1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
# -*- coding: utf-8 -*-
#----------------------------------------------------------------------------
# Name: oglmisc.py
# Purpose: Miscellaneous OGL support functions
#
# Author: Pierre Hjälm (from C++ original by Julian Smart)
#
# Created: 2004-05-08
# RCS-ID: $Id$
# Copyright: (c) 2004 Pierre Hjälm - 1998 Julian Smart
# Licence: wxWindows license
#----------------------------------------------------------------------------
import math
import wx
# Control point types
# Rectangle and most other shapes
CONTROL_POINT_VERTICAL = 1
CONTROL_POINT_HORIZONTAL = 2
CONTROL_POINT_DIAGONAL = 3
# Line
CONTROL_POINT_ENDPOINT_TO = 4
CONTROL_POINT_ENDPOINT_FROM = 5
CONTROL_POINT_LINE = 6
# Types of formatting: can be combined in a bit list
FORMAT_NONE = 0 # Left justification
FORMAT_CENTRE_HORIZ = 1 # Centre horizontally
FORMAT_CENTRE_VERT = 2 # Centre vertically
FORMAT_SIZE_TO_CONTENTS = 4 # Resize shape to contents
# Attachment modes
ATTACHMENT_MODE_NONE, ATTACHMENT_MODE_EDGE, ATTACHMENT_MODE_BRANCHING = 0, 1, 2
# Shadow mode
SHADOW_NONE, SHADOW_LEFT, SHADOW_RIGHT = 0, 1, 2
OP_CLICK_LEFT, OP_CLICK_RIGHT, OP_DRAG_LEFT, OP_DRAG_RIGHT = 1, 2, 4, 8
OP_ALL = OP_CLICK_LEFT | OP_CLICK_RIGHT | OP_DRAG_LEFT | OP_DRAG_RIGHT
# Sub-modes for branching attachment mode
BRANCHING_ATTACHMENT_NORMAL = 1
BRANCHING_ATTACHMENT_BLOB = 2
# logical function to use when drawing rubberband boxes, etc.
OGLRBLF = wx.INVERT
CONTROL_POINT_SIZE = 6
# Types of arrowhead
# (i) Built-in
ARROW_HOLLOW_CIRCLE = 1
ARROW_FILLED_CIRCLE = 2
ARROW_ARROW = 3
ARROW_SINGLE_OBLIQUE = 4
ARROW_DOUBLE_OBLIQUE = 5
# (ii) Custom
ARROW_METAFILE = 20
# Position of arrow on line
ARROW_POSITION_START = 0
ARROW_POSITION_END = 1
ARROW_POSITION_MIDDLE = 2
# Line alignment flags
# Vertical by default
LINE_ALIGNMENT_HORIZ = 1
LINE_ALIGNMENT_VERT = 0
LINE_ALIGNMENT_TO_NEXT_HANDLE = 2
LINE_ALIGNMENT_NONE = 0
# Format a string to a list of strings that fit in the given box.
# Interpret %n and 10 or 13 as a new line.
def FormatText(dc, text, width, height, formatMode):
i = 0
word = ""
word_list = []
end_word = False
new_line = False
while i < len(text):
if text[i] == "%":
i += 1
if i == len(text):
word += "%"
else:
if text[i] == "n":
new_line = True
end_word = True
i += 1
else:
word += "%" + text[i]
i += 1
elif text[i] in ["\012","\015"]:
new_line = True
end_word = True
i += 1
elif text[i] == " ":
end_word = True
i += 1
else:
word += text[i]
i += 1
if i == len(text):
end_word = True
if end_word:
word_list.append(word)
word = ""
end_word = False
if new_line:
word_list.append(None)
new_line = False
# Now, make a list of strings which can fit in the box
string_list = []
buffer = ""
for s in word_list:
oldBuffer = buffer
if s is None:
# FORCE NEW LINE
if len(buffer) > 0:
string_list.append(buffer)
buffer = ""
else:
if len(buffer):
buffer += " "
buffer += s
x, y = dc.GetTextExtent(buffer)
# Don't fit within the bounding box if we're fitting
# shape to contents
if (x > width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
# Deal with first word being wider than box
if len(oldBuffer):
string_list.append(oldBuffer)
buffer = s
if len(buffer):
string_list.append(buffer)
return string_list
def GetCentredTextExtent(dc, text_list, xpos = 0, ypos = 0, width = 0, height = 0):
if not text_list:
return 0, 0
max_width = 0
for line in text_list:
current_width, char_height = dc.GetTextExtent(line.GetText())
if current_width > max_width:
max_width = current_width
return max_width, len(text_list) * char_height
def CentreText(dc, text_list, xpos, ypos, width, height, formatMode):
if not text_list:
return
# First, get maximum dimensions of box enclosing text
char_height = 0
max_width = 0
current_width = 0
# Store text extents for speed
widths = []
for line in text_list:
current_width, char_height = dc.GetTextExtent(line.GetText())
widths.append(current_width)
if current_width > max_width:
max_width = current_width
max_height = len(text_list) * char_height
if formatMode & FORMAT_CENTRE_VERT:
if max_height < height:
yoffset = ypos - height / 2.0 + (height - max_height) / 2.0
else:
yoffset = ypos - height / 2.0
yOffset = ypos
else:
yoffset = 0.0
yOffset = 0.0
if formatMode & FORMAT_CENTRE_HORIZ:
xoffset = xpos - width / 2.0
xOffset = xpos
else:
xoffset = 0.0
xOffset = 0.0
for i, line in enumerate(text_list):
if formatMode & FORMAT_CENTRE_HORIZ and widths[i] < width:
x = (width - widths[i]) / 2.0 + xoffset
else:
x = xoffset
y = i * char_height + yoffset
line.SetX(x - xOffset)
line.SetY(y - yOffset)
def DrawFormattedText(dc, text_list, xpos, ypos, width, height, formatMode):
if formatMode & FORMAT_CENTRE_HORIZ:
xoffset = xpos
else:
xoffset = xpos - width / 2.0
if formatMode & FORMAT_CENTRE_VERT:
yoffset = ypos
else:
yoffset = ypos - height / 2.0
# +1 to allow for rounding errors
dc.SetClippingRegion(xpos - width / 2.0, ypos - height / 2.0, width + 1, height + 1)
for line in text_list:
dc.DrawText(line.GetText(), xoffset + line.GetX(), yoffset + line.GetY())
dc.DestroyClippingRegion()
def RoughlyEqual(val1, val2, tol = 0.00001):
return val1 < (val2 + tol) and val1 > (val2 - tol) and \
val2 < (val1 + tol) and val2 > (val1 - tol)
def FindEndForBox(width, height, x1, y1, x2, y2):
xvec = [x1 - width / 2.0, x1 - width / 2.0, x1 + width / 2.0, x1 + width / 2.0, x1 - width / 2.0]
yvec = [y1 - height / 2.0, y1 + height / 2.0, y1 + height / 2.0, y1 - height / 2.0, y1 - height / 2.0]
return FindEndForPolyline(xvec, yvec, x2, y2, x1, y1)
def CheckLineIntersection(x1, y1, x2, y2, x3, y3, x4, y4):
denominator_term = (y4 - y3) * (x2 - x1) - (y2 - y1) * (x4 - x3)
numerator_term = (x3 - x1) * (y4 - y3) + (x4 - x3) * (y1 - y3)
length_ratio = 1.0
k_line = 1.0
# Check for parallel lines
if denominator_term < 0.005 and denominator_term > -0.005:
line_constant = -1.0
else:
line_constant = float(numerator_term) / denominator_term
# Check for intersection
if line_constant < 1.0 and line_constant > 0.0:
# Now must check that other line hits
if (y4 - y3) < 0.005 and (y4 - y3) > -0.005:
k_line = (x1 - x3 + line_constant * (x2 - x1)) / (x4 - x3)
else:
k_line = (y1 - y3 + line_constant * (y2 - y1)) / (y4 - y3)
if k_line >= 0 and k_line < 1:
length_ratio = line_constant
else:
k_line = 1
return length_ratio, k_line
def FindEndForPolyline(xvec, yvec, x1, y1, x2, y2):
lastx = xvec[0]
lasty = yvec[0]
min_ratio = 1.0
for i in range(1, len(xvec)):
line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
lastx = xvec[i]
lasty = yvec[i]
if line_ratio < min_ratio:
min_ratio = line_ratio
# Do last (implicit) line if last and first doubles are not identical
if not (xvec[0] == lastx and yvec[0] == lasty):
line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
if line_ratio < min_ratio:
min_ratio = line_ratio
return x1 + (x2 - x1) * min_ratio, y1 + (y2 - y1) * min_ratio
def PolylineHitTest(xvec, yvec, x1, y1, x2, y2):
isAHit = False
lastx = xvec[0]
lasty = yvec[0]
min_ratio = 1.0
for i in range(1, len(xvec)):
line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
if line_ratio != 1.0:
isAHit = True
lastx = xvec[i]
lasty = yvec[i]
if line_ratio < min_ratio:
min_ratio = line_ratio
# Do last (implicit) line if last and first doubles are not identical
if not (xvec[0] == lastx and yvec[0] == lasty):
line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
if line_ratio != 1.0:
isAHit = True
return isAHit
def GraphicsStraightenLine(point1, point2):
dx = point2[0] - point1[0]
dy = point2[1] - point1[1]
if dx == 0:
return
elif abs(float(dy) / dx) > 1:
point2[0] = point1[0]
else:
point2[1] = point1[1]
def GetPointOnLine(x1, y1, x2, y2, length):
l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
if l < 0.01:
l = 0.01
i_bar = (x2 - x1) / l
j_bar = (y2 - y1) / l
return -length * i_bar + x2, -length * j_bar + y2
def GetArrowPoints(x1, y1, x2, y2, length, width):
l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
if l < 0.01:
l = 0.01
i_bar = (x2 - x1) / l
j_bar = (y2 - y1) / l
x3 = -length * i_bar + x2
y3 = -length * j_bar + y2
return x2, y2, width * -j_bar + x3, width * i_bar + y3, -width * -j_bar + x3, -width * i_bar + y3
def DrawArcToEllipse(x1, y1, width1, height1, x2, y2, x3, y3):
a1 = width1 / 2.0
b1 = height1 / 2.0
# Check that x2 != x3
if abs(x2 - x3) < 0.05:
x4 = x2
if y3 > y2:
y4 = y1 - math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
else:
y4 = y1 + math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
return x4, y4
# Calculate the x and y coordinates of the point where arc intersects ellipse
A = (1 / (a1 * a1))
B = ((y3 - y2) * (y3 - y2)) / ((x3 - x2) * (x3 - x2) * b1 * b1)
C = (2 * (y3 - y2) * (y2 - y1)) / ((x3 - x2) * b1 * b1)
D = ((y2 - y1) * (y2 - y1)) / (b1 * b1)
E = (A + B)
F = (C - (2 * A * x1) - (2 * B * x2))
G = ((A * x1 * x1) + (B * x2 * x2) - (C * x2) + D - 1)
H = (float(y3 - y2) / (x3 - x2))
K = ((F * F) - (4 * E * G))
if K >= 0:
# In this case the line intersects the ellipse, so calculate intersection
if x2 >= x1:
ellipse1_x = ((F * -1) + math.sqrt(K)) / (2 * E)
ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
else:
ellipse1_x = (((F * -1) - math.sqrt(K)) / (2 * E))
ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
else:
# in this case, arc does not intersect ellipse, so just draw arc
ellipse1_x = x3
ellipse1_y = y3
return ellipse1_x, ellipse1_y
def FindEndForCircle(radius, x1, y1, x2, y2):
H = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
if H == 0:
return x1, y1
else:
return radius * (x2 - x1) / H + x1, radius * (y2 - y1) / H + y1
|