1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
|
/////////////////////////////////////////////////////////////////////////////
// Name: oglstuff.cpp
// Purpose: OpenGL manager for pyramid sample
// Author: Manuel Martin
// Created: 2015/01/31
// Copyright: (c) 2015 Manuel Martin
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include "oglstuff.h"
// External function for GL errors
myOGLErrHandler* externalMyOGLErrHandler = NULL;
// Allow GL errors to be handled in other part of the app.
bool MyOnGLError(int err, const GLchar* glMsg = NULL)
{
GLenum GLErrorVal = glGetError();
if ( err == myoglERR_CLEAR )
{
// Clear previous errors
while ( GLErrorVal != GL_NO_ERROR )
GLErrorVal = glGetError();
return true;
}
if ( (GLErrorVal == GL_NO_ERROR) && (glMsg == NULL) )
return true;
if ( externalMyOGLErrHandler )
{
// Use the external error message handler. We pass our err-enum value.
externalMyOGLErrHandler(err, GLErrorVal, glMsg);
}
return err == myoglERR_JUSTLOG ? true : false;
}
// We do calculations with 'doubles'. We pass 'GLFloats' to the shaders
// because OGL added 'doubles' since OGL 4.0, and this sample is for 3.2
// Due to asynchronous nature of OGL, we can't trust in the passed matrix
// to be stored by GPU before the passing-function returns. So we don't use
// temporary storage, but dedicated matrices
void SetAsGLFloat4x4(double *matD, GLfloat *matF, int msize)
{
for (int i = 0; i < msize; i++)
{
matF[i] = (GLfloat) matD[i];
}
}
// ----------------------------------------------------------------------------
// Data for a regular tetrahedron with edge length 200, centered at the origin
// ----------------------------------------------------------------------------
const GLfloat gVerts[] = { 100.0f, -40.8248f, -57.7350f,
0.0f, -40.8248f, 115.4704f,
-100.0f, -40.8248f, -57.7350f,
0.0f, 122.4745f, 0.0f };
// Transparency (to see also inner faces) is in the last triangle only,
// so that glEnable(GL_BLEND) works well
const GLfloat gColours[] = { 0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 0.0f, 0.3f }; //With transparency
// Normals heading outside of the tetrahedron
const GLfloat gNormals[] = { 0.0f, -1.0f, 0.0f, /* face 0 1 2 */
-0.81650f, 0.33333f, 0.47140f, /* face 1 2 3 */
0.0f, 0.33333f, -0.94281f, /* face 2 3 0 */
0.81650f, 0.33333f, 0.47140f /* face 3 0 1 */ };
// Order would be important if we were using face culling
const GLushort gIndices[] = { 0, 1, 2, 3, 0, 1 };
// ----------------------------------------------------------------------------
// Shaders
// ----------------------------------------------------------------------------
// Note: We use GLSL 1.50 which is the minimum starting with OpenGL >= 3.2 (2009)
// Apple supports OpenGL 3.2 since OS X 10.7 "Lion" (2011)
// Vertex shader for the triangles
const GLchar* triangVertexShader =
{
"#version 150 \n"
"in vec3 in_Position; \n"
"in vec4 in_Colour; \n"
"in vec3 in_Normal; \n"
"uniform mat4 mMVP; \n"
"uniform mat4 mToViewSpace; \n"
"flat out vec4 theColour; \n"
"flat out vec3 theNormal; \n"
"out vec3 pointPos; \n"
"void main(void) \n"
"{\n"
" gl_Position = mMVP * vec4(in_Position, 1.0); \n"
" theColour = in_Colour; \n"
" // Operations in View Space \n"
" vec4 temp4 = mToViewSpace * vec4(in_Position, 1.0); \n"
" pointPos = temp4.xyz; \n"
" temp4 = mToViewSpace * vec4(in_Normal, 0.0); \n"
" theNormal = normalize(temp4.xyz); \n"
"}\n"
};
// Common function for fragment shaders
const GLchar* illuminationShader =
{
"#version 150 \n"
"vec3 Illuminate(in vec4 LiProps, in vec3 LiColour, in vec4 PColour, \n"
" in vec3 PNormal, in vec3 PPos) \n"
"{\n"
" // Ambient illumination. Hardcoded \n"
" vec3 liAmbient = vec3(0.2, 0.2, 0.2); \n"
" // Operations in View Space \n"
" vec3 lightDirec = LiProps.xyz - PPos; \n"
" float lightDist = length(lightDirec); \n"
" // Normalize. Attention: No lightDist > 0 check \n"
" lightDirec = lightDirec / lightDist; \n"
" // Attenuation. Hardcoded for this sample distances \n"
" float attenu = 260.0 / lightDist; \n"
" attenu = attenu * attenu; \n"
" // Lambertian diffuse illumination \n"
" float diffuse = dot(lightDirec, PNormal); \n"
" diffuse = max(0.0, diffuse); \n"
" vec3 liDiffuse = LiColour * LiProps.w * diffuse * attenu; \n"
" // Gaussian specular illumination. Harcoded values again \n"
" // We avoid it for interior faces \n"
" vec3 viewDir = vec3(0.0, 0.0, 1.0); \n"
" vec3 halfDir = normalize(lightDirec + viewDir); \n"
" float angleHalf = acos(dot(halfDir, PNormal)); \n"
" float exponent = angleHalf / 0.05; \n"
" float specular = 0.0; \n"
" if (diffuse > 0.0) \n"
" specular = exp(-exponent * exponent); \n"
" vec3 lightRes = PColour.rgb * ( liAmbient + liDiffuse ); \n"
" // Specular colour is quite similar as light colour \n"
" lightRes += (0.2 * PColour.xyz + 0.8 * LiColour) * specular * attenu; \n"
" lightRes = clamp(lightRes, 0.0, 1.0); \n"
" return lightRes; \n"
"}\n"
};
// Fragment shader for the triangles
const GLchar* triangFragmentShader =
{
"#version 150 \n"
"uniform vec4 lightProps; // Position in View space, and intensity \n"
"uniform vec3 lightColour; \n"
"flat in vec4 theColour; \n"
"flat in vec3 theNormal; \n"
"in vec3 pointPos; \n"
"out vec4 fragColour; \n"
"// Declare this function \n"
"vec3 Illuminate(in vec4 LiProps, in vec3 LiColour, in vec4 PColour, \n"
" in vec3 PNormal, in vec3 PPos); \n"
"void main(void) \n"
"{\n"
" vec3 lightRes = Illuminate(lightProps, lightColour, theColour, \n"
" theNormal, pointPos); \n "
" fragColour = vec4(lightRes, theColour.a); \n"
"}\n"
};
// Vertex shader for strings (textures) with illumination
const GLchar* stringsVertexShader =
{
"#version 150 \n"
"in vec3 in_sPosition; \n"
"in vec3 in_sNormal; \n"
"in vec2 in_TextPos; \n"
"uniform mat4 mMVP; \n"
"uniform mat4 mToViewSpace; \n"
"flat out vec3 theNormal; \n"
"out vec3 pointPos; \n"
"out vec2 textCoord; \n"
"void main(void) \n"
"{\n"
" gl_Position = mMVP * vec4(in_sPosition, 1.0); \n"
" textCoord = in_TextPos; \n"
" // Operations in View Space \n"
" vec4 temp4 = mToViewSpace * vec4(in_sPosition, 1.0); \n"
" pointPos = temp4.xyz; \n"
" temp4 = mToViewSpace * vec4(in_sNormal, 0.0); \n"
" theNormal = normalize(temp4.xyz); \n"
"}\n"
};
// Fragment shader for strings (textures) with illumination
const GLchar* stringsFragmentShader =
{
"#version 150 \n"
"uniform vec4 lightProps; // Position in View space, and intensity \n"
"uniform vec3 lightColour; \n"
"uniform sampler2D stringTexture; \n"
"flat in vec3 theNormal; \n"
"in vec3 pointPos; \n"
"in vec2 textCoord; \n"
"out vec4 fragColour; \n"
"// Declare this function \n"
"vec3 Illuminate(in vec4 LiProps, in vec3 LiColour, in vec4 PColour, \n"
" in vec3 PNormal, in vec3 PPos); \n"
"void main(void) \n"
"{\n"
" vec4 colo4 = texture(stringTexture, textCoord); \n"
" vec3 lightRes = Illuminate(lightProps, lightColour, colo4, \n"
" theNormal, pointPos); \n "
" fragColour = vec4(lightRes, colo4.a); \n"
"}\n"
};
// Vertex shader for immutable strings (textures)
const GLchar* stringsImmutableVS =
{
"#version 150 \n"
"in vec3 in_sPosition; \n"
"in vec2 in_TextPos; \n"
"uniform mat4 mMVP; \n"
"out vec2 textCoord; \n"
"void main(void) \n"
"{\n"
" gl_Position = mMVP * vec4(in_sPosition, 1.0); \n"
" textCoord = in_TextPos; \n"
"}\n"
};
// Fragment shader for immutable strings (textures)
const GLchar* stringsImmutableFS =
{
"#version 150 \n"
"uniform sampler2D stringTexture; \n"
"in vec2 textCoord; \n"
"out vec4 fragColour; \n"
"void main(void) \n"
"{\n"
" fragColour= texture(stringTexture, textCoord); \n"
"}\n"
};
// ----------------------------------------------------------------------------
// myOGLShaders
// ----------------------------------------------------------------------------
myOGLShaders::myOGLShaders()
{
m_proId = 0;
m_SHAinitializated = false;
}
myOGLShaders::~myOGLShaders()
{
if ( m_proId )
CleanUp();
}
void myOGLShaders::CleanUp()
{
StopUse();
glDeleteProgram(m_proId);
glFlush();
}
void myOGLShaders::AddCode(const GLchar* shaString, GLenum shaType)
{
// The code is a null-terminated string
shaShas sv = {0, shaType, shaString};
m_shaCode.push_back(sv);
}
void myOGLShaders::AddAttrib(const std::string& name)
{
shaVars sv = {0, name}; //We will set the location later
m_shaAttrib.push_back(sv);
// We don't check the max number of attribute locations (usually 16)
}
void myOGLShaders::AddUnif(const std::string& name)
{
shaVars sv = {0, name};
m_shaUnif.push_back(sv);
}
// Inform GL of the locations in program for the vars for buffers used to feed
// the shader. We use glBindAttribLocation (before linking the gl program) with
// the location we want.
// Since GL 3.3 we could avoid this using in the shader "layout(location=x)...".
// The same names as in the shader must be previously set with AddAttrib()
void myOGLShaders::SetAttribLocations()
{
GLuint loc = 0;
for(shaVars_v::iterator it = m_shaAttrib.begin(); it != m_shaAttrib.end(); ++it)
{
it->loc = loc++;
glBindAttribLocation(m_proId, it->loc, it->name.c_str());
}
}
GLuint myOGLShaders::GetAttribLoc(const std::string& name)
{
for (shaVars_v::iterator it = m_shaAttrib.begin(); it != m_shaAttrib.end(); ++it)
{
if ( it->name == name && it->loc != (GLuint)-1 )
return it->loc;
}
return (GLuint) -1;
}
// Store the locations in program for uniforms vars
bool myOGLShaders::AskUnifLocations()
{
for (shaVars_v::iterator it = m_shaUnif.begin(); it != m_shaUnif.end(); ++it)
{
GLint glret = glGetUniformLocation(m_proId, it->name.c_str());
if ( glret == -1 )
{
// Return now, this GPU program cannot be used because we will
// pass data to unknown/unused uniform locations
return false;
}
it->loc = glret;
}
return true;
}
GLuint myOGLShaders::GetUnifLoc(const std::string& name)
{
for (shaVars_v::iterator it = m_shaUnif.begin(); it != m_shaUnif.end(); ++it)
{
if ( it->name == name && it->loc != (GLuint)-1 )
return it->loc;
}
return (GLuint) -1;
}
// Create a GPU program from the given shaders
void myOGLShaders::Init()
{
MyOnGLError(myoglERR_CLEAR); //clear error stack
bool resC = false;
bool resL = false;
// GLSL code load and compilation
for (shaShas_v::iterator it = m_shaCode.begin(); it != m_shaCode.end(); ++it)
{
it->shaId = glCreateShader(it->typeSha);
glShaderSource(it->shaId, 1, &(it->scode), NULL);
MyOnGLError(myoglERR_SHADERCREATE);
resC = Compile(it->shaId);
if ( !resC )
break;
}
if ( resC )
{
// The program in the GPU
m_proId = glCreateProgram();
for (shaShas_v::iterator it = m_shaCode.begin(); it != m_shaCode.end(); ++it)
{
glAttachShader(m_proId, it->shaId);
}
SetAttribLocations(); //Before linking
resL = LinkProg(m_proId);
}
// We don't need them any more
for (shaShas_v::iterator it = m_shaCode.begin(); it != m_shaCode.end(); ++it)
{
if ( resC && it->shaId )
{
glDetachShader(m_proId, it->shaId);
}
glDeleteShader(it->shaId);
}
if ( !resC || !resL )
return;
// Log that shaders are OK
MyOnGLError(myoglERR_JUSTLOG, "Shaders successfully compiled and linked.");
// After linking, we can get locations for uniforms
m_SHAinitializated = AskUnifLocations();
if ( !m_SHAinitializated )
MyOnGLError(myoglERR_SHADERLOCATION, " Unused or unrecognized uniform.");
}
// Useful while developing: show shader compilation errors
bool myOGLShaders::Compile(GLuint shaId)
{
glCompileShader(shaId);
GLint Param = 0;
glGetShaderiv(shaId, GL_COMPILE_STATUS, &Param);
if ( Param == GL_FALSE )
{
glGetShaderiv(shaId, GL_INFO_LOG_LENGTH, &Param);
if ( Param > 0 )
{
GLchar* InfoLog = new GLchar[Param];
int nChars = 0;
glGetShaderInfoLog(shaId, Param, &nChars, InfoLog);
MyOnGLError(myoglERR_SHADERCOMPILE, InfoLog);
delete [] InfoLog;
}
return false;
}
return true;
}
// Useful while developing: show shader program linkage errors
bool myOGLShaders::LinkProg(GLuint proId)
{
glLinkProgram(proId);
GLint Param = 0;
glGetProgramiv(proId, GL_LINK_STATUS, &Param);
if ( Param == GL_FALSE )
{
glGetProgramiv(proId, GL_INFO_LOG_LENGTH, &Param);
if ( Param > 0 )
{
GLchar* InfoLog = new GLchar[Param];
int nChars = 0;
glGetProgramInfoLog(proId, Param, &nChars, InfoLog);
MyOnGLError(myoglERR_SHADERLINK, InfoLog);
delete [] InfoLog;
}
return false;
}
return true;
}
bool myOGLShaders::Use()
{
if ( !m_SHAinitializated )
return false;
glUseProgram(m_proId);
return true;
}
void myOGLShaders::StopUse()
{
glUseProgram(0);
}
// Disable generic attributes from VAO.
// This should be needed only for some old card, which uses generic into VAO
void myOGLShaders::DisableGenericVAA()
{
for(shaVars_v::iterator it = m_shaAttrib.begin(); it != m_shaAttrib.end(); ++it)
{
glDisableVertexAttribArray(it->loc);
}
}
// ----------------------------------------------------------------------------
// A point light
// ----------------------------------------------------------------------------
void myLight::Set(const myVec3& position, GLfloat intensity,
GLfloat R, GLfloat G, GLfloat B)
{
m_PosAndIntensisty[0] = (GLfloat) position.x;
m_PosAndIntensisty[1] = (GLfloat) position.y;
m_PosAndIntensisty[2] = (GLfloat) position.z;
m_PosAndIntensisty[3] = (GLfloat) intensity;
m_Colour[0] = R;
m_Colour[1] = G;
m_Colour[2] = B;
}
// ----------------------------------------------------------------------------
// myOGLTriangles
// ----------------------------------------------------------------------------
myOGLTriangles::myOGLTriangles()
{
m_triangVAO = m_bufVertId = m_bufColNorId = m_bufIndexId = 0;
m_triangShaders = NULL;
}
myOGLTriangles::~myOGLTriangles()
{
Clear();
}
void myOGLTriangles::Clear()
{
if ( m_triangShaders )
m_triangShaders->DisableGenericVAA();
// Clear graphics card memory
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
if ( m_bufIndexId )
glDeleteBuffers(1, &m_bufIndexId);
if ( m_bufColNorId )
glDeleteBuffers(1, &m_bufColNorId);
if ( m_bufVertId )
glDeleteBuffers(1, &m_bufVertId);
// Unbind from context
glBindVertexArray(0);
if ( m_triangVAO )
glDeleteVertexArrays(1, &m_triangVAO);
glFlush(); //Tell GL to execute those commands now, but we don't wait for them
m_triangShaders = NULL;
m_triangVAO = m_bufIndexId = m_bufColNorId = m_bufVertId = 0;
}
void myOGLTriangles::SetBuffers(myOGLShaders* theShader,
GLsizei nuPoints, GLsizei nuTriangs,
const GLfloat* vert, const GLfloat* colo,
const GLfloat* norm, const GLushort* indices)
{
MyOnGLError(myoglERR_CLEAR); //clear error stack
// NOTE: have you realized that I fully trust on parameters being != 0 and != NULL?
// Part 1: Buffers - - - - - - - - - - - - - - - - - - -
// Graphics card buffer for vertices.
// Not shared buffer with colours and normals, why not? Just for fun.
glGenBuffers(1, &m_bufVertId);
glBindBuffer(GL_ARRAY_BUFFER, m_bufVertId);
// Populate the buffer with the array "vert"
GLsizeiptr nBytes = nuPoints * 3 * sizeof(GLfloat); //3 components {x,y,z}
glBufferData(GL_ARRAY_BUFFER, nBytes, vert, GL_STATIC_DRAW);
if ( ! MyOnGLError(myoglERR_BUFFER) )
{
// Likely the GPU got out of memory
Clear();
return;
}
// Graphics card buffer for colours and normals.
glGenBuffers(1, &m_bufColNorId);
glBindBuffer(GL_ARRAY_BUFFER, m_bufColNorId);
// Allocate space for both arrays
nBytes = (nuPoints * 4 + nuTriangs * 3) * sizeof(GLfloat);
glBufferData(GL_ARRAY_BUFFER, nBytes, NULL, GL_STATIC_DRAW);
if ( ! MyOnGLError(myoglERR_BUFFER) )
{
// Likely the GPU got out of memory
Clear();
return;
}
// Populate part of the buffer with the array "colo"
nBytes = nuPoints * 4 * sizeof(GLfloat); // rgba components
glBufferSubData(GL_ARRAY_BUFFER, 0, nBytes, colo);
// Add the array "norm" to the buffer
GLsizeiptr bufoffset = nBytes;
nBytes = nuTriangs * 3 * sizeof(GLfloat);
glBufferSubData(GL_ARRAY_BUFFER, bufoffset, nBytes, norm);
// Graphics card buffer for indices.
glGenBuffers(1, &m_bufIndexId);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_bufIndexId);
// Populate the buffer with the array "indices"
// We use "triangle strip". An index for each additional vertex.
nBytes = (3 + nuTriangs - 1) * sizeof(GLushort); //Each triangle needs 3 indices
glBufferData(GL_ELEMENT_ARRAY_BUFFER, nBytes, indices, GL_STATIC_DRAW);
if ( ! MyOnGLError(myoglERR_BUFFER) )
{
// Likely the GPU got out of memory
Clear();
return;
}
// Unbind buffers. We will bind them one by one just now, at VAO creation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
m_nuTriangs = nuTriangs;
m_triangShaders = theShader;
MyOnGLError(myoglERR_CLEAR); //clear error stack
// Part 2: VAO - - - - - - - - - - - - - - - - - - -
// Vertex Array Object (VAO) that stores the relationship between the
// buffers and the shader input attributes
glGenVertexArrays(1, &m_triangVAO);
glBindVertexArray(m_triangVAO);
// Set the way of reading (blocks of n floats each) from the current bound
// buffer and passing data to the shader (through the index of an attribute).
// Vertices positions
glBindBuffer(GL_ARRAY_BUFFER, m_bufVertId);
GLuint loc = m_triangShaders->GetAttribLoc("in_Position");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, (GLvoid *)0);
// Colours
glBindBuffer(GL_ARRAY_BUFFER, m_bufColNorId);
loc = m_triangShaders->GetAttribLoc("in_Colour");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, 0, (GLvoid *)0);
// Normals. Their position in buffer starts at bufoffset
loc = m_triangShaders->GetAttribLoc("in_Normal");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, (GLvoid *)bufoffset);
// Indices
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_bufIndexId);
// Unbind
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Some log
MyOnGLError(myoglERR_JUSTLOG, "Triangles data loaded into GPU.");
}
void myOGLTriangles::Draw(const GLfloat* unifMvp, const GLfloat* unifToVw,
const myLight* theLight)
{
if ( !m_triangVAO )
return;
MyOnGLError(myoglERR_CLEAR); //clear error stack
if ( ! m_triangShaders->Use() )
return;
// Bind the source data for the shader
glBindVertexArray(m_triangVAO);
// Pass matrices to the shader in column-major order
glUniformMatrix4fv(m_triangShaders->GetUnifLoc("mMVP"), 1, GL_FALSE, unifMvp);
glUniformMatrix4fv(m_triangShaders->GetUnifLoc("mToViewSpace"), 1, GL_FALSE, unifToVw);
// Pass the light, in View coordinates in this sample
glUniform4fv(m_triangShaders->GetUnifLoc("lightProps"), 1, theLight->GetFLightPos());
glUniform3fv(m_triangShaders->GetUnifLoc("lightColour"), 1, theLight->GetFLightColour());
// We have a flat shading, and we want the first vertex data as the flat value
glProvokingVertex(GL_FIRST_VERTEX_CONVENTION);
// Indexed drawing the triangles in strip mode, using 6 indices
glDrawElements(GL_TRIANGLE_STRIP, 6, GL_UNSIGNED_SHORT, (GLvoid *)0);
MyOnGLError(myoglERR_DRAWING_TRI);
// Unbind
glBindVertexArray(0);
m_triangShaders->StopUse();
}
// ----------------------------------------------------------------------------
// myOGLString
// ----------------------------------------------------------------------------
myOGLString::myOGLString()
{
m_bufPosId = m_textureId = m_stringVAO = m_textureUnit = 0;
m_stringShaders = NULL;
}
myOGLString::~myOGLString()
{
Clear();
}
void myOGLString::Clear()
{
if ( m_stringShaders )
m_stringShaders->DisableGenericVAA();
// Clear graphics card memory
glBindBuffer(GL_ARRAY_BUFFER, 0);
if ( m_bufPosId )
glDeleteBuffers(1, &m_bufPosId);
// Unbind from context
glBindVertexArray(0);
glDeleteVertexArrays(1, &m_stringVAO);
if ( m_textureUnit && m_textureId )
{
glActiveTexture(GL_TEXTURE0 + m_textureUnit);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &m_textureId);
}
glActiveTexture(GL_TEXTURE0);
glFlush(); //Tell GL to execute those commands now, but we don't wait for them
m_bufPosId = m_textureId = m_stringVAO = m_textureUnit = 0;
m_stringShaders = NULL;
}
void myOGLString::SetStringWithVerts(myOGLShaders* theShader,
const unsigned char* tImage, int tWidth, int tHeigh,
const GLfloat* vert, const GLfloat* norm)
{
MyOnGLError(myoglERR_CLEAR); //clear error stack
if ( !tImage )
return;
// Part 1: Buffers - - - - - - - - - - - - - - - - - - -
// Graphics card buffer for vertices, normals, and texture coords
glGenBuffers(1, &m_bufPosId);
glBindBuffer(GL_ARRAY_BUFFER, m_bufPosId);
// (4+4) (vertices + normals) x 3 components + 4 text-vertices x 2 components
GLsizeiptr nBytes = (8 * 3 + 4 * 2) * sizeof(GLfloat);
glBufferData(GL_ARRAY_BUFFER, nBytes, NULL, GL_STATIC_DRAW);
if ( ! MyOnGLError(myoglERR_BUFFER) )
{
// Likely the GPU got out of memory
Clear();
return;
}
// Populate part of the buffer with the array "vert"
nBytes = 12 * sizeof(GLfloat);
glBufferSubData(GL_ARRAY_BUFFER, 0, nBytes, vert);
// Add the array "norm" to the buffer
GLsizeiptr bufoffset = nBytes;
if ( norm )
{
// Just for string on face, not immutable string
glBufferSubData(GL_ARRAY_BUFFER, bufoffset, nBytes, norm);
}
// Add the array of texture coordinates to the buffer.
// Order is set accordingly with the vertices
// See myOGLManager::SetStringOnPyr()
GLfloat texcoords[8] = { 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0 };
bufoffset += nBytes;
nBytes = 8 * sizeof(GLfloat);
glBufferSubData(GL_ARRAY_BUFFER, bufoffset, nBytes, texcoords);
m_stringShaders = theShader;
MyOnGLError(myoglERR_CLEAR); //clear error stack
// Part 2: VAO - - - - - - - - - - - - - - - - - - -
// Vertex Array Object (VAO) that stores the relationship between the
// buffers and the shader input attributes
glGenVertexArrays(1, &m_stringVAO);
glBindVertexArray(m_stringVAO);
// Set the way of reading (blocks of n floats each) from the current bound
// buffer and passing data to the shader (through the index of an attribute).
// Vertices positions
GLuint loc = m_stringShaders->GetAttribLoc("in_sPosition");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, (GLvoid *)0);
// Normals. Their position in buffer starts at bufoffset
bufoffset = 12 * sizeof(GLfloat);
if ( norm )
{
// Just for string on face, not immutable string
loc = m_stringShaders->GetAttribLoc("in_sNormal");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, (GLvoid *)bufoffset);
}
// Texture coordinates
bufoffset *= 2; //Normals take same amount of space as vertices
loc = m_stringShaders->GetAttribLoc("in_TextPos");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, (GLvoid *)bufoffset);
// Part 3: The texture with the string as an image - - - - - - - -
// Create the bind for the texture
// Same unit for both textures (strings) since their characteristics are the same.
m_textureUnit = 1;
glActiveTexture(GL_TEXTURE0 + m_textureUnit);
glGenTextures(1, &m_textureId); //"Name" of the texture object
glBindTexture(GL_TEXTURE_2D, m_textureId);
// Avoid some artifacts
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Do this before glTexImage2D because we only have 1 level, no mipmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
// For RGBA default alignment (4) is good. In other circumstances, we may
// need glPixelStorei(GL_UNPACK_ALIGNMENT, 1)
// Load texture into card. No mipmap, so 0-level
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
(GLsizei)tWidth, (GLsizei)tHeigh, 0,
GL_RGBA, GL_UNSIGNED_BYTE, tImage);
if ( ! MyOnGLError(myoglERR_TEXTIMAGE) )
{
// Likely the GPU got out of memory
Clear();
return;
}
// Unbind
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
// Some log
MyOnGLError(myoglERR_JUSTLOG, "Texture for string loaded into GPU.");
}
void myOGLString::Draw(const GLfloat* unifMvp, const GLfloat* unifToVw,
const myLight* theLight)
{
if ( !m_stringVAO )
return;
MyOnGLError(myoglERR_CLEAR); //clear error stack
if ( ! m_stringShaders->Use() )
return;
// Bind the source data for the shader
glBindVertexArray(m_stringVAO);
// Pass matrices to the shader in column-major order
glUniformMatrix4fv(m_stringShaders->GetUnifLoc("mMVP"), 1, GL_FALSE, unifMvp);
if ( unifToVw && theLight )
{
// Just for string on face, not immutable string
glUniformMatrix4fv(m_stringShaders->GetUnifLoc("mToViewSpace"), 1, GL_FALSE, unifToVw);
// Pass the light, in View coordinates in this sample
glUniform4fv(m_stringShaders->GetUnifLoc("lightProps"), 1, theLight->GetFLightPos());
glUniform3fv(m_stringShaders->GetUnifLoc("lightColour"), 1, theLight->GetFLightColour());
// We have a flat shading, and we want the first vertex normal as the flat value
glProvokingVertex(GL_FIRST_VERTEX_CONVENTION);
}
// Use our texture unit
glActiveTexture(GL_TEXTURE0 + m_textureUnit);
glBindTexture(GL_TEXTURE_2D, m_textureId);
// The fragment shader will read texture values (pixels) from the texture
// currently active
glUniform1i(m_stringShaders->GetUnifLoc("stringTexture"), m_textureUnit);
// Draw the rectangle made up of two triangles
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
MyOnGLError(myoglERR_DRAWING_STR);
// Unbind
glBindVertexArray(0);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
m_stringShaders->StopUse();
}
// ----------------------------------------------------------------------------
// myOGLImmutString
// ----------------------------------------------------------------------------
void myOGLImmutString::SetImmutString(myOGLShaders* theShader,
const unsigned char* tImage, int tWidth, int tHeigh)
{
// Make a rectangle of the same size as the image. Order of vertices matters.
// Set a 2 pixels margin
double imaVerts[12];
imaVerts[0] = 2.0 ; imaVerts[1] = 2.0 ; imaVerts[2] = -1.0;
imaVerts[3] = 2.0 ; imaVerts[4] = 2.0 + tHeigh; imaVerts[5] = -1.0;
imaVerts[6] = 2.0 + tWidth; imaVerts[7] = 2.0 ; imaVerts[8] = -1.0;
imaVerts[9] = 2.0 + tWidth; imaVerts[10] = 2.0 + tHeigh; imaVerts[11] = -1.0;
// GLFloat version
GLfloat fimaVerts[12];
SetAsGLFloat4x4(imaVerts, fimaVerts, 12);
// Call the base class without normals, it will handle this case
SetStringWithVerts(theShader, tImage, tWidth, tHeigh, fimaVerts, NULL);
}
void myOGLImmutString::SetOrtho(int winWidth, int winHeight)
{
// We want an image always of the same size, regardless of window size.
// The orthogonal projection with the whole window achieves it.
MyOrtho(0.0, winWidth, 0.0, winHeight, -1.0, 1.0, m_dOrtho);
// Store the 'float' matrix
SetAsGLFloat4x4(m_dOrtho, m_fOrtho, 16);
}
// ----------------------------------------------------------------------------
// myOGLCamera
// ----------------------------------------------------------------------------
myOGLCamera::myOGLCamera()
{
m_needMVPUpdate = true; //Matrix must be updated
InitPositions();
}
void myOGLCamera::InitPositions()
{
// We have a tetrahedron centered at origin and edge length = 200
m_centerOfWorld.x = m_centerOfWorld.y = m_centerOfWorld.z = 0.0;
// The radius of the bounding sphere
m_radiusOfWorld = 122.4745;
// From degrees to radians
double degToRad = (double) 4.0 * atan(1.0) / 180.0;
// Angle of the field of view
m_fov = 40.0 * degToRad; //radians
// Position the camera far enough so we can see the whole world.
// The camera is between X and Z axis, below the pyramid
double tmpv = m_radiusOfWorld / sin(m_fov/2.0);
tmpv *= 1.05; // 5% margin
m_camPosition.x = m_centerOfWorld.x + tmpv * cos(75.0 * degToRad);
m_camPosition.z = m_centerOfWorld.z + tmpv * sin(75.0 * degToRad);
m_camPosition.y = m_centerOfWorld.y - m_radiusOfWorld;
// This camera looks always at center
m_camTarget = m_centerOfWorld;
// A vector perpendicular to Position-Target heading Y+
myVec3 vper = MyNormalize(m_camTarget - m_camPosition);
m_camUp = myVec3(0.0, 1.0, 0.0);
m_camUp = MyCross(m_camUp, vper);
m_camUp = MyNormalize( MyCross(vper, m_camUp) );
tmpv = MyDistance(m_camPosition, m_centerOfWorld);
// Calculate distances, not coordinates, with some margins
// Near clip-plane distance to the camera
m_nearD = tmpv - 1.10 * m_radiusOfWorld - 5.0;
// Far clip-plane distance to the camera
m_farD = tmpv + 1.10 * m_radiusOfWorld + 5.0;
// The "View" matrix. We will not change it any more in this sample
MyLookAt(m_camPosition, m_camUp, m_camTarget, m_dView);
// The initial "Model" matrix is the Identity matrix
MyRotate(myVec3(0.0, 0.0, 1.0), 0.0, m_dMode);
// Nothing else. "View" matrix is calculated at ViewSizeChanged()
}
void myOGLCamera::ViewSizeChanged(int newWidth, int newHeight)
{
// These values are also used for MouseRotation()
m_winWidth = newWidth;
m_winHeight = newHeight;
// Calculate the projection matrix
double aspect = (double) newWidth / newHeight;
MyPerspective(m_fov, aspect, m_nearD, m_farD, m_dProj);
// Inform we need to calculate MVP matrix
m_needMVPUpdate = true;
}
const GLfloat* myOGLCamera::GetFloatMVP()
{
UpdateMatrices();
return m_fMVP;
}
const GLfloat* myOGLCamera::GetFloatToVw()
{
UpdateMatrices();
return m_fToVw;
}
void myOGLCamera::UpdateMatrices()
{
if ( m_needMVPUpdate )
{
MyMatMul4x4(m_dView, m_dMode, m_dToVw);
MyMatMul4x4(m_dProj, m_dToVw, m_dMVP);
// Store the 'float' matrices
SetAsGLFloat4x4(m_dToVw, m_fToVw, 16);
SetAsGLFloat4x4(m_dMVP, m_fMVP, 16);
m_needMVPUpdate = false;
}
}
void myOGLCamera::MouseRotation(int fromX, int fromY, int toX, int toY)
{
if ( fromX == toX && fromY == toY )
return; //no rotation
// 1. Obtain axis of rotation and angle simulating a virtual trackball "r"
// 1.1. Calculate normalized coordinates (2x2x2 box).
// The trackball is a part of sphere of radius "r" (the rest is hyperbolic)
// Use r= 0.8 for better maximum rotation (more-less 150 degrees)
double xw1 = (2.0 * fromX - m_winWidth) / m_winWidth;
double yw1 = (2.0 * fromY - m_winHeight) / m_winHeight;
double xw2 = (2.0 * toX - m_winWidth) / m_winWidth;
double yw2 = (2.0 * toY - m_winHeight) / m_winHeight;
double z1 = GetTrackballZ(xw1, yw1, 0.8);
double z2 = GetTrackballZ(xw2, yw2, 0.8);
// 1.2. With normalized vectors, compute axis from 'cross' and angle from 'dot'
myVec3 v1(xw1, yw1, z1);
myVec3 v2(xw2, yw2, z2);
v1 = MyNormalize(v1);
v2 = MyNormalize(v2);
myVec3 axis(MyCross(v1, v2));
// 'axis' is in camera coordinates. Transform it to world coordinates.
double mtmp[16];
MyMatInverse(m_dView, mtmp);
myVec4 res = MyMatMul4x1(mtmp, myVec4(axis));
axis.x = res.x;
axis.y = res.y;
axis.z = res.z;
axis = MyNormalize(axis);
double angle = AngleBetween(v1, v2);
// 2. Compute the model transformation (rotate the model) matrix
MyRotate(axis, angle, mtmp);
// Update "Model" matrix
double mnew[16];
MyMatMul4x4(mtmp, m_dMode, mnew);
for (size_t i = 0; i<16; ++i)
m_dMode[i] = mnew[i];
// Inform we need to calculate MVP matrix
m_needMVPUpdate = true;
}
// Return the orthogonal projection of (x,y) into a sphere centered on the screen
// and radius 'r'. This makes some (x,y) to be outside of circle r='r'. We avoid
// this issue by using a hyperbolic sheet for (x,y) outside of r = 0.707 * 'r'.
double myOGLCamera::GetTrackballZ(double x, double y, double r)
{
double d = x*x + y*y;
double r2 = r*r;
return (d < r2/2.0) ? sqrt(r2 - d) : r2/2.0/sqrt(d);
}
// ----------------------------------------------------------------------------
// myOGLManager
// ----------------------------------------------------------------------------
myOGLManager::myOGLManager(myOGLErrHandler* extErrHnd)
{
externalMyOGLErrHandler = extErrHnd;
MyOnGLError(myoglERR_CLEAR); //clear error stack
}
myOGLManager::~myOGLManager()
{
MyOnGLError(myoglERR_CLEAR); //clear error stack
// Force GPU finishing before the context is deleted
glFinish();
}
/* Static */
bool myOGLManager::Init()
{
// Retrieve the pointers to OGL functions we use in this sample
return MyInitGLPointers();
}
const GLubyte* myOGLManager::GetGLVersion()
{
return glGetString(GL_VERSION);
}
const GLubyte* myOGLManager::GetGLVendor()
{
return glGetString(GL_VENDOR);
}
const GLubyte* myOGLManager::GetGLRenderer()
{
return glGetString(GL_RENDERER);
}
void myOGLManager::SetShadersAndTriangles()
{
// The shaders attributes and uniforms
m_TriangShaders.AddAttrib("in_Position");
m_TriangShaders.AddAttrib("in_Colour");
m_TriangShaders.AddAttrib("in_Normal");
m_TriangShaders.AddUnif("mMVP");
m_TriangShaders.AddUnif("mToViewSpace");
m_TriangShaders.AddUnif("lightProps");
m_TriangShaders.AddUnif("lightColour");
m_TriangShaders.AddCode(triangVertexShader, GL_VERTEX_SHADER);
m_TriangShaders.AddCode(illuminationShader, GL_FRAGMENT_SHADER);
m_TriangShaders.AddCode(triangFragmentShader, GL_FRAGMENT_SHADER);
m_TriangShaders.Init();
m_StringShaders.AddAttrib("in_sPosition");
m_StringShaders.AddAttrib("in_sNormal");
m_StringShaders.AddAttrib("in_TextPos");
m_StringShaders.AddUnif("mMVP");
m_StringShaders.AddUnif("mToViewSpace");
m_StringShaders.AddUnif("lightProps");
m_StringShaders.AddUnif("lightColour");
m_StringShaders.AddUnif("stringTexture");
m_StringShaders.AddCode(stringsVertexShader, GL_VERTEX_SHADER);
m_StringShaders.AddCode(illuminationShader, GL_FRAGMENT_SHADER);
m_StringShaders.AddCode(stringsFragmentShader, GL_FRAGMENT_SHADER);
m_StringShaders.Init();
m_ImmutStringSha.AddAttrib("in_sPosition");
m_ImmutStringSha.AddAttrib("in_TextPos");
m_ImmutStringSha.AddUnif("mMVP");
m_ImmutStringSha.AddUnif("stringTexture");
m_ImmutStringSha.AddCode(stringsImmutableVS, GL_VERTEX_SHADER);
m_ImmutStringSha.AddCode(stringsImmutableFS, GL_FRAGMENT_SHADER);
m_ImmutStringSha.Init();
// The point light. Set its color as full white.
// In this sample we set the light position same as the camera position
// In View space, camera position is {0, 0, 0}
m_Light.Set(myVec3(0.0, 0.0, 0.0), 1.0, 1.0, 1.0, 1.0);
// The triangles data
m_Triangles.SetBuffers(&m_TriangShaders, 4, 4, gVerts, gColours, gNormals, gIndices);
}
void myOGLManager::SetStringOnPyr(const unsigned char* strImage, int iWidth, int iHeigh)
{
// Some geometry. We want a rectangle close to face 0-1-2 (X-Z plane).
// The rectangle must preserve strImage proportions. If the height of the
// rectangle is "h" and we want to locate it with its largest side parallel
// to the edge of the face and at distance= h/2, then the rectangle width is
// rw = edgeLength - 2 * ((h/2 + h + h/2)/tan60) = edgeLength - 4*h/sqrt(3)
// If h/rw = Prop then
// rw = edgeLength / (1+4/sqrt(3)*Prop) and h = Prop * rw
double edgeLen = MyDistance(myVec3(gVerts[0], gVerts[1], gVerts[2]),
myVec3(gVerts[6], gVerts[7], gVerts[8]));
GLfloat prop = ((GLfloat) iHeigh) / ((GLfloat) iWidth);
GLfloat rw = float(edgeLen) / (1 + 4 * prop / std::sqrt(3.0f));
GLfloat h = prop * rw;
GLfloat de = 2 * h / std::sqrt(3.0f);
// A bit of separation of the face so as to avoid z-fighting
GLfloat rY = gVerts[1] - 0.01f; // Towards outside
GLfloat sVerts[12];
// The image was created top to bottom, but OpenGL axis are bottom to top.
// The image would display upside down. We avoid it choosing the right
// order of vertices and texture coords. See myOGLString::SetStringWithVerts()
sVerts[0] = gVerts[6] + de; sVerts[1] = rY; sVerts[2] = gVerts[8] + h / 2;
sVerts[3] = sVerts[0] ; sVerts[4] = rY; sVerts[5] = sVerts[2] + h;
sVerts[6] = sVerts[0] + rw; sVerts[7] = rY; sVerts[8] = sVerts[2];
sVerts[9] = sVerts[6] ; sVerts[10] = rY; sVerts[11] = sVerts[5];
// Normals for the rectangle illumination, same for the four vertices
const GLfloat strNorms[] = { gNormals[0], gNormals[1], gNormals[2],
gNormals[0], gNormals[1], gNormals[2],
gNormals[0], gNormals[1], gNormals[2],
gNormals[0], gNormals[1], gNormals[2]};
// The texture data for the string on the face of the pyramid
m_StringOnPyr.SetStringWithVerts(&m_StringShaders, strImage, iWidth, iHeigh,
sVerts, strNorms);
}
void myOGLManager::SetImmutableString(const unsigned char* strImage,
int iWidth, int iHeigh)
{
m_ImmString.SetImmutString(&m_ImmutStringSha, strImage, iWidth, iHeigh);
}
void myOGLManager::SetViewport(int x, int y, int width, int height)
{
if (width < 1) width = 1;
if (height < 1) height = 1;
glViewport(x, y, (GLsizei)width, (GLsizei)height);
// The camera handles perspective projection
m_Camera.ViewSizeChanged(width, height);
// And this object handles its own orthogonal projection
m_ImmString.SetOrtho(width, height);
}
void myOGLManager::Render()
{
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor((GLfloat)0.15, (GLfloat)0.15, 0.0, (GLfloat)1.0); // Dark, but not black.
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
m_Triangles.Draw(m_Camera.GetFloatMVP(), m_Camera.GetFloatToVw(), &m_Light);
m_StringOnPyr.Draw(m_Camera.GetFloatMVP(), m_Camera.GetFloatToVw(), &m_Light);
// This string is at the very front, whatever z-coords are given
glDisable(GL_DEPTH_TEST);
m_ImmString.Draw(m_ImmString.GetFloatMVP(), NULL, NULL);
}
void myOGLManager::OnMouseButDown(int posX, int posY)
{
// Just save mouse position
m_mousePrevX = posX;
m_mousePrevY = posY;
}
void myOGLManager::OnMouseRotDragging(int posX, int posY)
{
m_Camera.MouseRotation(m_mousePrevX, m_mousePrevY, posX, posY);
m_mousePrevX = posX;
m_mousePrevY = posY;
}
|