1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/////////////////////////////////////////////////////////////////////////////
// Name: mathstuff.cpp
// Purpose: Some maths used for pyramid sample
// Author: Manuel Martin
// Created: 2015/01/31
// Copyright: (c) 2015 Manuel Martin
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include "mathstuff.h"
// Overload of "-" operator
myVec3 operator- (const myVec3& v1, const myVec3& v2)
{
return myVec3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
}
// Vector normalization
myVec3 MyNormalize(const myVec3& v)
{
double mo = sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
if ( mo > 1E-20 )
return myVec3(v.x / mo, v.y / mo, v.z / mo);
else
return myVec3();
}
// Dot product
double MyDot(const myVec3& v1, const myVec3& v2)
{
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z ;
}
// Cross product
myVec3 MyCross(const myVec3& v1, const myVec3& v2)
{
return myVec3( v1.y * v2.z - v2.y * v1.z,
v1.z * v2.x - v2.z * v1.x,
v1.x * v2.y - v2.x * v1.y );
}
// Distance between two points
double MyDistance(const myVec3& v1, const myVec3& v2)
{
double rx = v1.x -v2.x;
double ry = v1.y -v2.y;
double rz = v1.z -v2.z;
return sqrt(rx*rx + ry*ry + rz*rz);
}
// Angle between two normalized vectors, in radians
double AngleBetween(const myVec3& v1, const myVec3& v2)
{
double angle = MyDot(v1, v2);
// Prevent issues due to numerical precision
if (angle > 1.0)
angle = 1.0;
if (angle < -1.0)
angle = -1.0;
return acos(angle);
}
// Matrix 4x4 by 4x1 multiplication
// Attention: No bounds check!
myVec4 MyMatMul4x1(const double *m1, const myVec4& v)
{
myVec4 mmv;
mmv.x = m1[0] * v.x + m1[4] * v.y + m1[8] * v.z + m1[12] * v.w ;
mmv.y = m1[1] * v.x + m1[5] * v.y + m1[9] * v.z + m1[13] * v.w ;
mmv.z = m1[2] * v.x + m1[6] * v.y + m1[10] * v.z + m1[14] * v.w ;
mmv.w = m1[3] * v.x + m1[7] * v.y + m1[11] * v.z + m1[15] * v.w ;
return mmv;
}
// Matrix 4x4 multiplication
// Attention: No bounds check!
void MyMatMul4x4(const double *m1, const double *m2, double* mm)
{
mm[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3] ;
mm[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3] ;
mm[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3] ;
mm[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3] ;
mm[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7] ;
mm[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7] ;
mm[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7] ;
mm[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7] ;
mm[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11] ;
mm[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11] ;
mm[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11] ;
mm[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11] ;
mm[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15] ;
mm[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15] ;
mm[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15] ;
mm[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15] ;
}
// Matrix 4x4 inverse. Returns the determinant.
// Attention: No bounds check!
// Method used is "adjugate matrix" with "cofactors".
// A faster method, such as "LU decomposition", isn't much faster than this code.
double MyMatInverse(const double *m, double *minv)
{
double det;
double cof[16], sdt[19];
// The 2x2 determinants used for cofactors
sdt[0] = m[10] * m[15] - m[14] * m[11] ;
sdt[1] = m[9] * m[15] - m[13] * m[11] ;
sdt[2] = m[9] * m[14] - m[13] * m[10] ;
sdt[3] = m[8] * m[15] - m[12] * m[11] ;
sdt[4] = m[8] * m[14] - m[12] * m[10] ;
sdt[5] = m[8] * m[13] - m[12] * m[9] ;
sdt[6] = m[6] * m[15] - m[14] * m[7] ;
sdt[7] = m[5] * m[15] - m[13] * m[7] ;
sdt[8] = m[5] * m[14] - m[13] * m[6] ;
sdt[9] = m[4] * m[15] - m[12] * m[7] ;
sdt[10] = m[4] * m[14] - m[12] * m[6] ;
sdt[11] = m[5] * m[15] - m[13] * m[7] ;
sdt[12] = m[4] * m[13] - m[12] * m[5] ;
sdt[13] = m[6] * m[11] - m[10] * m[7] ;
sdt[14] = m[5] * m[11] - m[9] * m[7] ;
sdt[15] = m[5] * m[10] - m[9] * m[6] ;
sdt[16] = m[4] * m[11] - m[8] * m[7] ;
sdt[17] = m[4] * m[10] - m[8] * m[6] ;
sdt[18] = m[4] * m[9] - m[8] * m[5] ;
// The cofactors, transposed
cof[0] = m[5] * sdt[0] - m[6] * sdt[1] + m[7] * sdt[2] ;
cof[1] = - m[1] * sdt[0] + m[2] * sdt[1] - m[3] * sdt[2] ;
cof[2] = m[1] * sdt[6] - m[2] * sdt[7] + m[3] * sdt[8] ;
cof[3] = - m[1] * sdt[13] + m[2] * sdt[14] - m[3] * sdt[15] ;
cof[4] = - m[4] * sdt[0] + m[6] * sdt[3] - m[7] * sdt[4] ;
cof[5] = m[0] * sdt[0] - m[2] * sdt[3] + m[3] * sdt[4] ;
cof[6] = - m[0] * sdt[6] + m[2] * sdt[9] - m[3] * sdt[10] ;
cof[7] = m[0] * sdt[13] - m[2] * sdt[16] + m[3] * sdt[17] ;
cof[8] = m[4] * sdt[1] - m[5] * sdt[3] + m[7] * sdt[5] ;
cof[9] = - m[0] * sdt[1] + m[1] * sdt[3] - m[3] * sdt[5] ;
cof[10] = m[0] * sdt[11] - m[1] * sdt[9] + m[3] * sdt[12] ;
cof[11] = - m[0] * sdt[14] + m[1] * sdt[16] - m[3] * sdt[18] ;
cof[12] = - m[4] * sdt[2] + m[5] * sdt[4] - m[6] * sdt[5] ;
cof[13] = m[0] * sdt[2] - m[1] * sdt[4] + m[2] * sdt[5] ;
cof[14] = - m[0] * sdt[8] + m[1] * sdt[10] - m[2] * sdt[12] ;
cof[15] = m[0] * sdt[15] - m[1] * sdt[17] + m[2] * sdt[18] ;
det = m[0] * cof[0] + m[1] * cof[4] + m[2] * cof[8] + m[3] * cof[12] ;
if ( fabs(det) > 10E-9 ) // Some precision value
{
double invdet = 1.0 / det;
for (int i = 0; i < 16; ++i)
minv[i] = cof[i] * invdet;
}
else
{
// Enable comparison with 0
det = 0.0;
}
return det;
}
// Matrix of rotation around an axis in the origin.
// angle is positive if follows axis (right-hand rule)
// Attention: No bounds check!
void MyRotate(const myVec3& axis, double angle, double *mrot)
{
double c = cos(angle);
double s = sin(angle);
double t = 1.0 - c;
// Normalize the axis vector
myVec3 uv = MyNormalize(axis);
// Store the matrix in column order
mrot[0] = t * uv.x * uv.x + c ;
mrot[1] = t * uv.x * uv.y + s * uv.z ;
mrot[2] = t * uv.x * uv.z - s * uv.y ;
mrot[3] = 0.0 ;
mrot[4] = t * uv.y * uv.x - s * uv.z ;
mrot[5] = t * uv.y * uv.y + c ;
mrot[6] = t * uv.y * uv.z + s * uv.x ;
mrot[7] = 0.0 ;
mrot[8] = t * uv.z * uv.x + s * uv.y ;
mrot[9] = t * uv.z * uv.y - s * uv.x ;
mrot[10] = t * uv.z * uv.z + c ;
mrot[11] = 0.0 ;
mrot[12] = mrot[13] = mrot[14] = 0.0 ;
mrot[15] = 1.0 ;
}
// Matrix for defining the viewing transformation
// Attention: No bounds check!
// Unchecked conditions:
// camPos != targ && camUp != {0,0,0}
// camUo can't be parallel to camPos - targ
void MyLookAt(const myVec3& camPos, const myVec3& camUp, const myVec3& targ, double *mt)
{
myVec3 tc = MyNormalize(targ - camPos);
myVec3 up = MyNormalize(camUp);
// Normalize tc x up for the case where up is not perpendicular to tc
myVec3 s = MyNormalize(MyCross(tc, up));
myVec3 u = MyNormalize(MyCross(s, tc)); //Normalize to improve accuracy
// Store the matrix in column order
mt[0] = s.x ;
mt[1] = u.x ;
mt[2] = - tc.x ;
mt[3] = 0.0 ;
mt[4] = s.y ;
mt[5] = u.y ;
mt[6] = - tc.y ;
mt[7] = 0.0 ;
mt[8] = s.z ;
mt[9] = u.z ;
mt[10] = - tc.z ;
mt[11] = 0.0 ;
mt[12] = - MyDot(s, camPos) ;
mt[13] = - MyDot(u, camPos) ;
mt[14] = MyDot(tc, camPos) ;
mt[15] = 1.0 ;
}
// Matrix for defining the perspective projection with symmetric frustum
// From camera coordinates to canonical (2x2x2 cube) coordinates.
// Attention: No bounds check!
// Unchecked conditions: fov > 0 && zNear > 0 && zFar > zNear && aspect > 0
void MyPerspective(double fov, double aspect, double zNear, double zFar, double *mp)
{
double f = 1.0 / tan(fov / 2.0);
// Store the matrix in column order
mp[0] = f / aspect ;
mp[1] = mp[2] = mp[3] = 0.0 ;
mp[4] = 0.0 ;
mp[5] = f ;
mp[6] = mp[7] = 0.0 ;
mp[8] = mp[9] = 0.0 ;
mp[10] = (zNear + zFar) / (zNear - zFar) ;
mp[11] = -1.0 ;
mp[12] = mp[13] = 0.0 ;
mp[14] = 2.0 * zNear * zFar / (zNear - zFar) ;
mp[15] = 0.0 ;
}
// Matrix for defining the orthogonal projection with symmetric frustum
// From camera coordinates to canonical (2x2x2 cube) coordinates.
// Attention: No bounds check!
// Unchecked conditions: left != right && bottom != top && zNear != zFar
void MyOrtho(double left, double right, double bottom, double top,
double zNear, double zFar, double *mo)
{
// Store the matrix in column order
mo[0] = 2.0 / (right - left) ;
mo[1] = mo[2] = mo[3] = mo[4] = 0.0 ;
mo[5] = 2.0 / (top - bottom) ;
mo[6] = mo[7] = mo[8] = mo[9] = 0.0 ;
mo[10] = 2.0 / (zNear - zFar) ;
mo[11] = 0.0 ;
mo[12] = -(right + left) / (right - left) ;
mo[13] = -(top + bottom) / (top - bottom) ;
mo[14] = (zNear + zFar) / (zNear - zFar) ;
mo[15] = 1.0 ;
}
|