1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
#ifndef WSCLEAN_WGRIDDER_SIMPLE_IMPL_H_
#define WSCLEAN_WGRIDDER_SIMPLE_IMPL_H_
#include "gridder_simple.h"
#include <complex>
#include <cstddef>
#include <vector>
#include "ducc0/wgridder/wgridder.h"
#include "ducc0/fft/fftnd_impl.h"
#include <LRUCache11.hpp>
#include "../gridding/msgridder.h"
using namespace ducc0;
/*
* This file contains the implementation of various template methods from @ref
* WGriddingGridder_Simple They are implemented here instead of directly in the
* header or a single source file in order to be able to instantiate them in two
* different source files. This is done because each instantiation must compile
* the entire class as well as ducc0, which is quite resource intensive even for
* a single compile. By breaking it into two source files, one for float and one
* for double we keep time and memory requirements more manageable and allow for
* better build parrelilisation.
*/
namespace wsclean {
template <typename NumT>
WGriddingGridder_Simple<NumT>::WGriddingGridder_Simple(
size_t width, size_t height, size_t width_t, size_t height_t,
double pixelSizeX, double pixelSizeY, double l_shift, double m_shift,
size_t nthreads, double epsilon, size_t verbosity, bool tuning)
: width_(width),
height_(height),
width_t_(width_t),
height_t_(height_t),
nthreads_(nthreads),
pixelSizeX_(pixelSizeX),
pixelSizeY_(pixelSizeY),
l_shift_(l_shift),
m_shift_(m_shift),
epsilon_(epsilon),
verbosity_(verbosity),
tuning_(tuning) {
MR_assert(verbosity <= 2, "verbosity must be 0, 1, or 2");
}
template <typename NumT>
size_t WGriddingGridder_Simple<NumT>::ConstantMemoryUsage() const {
// Storage for "grid": pessimistically assume an oversampling factor of 2
size_t constant = sigma_max * sigma_max * width_t_ * height_t_ *
sizeof(std::complex<float>);
// For prediction, we also need a copy of the dirty image
constant += width_t_ * height_t_ * sizeof(NumT); // trimmed dirty image
return constant;
}
template <typename NumT>
size_t WGriddingGridder_Simple<NumT>::PerVisibilityMemoryUsage() const {
// Storage for the indexing information is really hard to estimate ...
// it can go up to 8 bytes per visibility, but this is a really pathological
// scenario; should typically be below 1 byte/visibility
return 8; // Overestimation, but the best we can do here
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::InitializeInversion() {
img.assign(width_t_ * height_t_, 0);
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::AddInversionData(
size_t n_rows, size_t n_chan, const double *uvw, const double *freq,
const std::complex<float> *vis) {
const bool decreasing_freq = (n_chan > 1) && (freq[1] < freq[0]);
auto freq2(decreasing_freq
? cmav<double, 1>(freq + n_chan - 1, {n_chan}, {-1})
: cmav<double, 1>(freq, {n_chan}));
auto ms(decreasing_freq
? cmav<std::complex<float>, 2>(vis + n_chan - 1, {n_rows, n_chan},
{ptrdiff_t(n_chan), -1})
: cmav<std::complex<float>, 2>(vis, {n_rows, n_chan}));
AddInversionMs(n_rows, uvw, freq2, ms);
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::AddInversionDataWithCorrectionCallback(
GainMode mode, size_t n_polarizations, size_t n_rows, const double *uvws,
const double *frequencies, size_t n_channels,
const aocommon::BandData &selected_band,
const std::pair<size_t, size_t> *antennas,
const std::complex<float> *visibilities, const size_t *time_offsets,
MsGridder *gridder, size_t n_antenna) {
assert((selected_band.ChannelCount() <= 1) ||
(frequencies[1] >= frequencies[0]));
const cmav<double, 1> frequencies2(frequencies,
{selected_band.ChannelCount()});
// Construct a templated ms:
// VisibilityCallbackBuffer<mode, n_polarizations>
// populated with visibilities and other data and call AddInversionMs(n_rows,
// uvws, frequencies2, ms) on it.
AddInversionMs(mode, n_polarizations, n_rows, uvws, std::ref(frequencies2),
n_channels, std::ref(selected_band), antennas, visibilities,
time_offsets, gridder, n_antenna);
}
template <typename NumT>
template <typename... Params>
void WGriddingGridder_Simple<NumT>::AddInversionMs(GainMode mode,
Params... params) {
switch (mode) {
case GainMode::kXX: {
AddInversionMs<GainMode::kXX>(params...);
break;
}
case GainMode::kYY: {
AddInversionMs<GainMode::kYY>(params...);
break;
}
case GainMode::k2VisDiagonal: {
AddInversionMs<GainMode::k2VisDiagonal>(params...);
break;
}
case GainMode::kTrace: {
AddInversionMs<GainMode::kTrace>(params...);
break;
}
case GainMode::kFull: {
AddInversionMs<GainMode::kFull>(params...);
break;
}
}
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::FinalizeImage(double multiplicationFactor) {
for (auto &pix : img) pix *= multiplicationFactor;
}
template <typename NumT>
std::vector<float> WGriddingGridder_Simple<NumT>::RealImage() {
size_t dx = (width_ - width_t_) / 2;
size_t dy = (height_ - height_t_) / 2;
std::vector<float> image(width_ * height_,
std::numeric_limits<float>::quiet_NaN());
for (size_t i = 0; i < width_t_; ++i)
for (size_t j = 0; j < height_t_; ++j)
image[(i + dx) + (j + dy) * width_] = img[i * height_t_ + j];
return image;
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::InitializePrediction(
const float *image_data) {
size_t dx = (width_ - width_t_) / 2;
size_t dy = (height_ - height_t_) / 2;
img.resize(width_t_ * height_t_);
for (size_t i = 0; i < width_t_; ++i)
for (size_t j = 0; j < height_t_; ++j)
img[i * height_t_ + j] = image_data[(i + dx) + (j + dy) * width_];
}
template <typename NumT>
void WGriddingGridder_Simple<NumT>::PredictVisibilities(
size_t n_rows, size_t n_chan, const double *uvw, const double *freq,
std::complex<float> *vis) const {
cmav<double, 2> uvw2(uvw, {n_rows, 3});
bool decreasing_freq = (n_chan > 1) && (freq[1] < freq[0]);
auto freq2(decreasing_freq
? cmav<double, 1>(freq + n_chan - 1, {n_chan}, {-1})
: cmav<double, 1>(freq, {n_chan}));
auto ms(decreasing_freq
? vmav<std::complex<float>, 2>(vis + n_chan - 1, {n_rows, n_chan},
{ptrdiff_t(n_chan), -1})
: vmav<std::complex<float>, 2>(vis, {n_rows, n_chan}));
cmav<NumT, 2> tdirty(img.data(), {width_t_, height_t_});
cmav<float, 2> twgt(nullptr, {0, 0});
cmav<std::uint8_t, 2> tmask(nullptr, {0, 0});
if (!tuning_)
dirty2ms<NumT, NumT>(uvw2, freq2, tdirty, twgt, tmask, pixelSizeX_,
pixelSizeY_, epsilon_, true, nthreads_, ms, verbosity_,
true, false, sigma_min, sigma_max, -l_shift_,
-m_shift_);
else
dirty2ms_tuning<NumT, NumT>(uvw2, freq2, tdirty, twgt, tmask, pixelSizeX_,
pixelSizeY_, epsilon_, true, nthreads_, ms,
verbosity_, true, false, sigma_min, sigma_max,
-l_shift_, -m_shift_);
}
} // namespace wsclean
#endif // #ifndef WSCLEAN_WGRIDDER_SIMPLE_IMPL_H_
|