1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*
* Copyright (C) 2002,2003 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Moon.h"
#include "Inline.h"
#include <cmath>
using namespace std;
const double R = 6.378137E3;
CMoon::CMoon() :
m_az(0.0),
m_el(0.0),
m_ra(0.0),
m_dec(0.0),
m_lha(0.0),
m_gha(0.0),
m_lat(0.0),
m_lon(0.0),
m_ro(0.0),
m_mm(0.0),
m_dx(0.0),
m_frequency(1296.0)
{
}
CMoon::~CMoon()
{
}
void CMoon::findMoon(double dayNum)
{
/* This function determines the position of the moon, including
the azimuth and elevation headings, relative to the latitude
and longitude of the tracking station. This code was derived
from a Javascript implementation of the Meeus method for
determining the exact position of the Moon found at:
http://www.geocities.com/s_perona/ingles/poslun.htm. */
double jd = dayNum + 2444238.5;
double t = (jd - 2415020.0) / 36525.0;
double t2 = t * t;
double t3 =t2 * t;
double l1 = 270.434164 + 481267.8831 * t - 0.001133 * t2 + 0.0000019 * t3;
double m = 358.475833 + 35999.0498 * t - 0.00015 * t2 - 0.0000033 * t3;
double m1 = 296.104608 + 477198.8491 * t + 0.009192 * t2 + 0.0000144 * t3;
double d = 350.737486 + 445267.1142 * t - 0.001436 * t2 + 0.0000019 * t3;
double ff = 11.250889 + 483202.0251 * t - 0.003211 * t2 - 0.0000003 * t3;
double om = RAD(259.183275 - 1934.142 * t + 0.002078 * t2 + 0.0000022 * t3);
/* Additive terms */
double ss, ex;
l1 += 0.000233 * ::sin(RAD(51.2 + 20.2 * t));
ss = 0.003964 * ::sin(RAD(346.56 + 132.87 * t - 0.0091731 * t2));
l1 += ss + 0.001964 * ::sin(om);
m -= 0.001778 * ::sin(RAD(51.2 + 20.2 * t));
m1 += 0.000817 * ::sin(RAD(51.2 + 20.2 * t));
m1 += ss + 0.002541 * ::sin(om);
d += 0.002011 * ::sin(RAD(51.2 + 20.2 * t));
d += ss + 0.001964 * ::sin(om);
ff += ss - 0.024691 * ::sin(om);
ff -= 0.004328 * ::sin(om + RAD(275.05 - 2.3 * t));
ex = 1.0 - 0.002495 * t - 0.00000752 * t2;
om = RAD(om); // XXXXX
l1 = primeAngle(l1);
m = RAD(primeAngle(m));
m1 = RAD(primeAngle(m1));
d = RAD(primeAngle(d));
ff = RAD(primeAngle(ff));
om = primeAngle(om);
/* Ecliptic Longitude */
double l;
l = l1 + 6.28875 * ::sin(m1) + 1.274018 * ::sin(2.0 * d - m1) + 0.658309 * ::sin(2.0 * d);
l = l + 0.213616 * ::sin(2.0 * m1) - ex * 0.185596 * ::sin(m) - 0.114336 * ::sin(2.0 * ff);
l = l + 0.058793 * ::sin(2.0 * d - 2.0 * m1) + ex * 0.057212 * ::sin(2.0 * d - m - m1) + 0.05332 * ::sin(2.0 * d + m1);
l = l + ex * 0.045874 * ::sin(2.0 * d - m) + ex * 0.041024 * ::sin(m1 - m) - 0.034718 * ::sin(d);
l = l - ex * 0.030465 * ::sin(m + m1) + 0.015326 * ::sin(2.0 * d - 2.0 * ff) - 0.012528 * ::sin(2.0 * ff + m1);
l = l - 0.01098 * ::sin(2.0 * ff - m1) + 0.010674 * ::sin(4.0 * d - m1) + 0.010034 * ::sin(3.0 * m1);
l = l + 0.008548 * ::sin(4.0 * d - 2.0 * m1) - ex * 0.00791 * ::sin(m - m1 + 2.0 * d) - ex * 0.006783 * ::sin(2.0 * d + m);
l = l + 0.005162 * ::sin(m1 - d) + ex * 0.005 * ::sin(m + d) + ex * 0.004049 * ::sin(m1 - m + 2.0 * d);
l = l + 0.003996 * ::sin(2.0 * m1 + 2.0 * d) + 0.003862 * ::sin(4.0 * d) + 0.003665 * ::sin(2.0 * d - 3.0 * m1);
l = l + ex * 0.002695 * ::sin(2.0 * m1 - m) + 0.002602 * ::sin(m1 - 2.0 * ff - 2.0 * d) + ex * 0.002396 * ::sin(2.0 * d - m - 2.0 * m1);
l = l - 0.002349 * ::sin(m1 + d) + ex * ex * 0.002249 * ::sin(2.0 * d - 2.0 * m) - ex* 0.002125 * ::sin(2.0 * m1 + m);
l = l - ex * ex * 0.002079 * ::sin(2.0 * m) + ex * ex * 0.002059 * ::sin(2.0 * d - m1 - 2.0 * m) - 0.001773 * ::sin(m1 + 2.0 * d - 2.0 * ff);
l = l + ex * 0.00122 * ::sin(4.0 * d - m - m1) - 0.00111 * ::sin(2.0 * m1 + 2.0 * ff) + 0.000892 * ::sin(m1 - 3.0 * d);
l = l - ex * 0.000811 * ::sin(m + m1 + 2.0 * d) + ex * 0.000761 * ::sin(4.0 * d - m - 2.0 * m1) + ex * ex * 0.000717 * ::sin(m1 - 2.0 * m);
l = l + ex * ex * 0.000704 * ::sin(m1 - 2.0 * m -2.0 * d) + ex * 0.000693 * ::sin(m - 2.0 * m1 + 2.0 * d) + ex * 0.000598 * ::sin(2.0 * d - m - 2.0 * ff) + 0.00055 * ::sin(m1 + 4.0 * d);
l = l + 0.000538 * ::sin(4.0 * m1) + ex * 0.000521 * ::sin(4.0 * d - m) + 0.000486 * ::sin(2.0 * m1 - d);
l = l - 0.001595 * ::sin(2.0 * ff + 2.0 * d);
/* Ecliptic latitude */
double b;
b = 5.128189 * ::sin(ff) + 0.280606 * ::sin(m1 + ff) + 0.277693 * ::sin(m1 - ff) + 0.173238 * ::sin(2.0 * d - ff);
b = b + 0.055413 * ::sin(2.0 * d + ff - m1) + 0.046272 * ::sin(2.0 * d - ff - m1) + 0.032573 * ::sin(2.0 * d + ff);
b = b + 0.017198 * ::sin(2.0 * m1 + ff) + 9.266999e-03 * ::sin(2.0 * d + m1 - ff) + 0.008823 * ::sin(2.0 * m1 - ff);
b = b + ex*0.008247 * ::sin(2.0 * d - m - ff) + 0.004323 * ::sin(2.0 * d - ff - 2.0 * m1) + 0.0042 * ::sin(2.0 * d + ff + m1);
b = b + ex * 0.003372 * ::sin(ff - m - 2.0 * d) + ex * 0.002472 * ::sin(2.0 * d + ff - m - m1) + ex * 0.002222 * ::sin(2.0 * d + ff - m);
b = b + 0.002072 * ::sin(2.0 * d - ff - m - m1) + ex * 0.001877 * ::sin(ff - m + m1) + 0.001828 * ::sin(4.0 * d - ff - m1);
b = b - ex * 0.001803 * ::sin(ff + m) - 0.00175 * ::sin(3.0 * ff) + ex * 0.00157 * ::sin(m1 - m - ff) - 0.001487 * ::sin(ff + d) - ex * 0.001481 * ::sin(ff + m + m1) + ex * 0.001417 * ::sin(ff - m - m1) + ex * 0.00135 * ::sin(ff - m) + 0.00133 * ::sin(ff - d);
b = b + 0.001106 * ::sin(ff + 3.0 * m1) + 0.00102 * ::sin(4.0 * d - ff) + 0.000833 * ::sin(ff + 4.0 * d - m1);
b = b + 0.000781 * ::sin(m1 - 3.0 * ff) + 0.00067 * ::sin(ff + 4.0 * d - 2.0 * m1) + 0.000606 * ::sin(2.0 * d - 3.0 * ff);
b = b + 0.000597 * ::sin(2.0 * d + 2.0 * m1 - ff) + ex * 0.000492 * ::sin(2.0 * d + m1 - m - ff) + 0.00045 * ::sin(2.0 * m1 - ff - 2.0 * d);
b = b + 0.000439 * ::sin(3.0 * m1 - ff) + 0.000423 * ::sin(ff + 2.0 * d + 2.0 * m1) + 0.000422 * ::sin(2.0 * d - ff - 3.0 * m1);
b = b - ex * 0.000367 * ::sin(m + ff + 2.0 * d - m1) - ex * 0.000353 * ::sin(m + ff + 2.0 * d) + 0.000331 * ::sin(ff + 4.0 * d);
b = b + ex * 0.000317 * ::sin(2.0 * d + ff - m + m1) + ex * ex * 0.000306 * ::sin(2.0 * d - 2.0 * m - ff) - 0.000283 * ::sin(m1 + 3.0 * ff);
double w1 = 0.0004664 * ::cos(RAD(om));
double w2 = 0.0000754 * cos(RAD(om + 275.05 - 2.3 * t));
double bt = b * (1.0 - w1 - w2);
/* Parallax calculations */
double p;
p = 0.950724 + 0.051818 * ::cos(m1) + 0.009531 * ::cos(2.0 * d - m1) + 0.007843 * ::cos(2.0 * d) + 0.002824 * ::cos(2.0 * m1) + 0.000857 * ::cos(2.0 * d + m1) + ex * 0.000533 * ::cos(2.0 * d - m) + ex * 0.000401 * ::cos(2.0 * d - m - m1);
p = p + 0.000173 * ::cos(3.0 * m1) + 0.000167 * ::cos(4.0 * d - m1) - ex * 0.000111 * ::cos(m) + 0.000103 * ::cos(4.0 * d - 2.0 * m1) - 0.000084 * ::cos(2.0 * m1 - 2.0 * d) - ex * 0.000083 * ::cos(2.0 * d + m) + 0.000079 * ::cos(2.0 * d + 2.0 * m1);
p = p + 0.000072 * ::cos(4.0 * d) + ex * 0.000064 * ::cos(2.0 * d - m + m1) - ex * 0.000063 * ::cos(2.0 * d + m - m1);
p = p + ex * 0.000041 * ::cos(m + d) + ex * 0.000035 * ::cos(2.0 * m1 - m) - 0.000033 * ::cos(3.0 * m1 - 2.0 * d);
p = p - 0.00003 * ::cos(m1 + d) - 0.000029 * ::cos(2.0 * ff - 2.0 * d) - ex * 0.000029 * ::cos(2.0 * m1 + m);
p = p + ex * ex * 0.000026 * ::cos(2.0 * d - 2.0 * m) - 0.000023 * ::cos(2.0 * ff - 2.0 * d + m1) + ex * 0.000019 * ::cos(4.0 * d - m - m1);
b = RAD(bt);
double lm = RAD(l);
/* Convert ecliptic coordinates to equatorial coordinates */
double z, ob;
z = (jd - 2415020.5) / 365.2422;
ob = RAD(23.452294 - (0.46845 * z + 5.9e-07 * z * z) / 3600.0);
m_dec = ::asin(::sin(b) * ::cos(ob) + ::cos(b) * ::sin(ob) * ::sin(lm));
m_ra = ::acos(::cos(b) * ::cos(lm) / ::cos(m_dec));
if (lm > M_PI)
m_ra = 2.0 * M_PI - m_ra;
/* Find siderial time in radians */
double teg;
t = (jd - 2451545.0) / 36525.0;
teg = 280.46061837 + 360.98564736629 * (jd - 2451545.0) + (0.000387933 * t - t * t / 38710000.0) * t;
while (teg > 360.0) teg -= 360.0;
double th = fixAngle(RAD(teg) + m_lon);
double h = th - m_ra;
m_gha = RAD(teg) - m_ra;
if (m_gha < 0.0) m_gha += 2.0 * M_PI;
m_lha = m_gha + m_lon;
if (m_lha < 0.0) m_lha += 2.0 * M_PI;
m_az = ::atan2(::sin(h), ::cos(h) * ::sin(m_lat) - ::tan(m_dec) * ::cos(m_lat)) + M_PI;
m_el = ::asin(::sin(m_lat) * ::sin(m_dec) + ::cos(m_lat) * ::cos(m_dec) * ::cos(h));
m_ro = 0.996986 / (1.0 + 0.0549 * ::cos(m_mm + 0.10976 * ::sin(m_mm)));
double t1;
t1 = R * 1000.0;
t2 = 384401.0 * m_ro * 1000.0;
m_dx = ::sqrt(t2 * t2 + 2.0 * t1 * t2 * ::sin(m_el));
}
double CMoon::getAzimuth() const
{
return DEG(m_az);
}
double CMoon::getElevation() const
{
return DEG(m_el);
}
double CMoon::getRA() const
{
return DEG(m_ra);
}
double CMoon::getDec() const
{
return DEG(m_dec);
}
double CMoon::getLHA() const
{
return DEG(m_lha);
}
double CMoon::getGHA() const
{
return DEG(m_gha);
}
double CMoon::getDoppler() const
{
double t2 = 0.10976;
double t1 = m_mm + t2 + ::sin(m_mm);
double dmdt = 0.01255 * m_ro * m_ro * ::sin(t1) * (1.0 + t2 * ::cos(m_mm));
dmdt *= 4449.0;
t1 = R * 1000.0;
t2 = 384401.0 * m_ro * 1000.0;
double drdt1 = dmdt * (t2 + (t1 * ::sin(m_el))) / m_dx;
double dlhdt = 7.53125e-5 * (::sin(m_lha) * ::cos(m_dec) * ::cos(m_lat));
double dcMax = RAD(20.0);
double ddcdtMax = RAD(0.0000716);
double t3 = m_dec / dcMax;
if (t3 < 1.0) {
t3 = ::sin(t3);
double ddcdt = ddcdtMax * ::sqrt(1.0 - t3 * t3);
t3 = ddcdt * (::cos(m_dec) * ::sin(m_lat) - ::cos(m_lha) * ::sin(m_dec) * ::cos(m_lat));
} else {
t3 = 0.0;
}
double dsineldt = dlhdt + t3;
double drdt2 = t1 * t2 * dsineldt / m_dx;
double dv = drdt1 + drdt2;
return -dv * m_frequency / 299.810;
}
double CMoon::getPathLoss() const
{
return -17.37 * ::log10(m_ro);
}
double CMoon::getRange() const
{
return m_dx;
}
void CMoon::setLocation(double latitude, double longitude)
{
m_lat = RAD(latitude);
m_lon = RAD(longitude);
}
void CMoon::setFrequency(double frequency)
{
m_frequency = frequency;
}
double CMoon::fixAngle(double angle) const
{
/* This function reduces angles greater than
two pi by subtracting two pi from the angle */
while (angle > (2.0 * M_PI))
angle -= 2.0 * M_PI;
return angle;
}
double CMoon::primeAngle(double x) const
{
return x - 360.0 * ::floor(x / 360.0);
}
double CMoon::getDayNum(const wxDateTime& dateTime) const
{
dateTime.ToGMT(true);
int secs = dateTime.GetTicks();
int msecs = dateTime.GetMillisecond();
return ((double(secs) + 0.001 * double(msecs)) / 86400.0) - 3651.0;
}
|