1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*
* Worldvisions Weaver Software:
* Copyright (C) 1997-2002 Net Integration Technologies, Inc.
*
* Implementation of a WvPipe stream. WvPipes allow you to create a new
* process, attaching its stdin/stdout to a WvStream.
*
* See wvpipe.h for more information.
*/
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <signal.h>
#include <sys/wait.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <assert.h>
#include "wvpipe.h"
// this code is pretty handy for debugging, since 'netstat -nap' can't tell
// you the endpoints of a socketpair(), but it can tell you the name of a
// "real" Unix domain socket.
#if 0
#include "wvaddr.h"
static int socketpair(int d, int type, int protocol, int sv[2])
{
static int counter = 10;
int f1 = socket(PF_UNIX, SOCK_STREAM, protocol);
int f2 = socket(PF_UNIX, SOCK_STREAM, protocol);
WvString s("/tmp/sock%s", ++counter);
WvString s2("/tmp/sock%sb", counter);
WvUnixAddr a(s), a2(s2);
unlink(s);
unlink(s2);
bind(f1, a.sockaddr(), a.sockaddr_len());
bind(f2, a2.sockaddr(), a2.sockaddr_len());
listen(f1, 10);
connect(f2, a.sockaddr(), a.sockaddr_len());
socklen_t ll = a.sockaddr_len();
int f3 = accept(f1, a.sockaddr(), &ll);
close(f1);
sv[0] = f3;
sv[1] = f2;
return 0;
}
#endif
// The assorted WvPipe::WvPipe() constructors are described in wvpipe.h
WvPipe::WvPipe(const char *program, const char * const *argv,
bool writable, bool readable, bool catch_stderr,
int stdin_fd, int stdout_fd, int stderr_fd)
{
setup(program, argv, writable, readable, catch_stderr,
stdin_fd, stdout_fd, stderr_fd);
}
WvPipe::WvPipe(const char *program, const char * const *argv,
bool writable, bool readable, bool catch_stderr,
WvFDStream *stdin_str, WvFDStream *stdout_str,
WvFDStream *stderr_str)
{
int fd0 = 0, fd1 = 1, fd2 = 2;
if (stdin_str)
fd0 = stdin_str->getrfd();
if (stdout_str)
fd1 = stdout_str->getwfd();
if (stderr_str)
fd2 = stderr_str->getwfd();
setup(program, argv, writable, readable, catch_stderr, fd0, fd1, fd2);
}
WvPipe::WvPipe(const char *program, const char **argv,
bool writable, bool readable, bool catch_stderr,
WvFDStream *stdio_str)
{
if (stdio_str)
{
int rfd = stdio_str->getrfd(), wfd = stdio_str->getwfd();
setup(program, argv, writable, readable, catch_stderr,
rfd, wfd, wfd);
}
else
setup(program, argv, writable, readable, catch_stderr, 0, 1, 2);
}
void WvPipe::setup(const char *program, const char * const *argv,
bool writable, bool readable, bool catch_stderr,
int stdin_fd, int stdout_fd, int stderr_fd)
{
int socks[2];
int flags;
int waitfd;
int pid;
if (!program || !argv)
{
seterr(EINVAL);
return;
}
if (socketpair(AF_UNIX, SOCK_STREAM, 0, socks))
{
seterr(errno);
return;
}
fcntl(socks[0], F_SETFL, O_RDWR|O_NONBLOCK);
setfd(socks[0]);
pid = proc.fork(&waitfd);
if (!pid)
{
// child process
::close(socks[0]);
if (writable)
dup2(socks[1], 0); // writable means redirect child stdin
else if (stdin_fd == -1)
::close(0);
else
dup2(stdin_fd, 0);
if (readable)
dup2(socks[1], 1); // readable means we redirect child stdout
else if (stdout_fd == -1)
::close(1);
else
dup2(stdout_fd, 1);
if (catch_stderr)
dup2(socks[1], 2); // but catch_stderr does what you think
else if (stderr_fd == -1)
::close(2);
else
dup2(stderr_fd, 2);
/* never close stdin/stdout/stderr */
fcntl(0, F_SETFD, 0);
fcntl(1, F_SETFD, 0);
fcntl(2, F_SETFD, 0);
/* drop the O_NONBLOCK from stdin/stdout/stderr, it confuses
* some programs */
flags = fcntl(0, F_GETFL);
fcntl(0, F_SETFL, flags & ~O_NONBLOCK);
flags = fcntl(1, F_GETFL);
fcntl(1, F_SETFL, flags & ~O_NONBLOCK);
flags = fcntl(2, F_GETFL);
fcntl(2, F_SETFL, flags & ~O_NONBLOCK);
/* If we're not capturing any of these through the socket, it
* means that the child end of the socket will be closed right
* at the execvp, which is bad. If we set the close-on-exec to
* false, the child end of the socket will be closed when the
* child (or sub-) process exits. */
if (!writable && !readable && !catch_stderr)
fcntl(socks[1], F_SETFD, 0); // never close the socketpair
else
::close(socks[1]); // has already been duplicated
// this will often fail, but when it does work it is probably
// the Right Thing To Do (tm)
if (!readable && stdout_fd != 1)
{
setsid();
// Only on some OSes will we find TIOCSCTTY to set the controlling tty.
// On others, we need to use TCSETCTTY, but we are too lazy to implement that.
#ifdef TIOCSCTTY
ioctl(1, TIOCSCTTY, 1);
#else
# ifdef TCSETCTTY
# warning You should implement TCSETCTTY here. Thanks!
# endif
#endif
}
::close(waitfd);
// now run the program. If it fails, use _exit() so no destructors
// get called and make a mess.
execvp(program, (char * const *)argv);
_exit(242);
}
else if (pid > 0)
{
// parent process.
// now that we've forked, it's okay to close this fd if we fork again.
fcntl(socks[0], F_SETFD, 1);
::close(socks[1]);
}
else
{
::close(socks[0]);
::close(socks[1]);
return;
}
}
// send the child process a signal
void WvPipe::kill(int signum)
{
if (proc.running)
proc.kill(signum);
}
// wait for the child to die
int WvPipe::finish(bool wait_children)
{
shutdown(getwfd(), SHUT_WR);
close();
while (proc.running)
proc.wait(1000, wait_children);
return proc.estatus;
}
bool WvPipe::child_exited()
{
/* FIXME: bug in WvSubProc? */
proc.wait(0);
proc.wait(0);
return !proc.running;
}
// if child_exited(), return true if it died because of a signal, or
// false if it died due to a call to exit().
bool WvPipe::child_killed() const
{
int st = proc.estatus;
assert (WIFEXITED(st) || WIFSIGNALED(st));
return WIFSIGNALED(st);
}
// return the numeric exit status of the child (if it exited) or the
// signal that killed the child (if it was killed).
int WvPipe::exit_status()
{
/* FIXME: bug in WvSubProc? */
proc.wait(0);
proc.wait(0);
int st = proc.estatus;
assert (WIFEXITED(st) || WIFSIGNALED(st));
if (child_killed())
return WTERMSIG(st);
else
return WEXITSTATUS(st);
}
WvPipe::~WvPipe()
{
close();
}
// this is necessary when putting, say, sendmail through a WvPipe on the
// globallist so we can forget about it. We call nowrite() so that it'll
// get the EOF and then go away when it's done, but we need to read from it
// for it the WvPipe stop selecting true and get deleted.
void WvPipe::ignore_read(WvStream& s, void *userdata)
{
char c;
s.read(&c, 1);
}
|