V-image-pb.fits"
)
|