1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/* [wxMaxima batch file version 1] [ DO NOT EDIT BY HAND! ]*/
/* [ Created with wxMaxima version 20.04.0-DevelopmentSnapshot ] */
/* [wxMaxima: title start ]
Fitting equations to real measurement data
[wxMaxima: title end ] */
/* [wxMaxima: comment start ]
One place Maxima can show its full power at is where symbolical mathematics that describes a phenomenon is used for understanding real measurement data.
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
As a first step normally the real measurement data is loaded from a .csv file using read_matrix:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
? read_matrix;
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
For the sake of generating a self-contained example we generate this data synthetically. For the first example a parabola with a bit of measurement noise might be a good start:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
fun1(x):=3*x^2-2*x+7;
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
time1:makelist(i,i,-10,10,.02)$
data1:transpose(
matrix(
time1,
makelist(fun1(i)+random(32.0)-16,i,time1)
)
)$
wxdraw2d(grid=true,xlabel="x",ylabel="y",
points(data1)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: section start ]
The general approach
[wxMaxima: section end ] */
/* [wxMaxima: comment start ]
Let's assume we have guessed that the curve might be something parabola-like:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
approach1:y=a*x^2+b*x+c;
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Maxima now offers a simple, but powerful curve fitter that guesses the parameters a,b and c for us:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
load("lsquares")$
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
lsquares_estimates_approximate(
lsquares_mse(
data1,[x,y],approach1
),
[a,b,c],
initial=[0,0,0]
);
params1:%[1];
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
In this example the "initial=" wasn't really necessary. But sometimes using the wrong starting point means that lsquares heads for the wrong local optimum of the problem.
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
rec1:subst(params1,approach1);
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
wxdraw2d(
grid=true,xlabel="x",ylabel="y",
color=red,key="Reconstructed",
explicit(rhs(rec1),x,-10,10),
color=blue,key="Original",
explicit(fun1,x,-10,10)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Besides lsquares_estimates_approximate the lsquares package also provides a command named lsquares_estimates that tries to find the exact optimum by running the problem through solve() before finding the answer numerically. But as it is always the case with computers if the problem that is to be solved is complex one does not know in advance how long it will take and if it ever will finish. lsquares_estimates_approximate doesn't have this drawback.
[wxMaxima: comment end ] */
/* [wxMaxima: section start ]
Dealing with non-evenly-spaced data
[wxMaxima: section end ] */
/* [wxMaxima: comment start ]
Sometimes the input data isn't evenly spaced.
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
The places with a higher density of samples have more weight when fitting data to the curves. So let's add an error to the place with the highest data density and see if we can cope with it.
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
time2:makelist(i^4*i/abs(i),i,-2,2,.02)$
data2:transpose(
matrix(
time2,
makelist(fun1(i)+random(4.0)-2+50*sin(i)/i,i,time2)
)
)$
wxdraw2d(grid=true,xlabel="x",ylabel="y",
points(data2),
yrange=[0,800]
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Since the biggest error occurs where we have the highest density of data the result of fitting the curve to this data directly will be suboptimal:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
lsquares_estimates_approximate(
lsquares_mse(
data2,[x,y],approach1
),
[a,b,c]
);
params2_1:%[1];
wxdraw2d(
grid=true,xlabel="x",ylabel="y",
color=red,key="Reconstructed",
explicit(rhs(subst(params2_1,approach1)),x,-10,10),
color=blue,key="Original",
explicit(fun1,x,-10,10)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: subsect start ]
Converting the data to a continuous curve
[wxMaxima: subsect end ] */
/* [wxMaxima: comment start ]
The interpol package allows to generate continuous and half-way smooth curves from any input data.
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
load("interpol")$
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
data2_cont:cspline(data2,'varname=x)$
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
wxdraw2d(
explicit(data2_cont,x,-10,10),
grid=true,xlabel="x",ylabel="y"
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: subsect start ]
Generating evenly-spaced samples from this curve
[wxMaxima: subsect end ] */
/* [wxMaxima: comment start ]
First, we generate the new data and time vector. As always, the fact that a subst() is necessary in this step is caused by a bug in makelist.
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
time_i:makelist(i,i,-10,10,.05)$
values2_i:makelist(subst(x=i,data2_cont),i,time_i)$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Now we generate a matrix of values lsquares can deal with:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
data2_i:float(transpose(matrix(time_i,values2_i)))$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
The result is a still noisy and distorted, but more evenly-spaced curve:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
wxdraw2d(
points(data2_i),
grid=true,xlabel="x",ylabel="y"
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Fitting this curve will yield a better result as the first attempt:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
lsquares_estimates_approximate(
lsquares_mse(
data2_i,[x,y],approach1
),
[a,b,c]
);
params2_2:%[1];
wxdraw2d(
grid=true,xlabel="x",ylabel="y",
color=red,key="Reconstructed",
explicit(rhs(subst(params2_2,approach1)),x,-10,10),
color=blue,key="Original",
explicit(fun1,x,-10,10)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: section start ]
Fitting data to a·exp(k·t)
[wxMaxima: section end ] */
/* [wxMaxima: comment start ]
The natural approach to fitting data to exponential curves would be:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
approach2:y=a*exp(k*t);
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Unfortunately it is hard to fit to experimental data to this approach in many ways, for example:
* One part of this curve results in low values. Even small measurement noise on this part will yield widely incorrect results for the curve parameters as the fitter is trying to model the noise, too, and as noise in nonlinear systems tends not to be averaged out completely.
* Another part of this curve contains very high values and is sensitive to even small changes in k. As the fitter wants to keep the overall error low it will therefore respect this part much more than the lower, more good-natured part of the curve.
* Starting from the wrong point and optimizing a and k in the direction that reduces the error most in each step might lead to a point that is far from being the solution
* and trying to use lsquares_estimates to find the ideal solution often leads to numbers that exceed the floating-point range (or exact numbers longer than the computer's memory).
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
A better approach is therefore to use Caruana's approach for fitting:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
approach2/a;
caruana:log(%);
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
This approach is much more good-natured for finding the parameters (that can then be substituted into approach2).
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
The problem with noise causing finding erroneous parameters is still valid, though, in this case. It can be partially eliminated by introducing a c_noise, as proposed by Guo.
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
lhs(approach2)=rhs(approach2+c_noise);
%-c_noise;
%/a;
approach_guo:log(%),logexpand=super;
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Additionally https://ieeexplore.ieee.org/document/5999593 offers an iterative method that allows to reduce the influence of noise in each step:
[wxMaxima: comment end ] */
/* [wxMaxima: section start ]
Using a different fitting algorithm
[wxMaxima: section end ] */
/* [wxMaxima: comment start ]
Maxima provides a second algorithm that often produces even better results, but is a bit more complicated to use. For example it requires us to manually compile a list of the errors we want to minimize. Let's do that for data2_i and approach1:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
approach1;
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
errval:lhs(approach1)-rhs(approach1);
my_mse:makelist(
subst(
[x=i[1],y=i[2]],
errval
),
i,args(data2_i)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Hints for understanding this construct:
* args() converts a matrix to a list of lists,
* The makelist() command steps through this list and for each data point assigns the list of the x and y value to i
* rhs() and lhs() extract the right hand side and the left hand side of an equation (the part right and left of the "=")
* and since we know which element in i means which variable we can use subst() in order to substitute the elements in i into errval, the equation that tells us how big the error in this point is.
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
The result is a list of error values, each in the following format:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
my_mse[1];
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Now let's load the package that contains the other fitter:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
load("minpack")$
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Fitting the data is simple:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
param_list:[a,b,c];
result:minpack_lsquares(my_mse,param_list,[1,1,1]);
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Converting the result into a list of equations is a bit more complicated:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
params_3:map(lambda([x],x[1]=x[2]),args(transpose(matrix(param_list,result[1]))));
/* [wxMaxima: input end ] */
/* [wxMaxima: comment start ]
Hints for understanding this line:
* Map runs a command on each element of a list
* We want to provide map with a command that converts something of the type "[a,3]" to an "a=3". But we won't re-use this command so there is no need to actually give this command a name. Therefore we use lambda() in order to create a name-less command with one parameter, x.
* args again converts a matrix to a list of lists and
* we need to convert our input data into a list in order to transpose it (which means: exchange the columns by rows and vice versa)
[wxMaxima: comment end ] */
/* [wxMaxima: comment start ]
The result isn't too bad, this time, neither:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
wxdraw2d(
grid=true,xlabel="x",ylabel="y",
color=red,key="Reconstructed",
explicit(rhs(subst(params_3,approach1)),x,-10,10),
color=blue,key="Original",
explicit(fun1,x,-10,10)
)$
/* [wxMaxima: input end ] */
/* [wxMaxima: section start ]
A third fitting algorithm
[wxMaxima: section end ] */
/* [wxMaxima: comment start ]
Maxima even offers a third fitting algorithm that is even able to understand constraints:
[wxMaxima: comment end ] */
/* [wxMaxima: input start ] */
? fmin_cobyla;
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
load("fmin_cobyla")$
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
fmin_cobyla(
lsquares_mse(
data1,[x,y],approach1
),
[a,b,c],
[0,0,0]
);
params5:%[1];
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
rec5:subst(params5,approach1);
/* [wxMaxima: input end ] */
/* [wxMaxima: input start ] */
wxdraw2d(
grid=true,xlabel="x",ylabel="y",
key="Measured data",color=gray,points_joined=true,line_type='dashes,point_type='none,
points(data1),
color=red,key="Reconstructed",
explicit(rhs(rec5),x,-10,10),
color=blue,key="Original",
explicit(fun1,x,-10,10)
)$
/* [wxMaxima: input end ] */
/* Old versions of Maxima abort on loading files that end in a comment. */
"Created with wxMaxima 20.04.0-DevelopmentSnapshot"$
|