File: long_system_checks.py

package info (click to toggle)
wsclean 3.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,296 kB
  • sloc: cpp: 129,246; python: 22,066; sh: 360; ansic: 230; makefile: 185
file content (880 lines) | stat: -rw-r--r-- 42,259 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
import glob
import os
import sys
from wsgiref import validate

import h5py
import numpy as np
import pytest
from astropy.io import fits
from utils import assert_taql, compute_rms, validate_call

# Append current directory to system path in order to import testconfig
sys.path.append(".")

# Import configuration variables as test configuration (tcf)
import config_vars as tcf

"""
Test script containing a collection of wsclean commands, tested on big MWA/SKA
measurement sets. Tests contained in this file can be invoked via various routes:

- execute "make longsystemcheck"  in your build directory
- execute "[python3 -m] pytest [OPTIONS] source/long_system_checks.py::TestLongSystem::<test_name.py>" in your build/tests/python directory
"""


def name(name: str):
    return os.path.join(tcf.RESULTS_DIR, name)


"""
Checks if a specified pixel in a fits file is within 0.03 units
of the given expected value.
"""


def check_image_pixel(position, expected_value, filename):
    with fits.open(filename) as image:
        value = image[0].data[position]
    assert expected_value - 0.03 < value < expected_value + 0.03


def set_test_gains_in_solution_file(solution_file):
    with h5py.File(solution_file, "a") as table:
        solset = table["sol000"]
        # times, freq, ant, dir, pol
        for i in range(0, 5):
            if solset["amplitude000/val"].ndim == 5:
                solset["amplitude000/val"][:, :, :, i, :] = i + 2
                solset["phase000/val"][:, :, :, i, :] = 0
            else:
                solset["amplitude000/val"][:, :, :, i] = i + 2
                solset["phase000/val"][:, :, :, i] = 0
        solset["amplitude000/weight"][:] = 1
        solset["phase000/weight"][:] = 1


@pytest.fixture
def model_file_fixture():
    model_3c196 = """Format = Name, Patch, Type, Ra, Dec, I, Q, U, V, SpectralIndex, LogarithmicSI, ReferenceFrequency='150.e6', MajorAxis, MinorAxis, Orientation
,A,POINT, 08:13:36.0, 48.13.03.000,
,B,POINT, 08:23:36.0, 48.13.03.000,
,C,POINT, 08:03:36.0, 48.13.03.000,
,D,POINT, 08:13:36.0, 49.45.00.000,
,E,POINT, 08:13:36.0, 47.15.00.000,
3c196, A, POINT, 08:13:36.0, 48.13.03.000, 0, 1, 0, 0, [0.0], false, , , ,
left, B, POINT, 08:23:36.0, 48.13.03.000, 0, 0, 1, 0, [0.0], false, , , ,
right, C, POINT, 08:03:36.0, 48.13.03.000, 0, 0, 0, 1, [0.0], false, , , ,
top, D, POINT, 08:13:36.0, 49.45.00.000, 1, 0, 0, 0, [0.0], false, , , ,
bottom, E, POINT, 08:13:36.0, 47.15.00.000, 0, -1, 0, 0, [0.0], false, , , ,
"""
    with open("testmodel.txt", "w") as f:
        f.write(model_3c196)


@pytest.fixture
def region_file_fixture():
    # Created using:
    # ds9_facet_generator.py --h5 out.h5 --ms LOFAR_3C196.ms/ --imsize 2500 --pixelscale 600 --outputfile 3c196-with-5-facets.reg
    # The h5 parm can be created with Dp3, e.g.:
    # DP3 msin=3c196-simulation.ms/ msout=test.ms msout.overwrite=True steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm=out.h5 ddecal.solint=100 ddecal.mode=scalar ddecal.solveralgorithm=directioniterative
    facets_3c196 = """# Region file format: DS9 version 4.1
global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1
fk5

polygon(124.65026,47.72693,124.65027,48.97713,122.14973,48.97713,122.14974,47.72693)
polygon(170.51499,-18.67893,242.70949,37.18997,245.26832,39.29522,124.65027,48.97713,124.65026,47.72693,156.25106,-22.65241)
polygon(4.05193,37.22353,76.33129,-18.69386,90.54899,-22.65230,122.14974,47.72693,122.14973,48.97713,1.53191,39.29548)
polygon(1.53191,39.29548,122.14973,48.97713,124.65027,48.97713,245.26832,39.29522)
polygon(156.25106,-22.65241,124.65026,47.72693,122.14974,47.72693,90.54899,-22.65230)
"""
    with open("3c196-with-5-facets.reg", "w") as f:
        f.write(facets_3c196)


# Dimensions are pol, freq, y, x
i_source_pos = (0, 0, 1802, 1250)
q_source_pos = (0, 0, 1250, 1250)
negative_q_source_pos = (0, 0, 902, 1250)
u_source_pos = (0, 0, 1260, 651)
v_source_pos = (0, 0, 1260, 1850)


@pytest.mark.usefixtures("prepare_large_ms")
class TestLongSystem:
    """
    Collection of long system tests.
    """

    def test_dirty_image(self):
        # Make dirty image
        s = f"{tcf.WSCLEAN} -name {name('test-dirty')} {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_clean_rectangular_unpadded_image(self):
        # Clean a rectangular unpadded image
        s = f"{tcf.WSCLEAN} -name {name('clean-rectangular')} -padding 1 -local-rms \
              -auto-threshold 5 -mgain 0.8 -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_automask_multiscale_clean(self):
        # Auto-masked multi-scale clean
        s = f"{tcf.WSCLEAN} -name {name('multiscale-automasked')} -auto-threshold 0.5 -auto-mask 3 \
              -mgain 0.8 -multiscale -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multiple_intervals(self):
        # Multiple intervals
        s = f"{tcf.WSCLEAN} -name {name('intervals')} -intervals-out 3 \
            {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multiple_intervals_and_channels(self):
        # Multiple intervals + multiple channels with some cleaning
        s = f"{tcf.WSCLEAN} -name {name('intervals-and-channels')} -intervals-out 3 \
            -channels-out 2 -niter 1000 -mgain 0.8 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multiple_intervals_and_facets(self):
        # Multiple intervals + multiple facets with some cleaning
        s_base = f"{tcf.WSCLEAN} -name {name('intervals-and-facets')} -intervals-out 3 \
            -facet-regions {tcf.FACETFILE_4FACETS}"
        s = f"{s_base} -niter 1000 -mgain 0.8 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        validate_call(s.split())

        # Run predict, using the model generated above.
        s = f"{s_base} -predict {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multifrequency_hogbom(self):
        # Multi-frequency Högbom clean, no parallel gridding
        s = f"{tcf.WSCLEAN} -name {name('mfhogbom')} -channels-out 4 -join-channels -auto-threshold 3 \
            -mgain 0.8 -niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multifrequency_without_joining_pol(self):
        # Multi-frequency clean, no joining of pols (reproduces bug #128)
        s = f"{tcf.WSCLEAN} -name {name('mf-no-join-pol')} -pol iv -channels-out 2 -join-channels -niter 1 -interval 10 13 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_multifrequency_hogbom_spectral_fit(self):
        # Multi-frequency Högbom clean with spectral fitting
        s = f"{tcf.WSCLEAN} -name {name('mfhogbom-fitted')} -channels-out 4 -join-channels -parallel-gridding 4 \
           -fit-spectral-pol 2 -auto-threshold 3 -mgain 0.8 \
               -niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_mutifrequency_multiscale_parallel(self):
        # Multi-frequency multi-scale clean with spectral fitting, pallel gridding & cleaning
        s = f"{tcf.WSCLEAN} -name {name('mfms-fitted')} -channels-out 4 -join-channels -parallel-gridding 4 \
             -parallel-deconvolution 1000 -fit-spectral-pol 2 -multiscale -auto-threshold 0.5 \
                  -auto-mask 3 -mgain 0.8 -niter 1000000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_save_components(self):
        test_name = name("mfms-components")

        # Remove old component list if it exists
        component_file = test_name + "-sources.txt"
        if os.path.exists(component_file):
            os.remove(component_file)

        # Save the list of components
        s = f"{tcf.WSCLEAN} -name {test_name} -save-source-list -channels-out 4 \
            -join-channels -parallel-gridding 4 -fit-spectral-pol 2 \
                -auto-threshold 0.5 -auto-mask 3 -mgain 0.8 -niter 1000000 \
                    -multiscale -parallel-deconvolution 1000 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        validate_call(s.split())

        # Check whether source files is generated
        assert os.path.isfile(component_file)

    def test_linear_joined_polarizations(self):
        # Linear joined polarizations with 4 joined channels
        s = f"{tcf.WSCLEAN} -name {name('linearpol')} -niter 1000000 -auto-threshold 3.0 \
             -pol XX,YY,XY,YX -join-polarizations -join-channels -mgain 0.85 \
                 -channels-out 4 -parallel-gridding 16 -gridder wstacking {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_two_timesteps(self):
        # Image two timesteps
        s = f"{tcf.WSCLEAN} -name {name('two-timesteps')} -niter 1000000 -auto-threshold 3.0 \
            -intervals-out 2 -interval 20 22 -mgain 0.85 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_stop_on_negative_components(self):
        # Stop on negative components
        s = f"{tcf.WSCLEAN} -name {name('stop-on-negatives')} -stop-negative -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_save_imaging_weights(self):
        s = f"{tcf.WSCLEAN} -name {name('store-imaging-weights')} -no-reorder -store-imaging-weights {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    @pytest.mark.parametrize(
        "gridder, test_name",
        (["wstacking", "shift-ws"], ["wgridder", "shift-wg"]),
    )
    def test_shift_image(self, gridder, test_name):
        # Shift the image with w-stacking and w-gridder gridder
        s = f"{tcf.WSCLEAN} -gridder {gridder} -name {name(test_name)} -mgain 0.8 -auto-threshold 5 -niter 1000000 -make-psf {tcf.DIMS_RECTANGULAR} -shift 08h09m20s -39d06m54s -no-update-model-required {tcf.MWA_MS}"
        validate_call(s.split())

    def test_shifted_source_list(self):
        # Shift the image and check coordinates in source list
        s = f"{tcf.WSCLEAN} -name {name('shifted-source-list')} -niter 1 {tcf.DIMS_RECTANGULAR} -shift 08h09m20s -39d06m54s -save-source-list {tcf.MWA_MS}"
        validate_call(s.split())
        source_file = f"{name('shifted-source-list')}-sources.txt"
        assert os.path.isfile(source_file)
        with open(source_file) as f:
            lines = f.readlines()
            # There should be a header line and a single source line in the file
            assert len(lines) == 2
            # 3rd and 4th column contain ra and dec
            cols = lines[1].split(",")
            assert len(cols) >= 4
            ra_str = cols[2]
            dec_str = cols[3]
            assert ra_str[0:5] + " " + dec_str[0:6] == "07:49 -44.12"

    def test_missing_channels_in_deconvolution(self):
        # The test set has some missing MWA subbands. One MWA subband is 1/24 of the data (32/768 channels), so
        # by imaging with -channels-out 24, it is tested what happens when an output channel has no data.
        s = f"{tcf.WSCLEAN} -name {name('missing-channels-in-deconvolution')} -gridder wgridder {tcf.DIMS_LARGE} -baseline-averaging 2.0 -no-update-model-required -niter 150000 -auto-threshold 2.0 -auto-mask 5.0 -mgain 0.9 -channels-out 24 -join-channels -fit-spectral-pol 4 {tcf.MWA_MS}"
        validate_call(s.split())

    def test_grid_with_beam(self):
        """Requires that WSClean is compiled with IDG and EveryBeam"""
        name = "idg-beam"

        # Remove existing component files if present
        for source_file in ["sources", "sources-pb"]:
            component_file = name + "-" + source_file + ".txt"
            if os.path.exists(component_file):
                os.remove(component_file)

        s = f"{tcf.WSCLEAN} -name {name} -use-idg -grid-with-beam -save-source-list -mgain 0.8 -auto-threshold 5 -niter 1000000 -interval 10 14 {tcf.DIMS_LARGE} -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())
        for image_type in [
            "psf",
            "beam",
            "dirty",
            "image",
            "image-pb",
            "model",
            "model-pb",
            "residual",
            "residual-pb",
        ]:
            image_name = name + "-" + image_type + ".fits"
            assert os.path.isfile(image_name)
        # Check whether source files are generated
        for source_file in ["sources", "sources-pb"]:
            assert os.path.isfile(name + "-" + source_file + ".txt")

    def test_two_facets(self):
        # Apply the facet to the image
        s = f"{tcf.WSCLEAN} -name {name('two-facets')} -facet-regions {tcf.FACETFILE_2FACETS} \
            {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    def test_nfacets_pol_xx_yy(self):
        # Request two polarizations on approximately 25 facets
        s = f"{tcf.WSCLEAN} -name {name('nfacets-XX_YY')} -pol XX,YY \
            -facet-regions {tcf.FACETFILE_NFACETS} {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
        validate_call(s.split())

    @pytest.mark.parametrize("npol", (2, 4))
    def test_facet_h5solution(self, npol):
        # Test facet-based imaging and applying h5 solutions
        # where the polarization axis in the h5 file has size npol
        h5download = (
            f"wget -N -q {tcf.WSCLEAN_DATA_URL}/mock_soltab_{npol}pol.h5"
        )
        validate_call(h5download.split())

        name = f"facet-h5-{npol}pol"
        s = f"{tcf.WSCLEAN} -gridder wgridder -name {name} -apply-facet-solutions mock_soltab_{npol}pol.h5 ampl000,phase000 -pol xx,yy -facet-regions {tcf.FACETFILE_4FACETS} {tcf.DIMS_LARGE} -join-polarizations -interval 10 14 -niter 1000000 -auto-threshold 5 -mgain 0.8 {tcf.MWA_MS}"
        validate_call(s.split())

        # Check for output images
        assert os.path.isfile(f"{name}-psf.fits")
        for pol in ["XX", "YY"]:
            trunk = name + "-" + pol
            for image_type in [
                "image",
                "image-pb",
                "dirty",
                "model",
                "model-pb",
                "residual",
                "residual-pb",
            ]:
                image_name = trunk + "-" + image_type + ".fits"
                assert os.path.isfile(image_name)

    def test_facet_beam(self):
        # Test facet beam, using 4 polarizations
        s = f"{tcf.WSCLEAN} -name {name('nfacets-iquv-facet-beam')} -interval 10 14 -apply-facet-beam -pol iquv -join-polarizations \
            -facet-regions {tcf.FACETFILE_NFACETS} {tcf.DIMS_RECTANGULAR} \
                -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())

    def test_mpi_join_channels(self):
        # Test wsclean-mp command
        s = f"mpirun {tcf.WSCLEAN_MP} -name {name('mpi-join')} {tcf.DIMS_RECTANGULAR} -channels-out 2 -join-channels -niter 1000000 -mgain 0.8 -auto-threshold 5 -multiscale -no-update-model-required {tcf.MWA_MS}"
        validate_call(s.split())

    def test_mpi_split_channels(self):
        s = f"mpirun {tcf.WSCLEAN_MP} -name {name('mpi-split')} {tcf.DIMS_RECTANGULAR} -channels-out 2 -niter 1000000 -mgain 0.8 -auto-threshold 5 -multiscale -no-update-model-required {tcf.MWA_MS}"
        validate_call(s.split())

    def test_idg_with_reuse_psf(self):
        # Test for issue #81: -reuse-psf gives segmentation fault in IDG
        # First make sure input files exist:
        s = f"{tcf.WSCLEAN} -name {name('idg-reuse-psf-A')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())
        # Model image A is copied to B-model-pb corrected image, to avoid
        # issues due to NaN values in the A-model-pb.fits file.
        # As such, this test is purely illlustrative.
        os.rename(
            name("idg-reuse-psf-A") + "-model.fits",
            name("idg-reuse-psf-B") + "-model-pb.fits",
        )
        os.rename(
            name("idg-reuse-psf-A") + "-beam.fits",
            name("idg-reuse-psf-B") + "-beam.fits",
        )
        # Now continue:
        s = f"{tcf.WSCLEAN} -name {name('idg-reuse-psf-B')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -continue -reuse-psf {name('idg-reuse-psf-A')} -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())

    @pytest.mark.skip(
        reason="-reuse-dirty and -grid-with-beam options conflict due to average beam computation (AST-995)"
    )
    def test_idg_with_reuse_dirty(self):
        # Test for issue #80: -reuse-dirty option fails (#80)
        # First make sure input files exist:
        s = f"{tcf.WSCLEAN} -name {name('idg-reuse-dirty-A')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())
        # Model image A is copied to B-model-pb corrected image, to avoid
        # issues due to NaN values in the A-model-pb.fits file.
        # As such, this test is purely illlustrative.
        os.rename(
            name("idg-reuse-dirty-A") + "-model.fits",
            name("idg-reuse-dirty-B") + "-model-pb.fits",
        )
        # Now continue:
        s = f"{tcf.WSCLEAN} -name {name('idg-reuse-dirty-B')} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu -grid-with-beam -interval 10 14 -mgain 0.8 -niter 1 -continue -reuse-dirty {name('idg-reuse-dirty-A')} -mwa-path . {tcf.MWA_MS}"
        validate_call(s.split())

    def test_masked_parallel_deconvolution(self):
        # Test for two issues:
        # - issue #96: Source edges in restored image after parallel deconvolution
        # - issue #31: Model images are masked in parallel cleaning
        # The result of this test should be a model image with an unmasked Gaussian and a
        # properly residual. Before the fix, the Gaussian was masked in the model, and
        # therefore only a single pixel was visible, and residual would only be updated
        # on the place of the pixel.

        # First create a mask image with one pixel set:
        s = f"{tcf.WSCLEAN} -name {name('masked-parallel-deconvolution-prepare')} -size 256 256 -scale 1amin -interval 10 14 -niter 1 {tcf.MWA_MS}"
        validate_call(s.split())
        # Now use this as a mask, and force a Gaussian on the position
        s = f"{tcf.WSCLEAN} -name {name('masked-parallel-deconvolution')} -size 256 256 -scale 1amin -fits-mask {name('masked-parallel-deconvolution-prepare')}-model.fits -interval 10 14 -niter 10 -parallel-deconvolution 128 -multiscale -multiscale-scales 10 {tcf.MWA_MS}"
        validate_call(s.split())
        for f in glob.glob(
            f"{name('masked-parallel-deconvolution-prepare')}*.fits"
        ):
            os.remove(f)

    @pytest.mark.parametrize("use_beam", (False, True))
    def test_idg_predict(self, use_beam):
        # Check whether primary beam corrected image is used in -predict
        # First make sure model images exist
        run_name = name("idg-predict")
        grid_with_beam = "-grid-with-beam" if use_beam else ""
        s0 = f"{tcf.WSCLEAN} -name {run_name} {tcf.DIMS_LARGE} -use-idg -idg-mode cpu {grid_with_beam} -interval 10 12 -mgain 0.8 -niter 1 -mwa-path . {tcf.MWA_MS}"
        validate_call(s0.split())

        # Remove the model image that shouldn't be needed for the predict
        if use_beam:
            # Move model.fits to model-pb.fits file. Formally, the model-pb.fits file
            # should be used directly, but as this file can contain NaN values, a predict run
            # can bail out on these NaN values.
            os.rename(f"{run_name}-model.fits", f"{run_name}-model-pb.fits")

        s1 = f"{tcf.WSCLEAN} -name {run_name} {tcf.DIMS_LARGE} -predict -use-idg -idg-mode cpu {grid_with_beam} -interval 10 12 -mwa-path . {tcf.MWA_MS}"
        validate_call(s1.split())

    def test_catch_invalid_channel_selection(self):
        # Invalid selection: people often forget the second value of -channel-range is an open interval end (i.e. excluded the value itself).
        s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        with pytest.raises(Exception):
            validate_call(s.split())

    def test_catch_invalid_channel_selection_with_gaps(self):
        s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -gap-channel-division -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        with pytest.raises(Exception):
            validate_call(s.split())

    def test_catch_invalid_channel_selection_with_division(self):
        s = f"{tcf.WSCLEAN} -name {name('test-caught-bad-selection')} -channel-division-frequencies 145e6 -channels-out 256 -channel-range 0 255 {tcf.DIMS_LARGE} {tcf.MWA_MS}"
        with pytest.raises(Exception):
            validate_call(s.split())

    def test_multiband_no_mf_weighting(self):
        # Tests issue #105: Segmentation fault (core dumped), when grouping spectral windows + no-mf-weighting Master Branch
        # The issue was caused by invalid indexing into the BandData object.
        s = f"{tcf.WSCLEAN} -name {name('vla-multiband-no-mf')} -size 768 768 -scale 0.05arcsec -pol QU -mgain 0.85 -niter 1000 -auto-threshold 3 -join-polarizations -squared-channel-joining -no-update-model-required -no-mf-weighting {tcf.JVLA_MS}"
        validate_call(s.split())
        for f in glob.glob(f"{name('vla-multiband-no-mf')}*.fits"):
            os.remove(f)

    def test_spectrally_fitted_with_joined_polarizations(self):
        s = f"{tcf.WSCLEAN} -name {name('iv-jointly-fitted')} {tcf.DIMS_LARGE} -parallel-gridding 4 -channels-out 4 -join-channels -fit-spectral-pol 2 -pol i,v -join-polarizations -niter 1000 -auto-threshold 5 -multiscale -mgain 0.8 {tcf.MWA_MS}"
        validate_call(s.split())

    def test_direction_dependent_psfs(self):
        """Tests direction-dependent PSFs.
        Checks that the PSF generated which lies close to the source point is more similar to the dirty image than the one lying further away.
        """

        def get_peak_centered_normalized_subimage(img, subimage_size):
            """Get a subimage centered at the pixel with the heighest value
            Image is normalized by the heighest pixel value
            """
            # Get coordinates of the peak
            center_point_x, center_point_y = np.unravel_index(
                np.argmax(img, axis=None), img.shape
            )

            return (
                img[
                    center_point_x
                    - subimage_size // 2 : center_point_x
                    - subimage_size // 2
                    + subimage_size,
                    center_point_y
                    - subimage_size // 2 : center_point_y
                    - subimage_size // 2
                    + subimage_size,
                ]
                / img[center_point_x, center_point_y]
            )

        # Make template model image
        s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -no-reorder -size 4800 4800 -scale 5asec -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 {tcf.SKA_MS}"
        validate_call(s.split())

        # Fill model images with grid of point sources
        f_image = fits.open(name("DD-PSFs-image.fits"))
        f_beam = fits.open(name("DD-PSFs-beam.fits"))
        image_size = f_image[0].data.shape[-1]
        PSF_GRID_SIZE_1D = 3
        point_source_spacing = image_size // PSF_GRID_SIZE_1D
        position_range_1d = (
            point_source_spacing // 2
            + point_source_spacing * np.arange(PSF_GRID_SIZE_1D)
        )
        f_image[0].data[:] = 0.0
        for i in position_range_1d:
            for j in position_range_1d:
                f_image[0].data[0, 0, i, j] = 1.0 / f_beam[0].data[0, 0, i, j]
        f_image.writeto(name("DD-PSFs-model-pb.fits"), overwrite=True)

        # Predict visibilites using wsclean
        # predicted visibiliies are written to the MODEL_DATA column
        s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -no-reorder -predict -padding 1.2 -gridder idg -grid-with-beam  -beam-mode array_factor  -beam-aterm-update 120 {tcf.SKA_MS}"
        validate_call(s.split())

        # Location of a python implementation of a "deconvolution algorithm" that does
        # nothing except storing its input images to disk
        deconvolution_script = os.path.join(
            os.path.dirname(__file__), "test_deconvolution_write_input.py"
        )

        # Generate the regular (direction independent) psf
        s = f"{tcf.WSCLEAN} -name {name('NO-DD-PSFs')} -make-psf-only -data-column MODEL_DATA -no-reorder -size 4800 4800 -scale 5asec -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 {tcf.SKA_MS}"
        validate_call(s.split())

        # Generate dirty image and PSF_GRID_SIZE_1D x PSF_GRID_SIZE_1D direction-dependent PSFs
        s = f"{tcf.WSCLEAN} -name {name('DD-PSFs')} -data-column MODEL_DATA -parallel-deconvolution 1600 -no-reorder -size 4800 4800 -scale 5asec -mgain 0.8 -niter 10000000 -abs-threshold 10.0mJy -auto-mask 5.0 -weight briggs -1 -padding 1.2 -gridder idg -grid-with-beam -beam-mode array_factor -aterm-kernel-size 15 -beam-aterm-update 120 -dd-psf-grid 3 3 -nmiter 1 -python-deconvolution {deconvolution_script} {tcf.SKA_MS}"
        validate_call(s.split())

        # Check whether the restoring beam for dd-psf and regular imaging is the same
        reference_header = fits.getheader(name("NO-DD-PSFs" + "-psf.fits"))
        ddpsf_header = fits.getheader(name("DD-PSFs" + "-image.fits"))
        assert np.isclose(
            reference_header["BMAJ"], ddpsf_header["BMAJ"], rtol=1e-3, atol=0.0
        )
        assert np.isclose(
            reference_header["BMIN"], ddpsf_header["BMIN"], rtol=1e-3, atol=0.0
        )
        assert np.isclose(
            reference_header["BPA"], ddpsf_header["BPA"], rtol=0.0, atol=0.1
        )

        SUBIMAGE_SIZE = 40
        dirty = get_peak_centered_normalized_subimage(
            fits.open(f"{name('DD-PSFs')}-dirty.fits")[0].data.squeeze()[
                :1600, :1600
            ],
            SUBIMAGE_SIZE,
        )
        psf_on_source = get_peak_centered_normalized_subimage(
            fits.open(f"{name('DD-PSFs')}-d0000-psf.fits")[0].data.squeeze(),
            SUBIMAGE_SIZE,
        )
        psf_off_source = get_peak_centered_normalized_subimage(
            fits.open(f"{name('DD-PSFs')}-d0004-psf.fits")[0].data.squeeze(),
            SUBIMAGE_SIZE,
        )

        # Verify that the psf generated at the location of a point source
        # is indeed a better match then a psf for a diffetent location
        expected_improvement_factor = 0.3
        assert np.sqrt(
            np.mean(np.square(dirty - psf_on_source))
        ) < expected_improvement_factor * np.sqrt(
            np.mean(np.square(dirty - psf_off_source))
        )

        num_psfs = PSF_GRID_SIZE_1D * PSF_GRID_SIZE_1D

        dirty = []
        psf = []

        # Load the psfs and dirty images that were stored by the dummy deconvolution algorithm
        for i in range(num_psfs):
            dirty.append(
                get_peak_centered_normalized_subimage(
                    np.load(
                        f"{name(f'test-deconvolution-write-input-dirty-{i}.npy')}"
                    )[0][0],
                    SUBIMAGE_SIZE,
                )
            )
            psf.append(
                get_peak_centered_normalized_subimage(
                    np.load(
                        f"{name(f'test-deconvolution-write-input-psf-{i}.npy')}"
                    )[0],
                    SUBIMAGE_SIZE,
                )
            )

        # Create a difference matrix of rms differences between all pairs of
        # dirty images and psfs.
        # The best match should occur when psf and dirty image index match,
        # i.e. on the diagonal of the difference matrix
        diff = np.zeros((num_psfs, num_psfs))
        for i in range(num_psfs):
            for j in range(num_psfs):
                diff[i, j] = np.sqrt(np.mean(np.square(dirty[i] - psf[j])))

        # Assert that for each dirty image, the best match is indeed the psf
        # with the same index
        assert all(np.argmin(diff, axis=0) == np.arange(num_psfs))

    def test_read_only_ms(self):
        chmod = f"chmod a-w -R {tcf.MWA_MS}"
        validate_call(chmod.split())
        try:
            # When "-no-update-model-required" is specified, processing a read-only measurement set should be possible.
            s = f"{tcf.WSCLEAN} -interval 10 20 -no-update-model-required -name {name('readonly-ms')} -auto-threshold 0.5 -auto-mask 3 \
                -mgain 0.95 -nmiter 2 -multiscale -niter 100000 {tcf.DIMS_RECTANGULAR} {tcf.MWA_MS}"
            validate_call(s.split())
        finally:
            chmod = f"chmod u+w -R {tcf.MWA_MS}"
            validate_call(chmod.split())

    def test_rr_polarization(self):
        s = f"{tcf.WSCLEAN} -pol rr -name {name('gmrt-rr')} -mgain 0.8 -niter 1 -size 512 512 -scale 10asec -gridder wstacking {tcf.GMRT_MS}"
        validate_call(s.split())
        rms_dirty = compute_rms(f"{name('gmrt-rr')}-dirty.fits")
        rms_image = compute_rms(f"{name('gmrt-rr')}-image.fits")
        # This was 0.215 when measured
        assert rms_dirty > 0.2 and rms_dirty < 0.22
        assert rms_dirty > rms_image

    def test_gmrt_beam(self):
        s = f"{tcf.WSCLEAN} -pol rr -name {name('gmrt-beam')} -apply-primary-beam -mgain 0.8 -size 512 512 -scale 10asec -gridder wstacking {tcf.GMRT_MS}"
        validate_call(s.split())
        rms_beam = compute_rms(f"{name('gmrt-beam')}-beam-0.fits")
        # This was measured at 0.6306
        assert rms_beam > 0.61 and rms_beam < 0.65
        rms_corrected = compute_rms(f"{name('gmrt-beam')}-image-pb.fits")
        # Measured at 0.45849
        assert rms_corrected > 0.42 and rms_corrected < 0.49

    def test_mf_full_polarization_beam_correction(self):
        prefix = name("mf-full-pol-beam")
        s = f"{tcf.WSCLEAN} -name {prefix} {tcf.DIMS_LARGE} -interval 10 12 -mwa-path . -channels-out 2 -apply-primary-beam -pol iquv -link-polarizations i -mgain 0.8 -niter 1000 -auto-threshold 6 -size 512 512 -scale 2amin {tcf.MWA_MS}"
        validate_call(s.split())

        assert os.path.isfile(prefix + "-0000-psf.fits")
        assert os.path.isfile(prefix + "-0001-psf.fits")
        assert os.path.isfile(prefix + "-MFS-psf.fits")
        for image_type in [
            "dirty",
            "image",
            "image-pb",
            "model",
            "model-pb",
            "residual",
            "residual-pb",
        ]:
            for pol_type in ["I", "Q", "U", "V"]:
                postfix = pol_type + "-" + image_type + ".fits"
                image_name = prefix + "-0000-" + postfix
                assert os.path.isfile(image_name)
                image_name = prefix + "-0001-" + postfix
                assert os.path.isfile(image_name)
                image_name = prefix + "-MFS-" + postfix
                assert os.path.isfile(image_name)

    def test_iquv_facet_beam_corrections(
        self, model_file_fixture, region_file_fixture
    ):
        # Dp3 is used to predict 5 sources with different IQUV values into the measurement set
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[predict] predict.sourcedb=testmodel.txt predict.usebeammodel=True"
        validate_call(dp3_run.split())

        # Run a I-only deconvolution with facets and beam
        base_cmd = f"""{tcf.WSCLEAN} -name facet-iquv-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-size 2500 2500 -scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8
-nmiter 1 -maxuvw-m 20000"""
        cmd = base_cmd + " 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-iquv-corrections-image-pb.fits"
        )

        # Check consistency of Stokes I predict
        predict_base_cmd = f"""{tcf.WSCLEAN} -predict -name facet-iquv-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-maxuvw-m 20000 -model-column PREDICTED_DATA"""
        predict_cmd = predict_base_cmd + " 3c196-simulation.ms"
        validate_call(predict_cmd.split())

        taql_cmd = f"select PREDICTED_DATA-MODEL_DATA FROM 3c196-simulation.ms WHERE sumsqr(UVW) < 20000*20000 && ANY(PREDICTED_DATA-MODEL_DATA > 1e-3)"
        assert_taql(taql_cmd, 0)

        # Run a full IQUV deconvolution
        cmd = base_cmd + " -pol iquv -join-polarizations 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-iquv-corrections-I-image-pb.fits"
        )
        check_image_pixel(
            q_source_pos, 1.0, "facet-iquv-corrections-Q-image-pb.fits"
        )
        check_image_pixel(
            negative_q_source_pos,
            -1.0,
            "facet-iquv-corrections-Q-image-pb.fits",
        )
        check_image_pixel(
            u_source_pos, 1.0, "facet-iquv-corrections-U-image-pb.fits"
        )
        check_image_pixel(
            v_source_pos, 1.0, "facet-iquv-corrections-V-image-pb.fits"
        )

        # Check consistency of IQUV predict
        predict_cmd = predict_base_cmd + " -pol iquv 3c196-simulation.ms"
        # TODO this is not working yet: issue with join-polarizations
        # validate_call(predict_cmd.split())
        # assert_taql(taql_cmd, 0)

        # Run a XX,YY deconvolution
        cmd = (
            base_cmd
            + " -pol xx,yy -join-polarizations -squared-channel-joining 3c196-simulation.ms"
        )
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-iquv-corrections-XX-image-pb.fits"
        )
        check_image_pixel(
            i_source_pos, 1.0, "facet-iquv-corrections-YY-image-pb.fits"
        )
        check_image_pixel(
            q_source_pos, 1.0, "facet-iquv-corrections-XX-image-pb.fits"
        )
        check_image_pixel(
            q_source_pos, -1.0, "facet-iquv-corrections-YY-image-pb.fits"
        )
        check_image_pixel(
            negative_q_source_pos,
            -1.0,
            "facet-iquv-corrections-XX-image-pb.fits",
        )
        check_image_pixel(
            negative_q_source_pos,
            1.0,
            "facet-iquv-corrections-YY-image-pb.fits",
        )

        # Check consistency of XXYY predict
        predict_cmd = (
            predict_base_cmd
            + " -pol xxyy -join-polarizations 3c196-simulation.ms"
        )
        # TODO this is not working yet: issue with join-polarizations
        # validate_call(predict_cmd.split())
        # assert_taql(taql_cmd, 0)

    def test_facet_scalar_corrections(
        self, model_file_fixture, region_file_fixture
    ):
        # Perform simple solve to get a hdf5 parm file
        solution_file = "scalar_correction_solutions.h5"
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.mode=scalar ddecal.maxiter=1"
        validate_call(dp3_run.split())

        set_test_gains_in_solution_file(solution_file)

        # Dp3 is used to predict 5 sources with different IQUV values into the measurement set
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=amplitude000"
        validate_call(dp3_run.split())

        base_cmd = f"""{tcf.WSCLEAN} -name facet-scalar-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -size 2500 2500
-apply-facet-solutions {solution_file} amplitude000,phase000
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8
-nmiter 1 -maxuvw-m 20000"""
        cmd = base_cmd + " -scalar-visibilities 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-scalar-corrections-image-pb.fits"
        )

        # These next calls check if a predict results in the same values as what the previous deconvolution run produced
        predict_cmd = f"""{tcf.WSCLEAN} -predict -name facet-scalar-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -size 2500 2500
-apply-facet-solutions {solution_file} amplitude000,phase000
-scale 10asec -maxuvw-m 20000 -model-column PREDICTED_DATA 3c196-simulation.ms"""
        validate_call(predict_cmd.split())

        taql_cmd = f"select PREDICTED_DATA-MODEL_DATA FROM 3c196-simulation.ms WHERE sumsqr(UVW) < 20000*20000 && ANY(PREDICTED_DATA-MODEL_DATA > 1e-3)"
        assert_taql(taql_cmd, 0)

    def test_iquv_facet_dual_corrections(
        self, model_file_fixture, region_file_fixture
    ):
        # Perform simple solve to get a hdf5 parm file
        solution_file = "dual_correction_solutions.h5"
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.maxiter=1"
        validate_call(dp3_run.split())

        set_test_gains_in_solution_file(solution_file)

        # Dp3 is used to predict 5 sources with different IQUV values into the measurement set
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.usebeammodel=True h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=amplitude000"
        validate_call(dp3_run.split())

        base_cmd = f"""{tcf.WSCLEAN} -name facet-dual-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-apply-facet-solutions {solution_file} amplitude000,phase000 -size 2500 2500
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8 -nmiter 1
-maxuvw-m 20000 -no-update-model-required"""
        cmd = base_cmd + " 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-dual-corrections-image-pb.fits"
        )

        cmd = base_cmd + " -pol iquv -join-polarizations 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-dual-corrections-I-image-pb.fits"
        )
        check_image_pixel(
            q_source_pos, 1.0, "facet-dual-corrections-Q-image-pb.fits"
        )
        check_image_pixel(
            negative_q_source_pos,
            -1.0,
            "facet-dual-corrections-Q-image-pb.fits",
        )
        check_image_pixel(
            u_source_pos, 1.0, "facet-dual-corrections-U-image-pb.fits"
        )
        check_image_pixel(
            v_source_pos, 1.0, "facet-dual-corrections-V-image-pb.fits"
        )

        # Prepare for applying solutions to diagonal (XX,YY) vis. To do so, first
        # apply the beam so that the element's projection effect are removed. For diagonal
        # visibilities, we want to have as little power in xy,yx as possible, since it is 'lost'.
        dp3_run = f"DP3 msin=3c196-simulation.ms msout= steps=[applybeam]"
        validate_call(dp3_run.split())

        cmd = base_cmd + " -diagonal-visibilities 3c196-simulation.ms"
        validate_call(cmd.split())

        check_image_pixel(
            i_source_pos, 1.0, "facet-dual-corrections-image-pb.fits"
        )

    def test_full_jones_facet_corrections(
        self, model_file_fixture, region_file_fixture
    ):
        # Perform simple solve to get a hdf5 parm file
        solution_file = "full_jones_correction_solutions.h5"
        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout= steps=[ddecal] ddecal.mode=fulljones ddecal.sourcedb=testmodel.txt ddecal.h5parm={solution_file} ddecal.solveralgorithm=directioniterative ddecal.maxiter=1"
        validate_call(dp3_run.split())

        with h5py.File(solution_file, "a") as table:
            solset = table["sol000"]
            n_directions = solset["amplitude000/val"].shape[3]
            for i in range(0, n_directions):
                # times, freq, ant, dir, pol
                solset["amplitude000/val"][:, :, :, i, :] = [
                    0,
                    i + 2,
                    i + 2,
                    0,
                ]
                solset["phase000/val"][:, :, :, i, :] = [-0.1, 0.1, -0.2, 0.15]
            solset["amplitude000/weight"][:] = 1
            solset["phase000/weight"][:] = 1

        dp3_run = f"DP3 msin={tcf.LOFAR_3C196_MS} msout=3c196-simulation.ms msout.overwrite=True steps=[h5parmpredict] h5parmpredict.sourcedb=testmodel.txt h5parmpredict.usebeammodel=True h5parmpredict.applycal.parmdb={solution_file} h5parmpredict.applycal.correction=fulljones h5parmpredict.applycal.soltab=[amplitude000,phase000]"
        validate_call(dp3_run.split())

        wsclean_run = f"""{tcf.WSCLEAN} -name full-jones-facet-corrections
-parallel-gridding 4 -facet-regions 3c196-with-5-facets.reg -apply-facet-beam
-apply-facet-solutions {solution_file} amplitude000,phase000 -size 2500 2500
-scale 10asec -taper-gaussian 1amin -niter 1000 -mgain 0.8 -nmiter 1
-maxuvw-m 20000 -no-update-model-required  -pol iquv -join-polarizations
3c196-simulation.ms"""
        validate_call(wsclean_run.split())

        check_image_pixel(
            i_source_pos, 1.0, "full-jones-facet-corrections-I-image-pb.fits"
        )
        check_image_pixel(
            q_source_pos, 1.0, "full-jones-facet-corrections-Q-image-pb.fits"
        )
        check_image_pixel(
            negative_q_source_pos,
            -1.0,
            "full-jones-facet-corrections-Q-image-pb.fits",
        )
        check_image_pixel(
            u_source_pos, 1.0, "full-jones-facet-corrections-U-image-pb.fits"
        )
        check_image_pixel(
            v_source_pos, 1.0, "full-jones-facet-corrections-V-image-pb.fits"
        )