1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
#----------------------------------------------------------------------
# Name: wx.svg.__init__.py
# Purpose: Python code to augment or extend the nanosvg wrappers,
# and provide wxPython-specific integrations.
#
# Author: Robin Dunn
#
# Created: 23-July-2019
# Copyright: (c) 2019-2020 by Total Control Software
# Licence: wxWindows license
#----------------------------------------------------------------------
"""
The classes in this package facilitate the parsing, normalizing, drawing and
rasterizing of Scalable Vector Graphics (SVG) images. The primary interface to
this functionality is via the :class:`wx.svg.SVGimage` class, which provides
various integrations with wxPython. It, in turn, uses a set of wrappers around
the NanoSVG library (https://github.com/memononen/nanosvg) to do the low-level
work. There are a few features defined in the SVG spec that are not supported,
but all the commonly used ones seem to be there.
Example 1
---------
Drawing an SVG image to a window, scaled to fit the size of the window and using
a :class:`wx.GraphicsContext` can be done like this::
def __init__(self, ...):
...
self.img = wx.svg.SVGimage.CreateFromFile(svg_filename)
self.Bind(wx.EVT_PAINT, self.OnPaint)
def OnPaint(self, event):
dc = wx.PaintDC(self)
dc.SetBackground(wx.Brush('white'))
dc.Clear()
dcdim = min(self.Size.width, self.Size.height)
imgdim = min(self.img.width, self.img.height)
scale = dcdim / imgdim
width = int(self.img.width * scale)
height = int(self.img.height * scale)
ctx = wx.GraphicsContext.Create(dc)
self.img.RenderToGC(ctx, scale)
Since it is drawing the SVG shapes and paths using the equivalent GC primitives
then any existing transformations that may be active on the context will be
applied automatically to the SVG shapes.
Note that not all GraphicsContext backends are created equal. Specifically, the
GDI+ backend (the default on Windows) simply can not support some features that
are commonly used in SVG images, such as applying transforms to gradients. The
Direct2D backend on Windows does much better, and the Cairo backend on Windows
is also very good. The default backends on OSX and Linux do very good as well.
Example 2
---------
If you're not already using a ``wx.GraphicsContext`` then a :class:`wx.Bitmap`
can easily be created instead. For example, the last 2 lines in the code above
could be replaced by the following, and accomplish basically the same thing::
bmp = self.img.ConvertToBitmap(scale=scale, width=width, height=height)
dc.DrawBitmap(bmp, 0, 0)
Example 3
---------
The ``ConvertToBitmap`` shown above gives a lot of control around scaling,
translating and sizing the SVG image into a bitmap, but most of the time you
probably just want to get a bitmap of a certain size to use as an icon or
similar. The ``ConvertToScaledBitmap`` provides an easier API to do just that
for you. It automatically scales the SVG image into the requested size in
pixels.::
bmp = img.ConvertToScaledBitmap(wx.Size(24,24))
Optionally, it can accept a window parameter that will automatically adjust the
size according to the Content Scale Factor of that window, if supported by the
platform and if the window is located on a HiDPI display the the bitmap's size
will be adjusted accordingly.::
bmp = img.ConvertToScaledBitmap(wx.Size(24,24), self)
"""
from itertools import zip_longest
import wx
from ._nanosvg import *
# All the supported renderers now support gradient transforms, more or less, but
# let's leave this in place in case it's needed again in the future.
_RenderersWithoutGradientTransforms = []
class SVGimage(SVGimageBase):
"""
The SVGimage class provides various ways to load and use SVG images
in wxPython applications.
"""
def ConvertToBitmap(self, tx=0.0, ty=0.0, scale=1.0,
width=-1, height=-1, stride=-1):
"""
Creates a :class:`wx.Bitmap` containing a rasterized version of the SVG image.
:param float `tx`: Image horizontal offset (applied after scaling)
:param float `ty`: Image vertical offset (applied after scaling)
:param float `scale`: Image scale
:param int `width`: width of the image to render, defaults to width from the SVG file
:param int `height`: height of the image to render, defaults to height from the SVG file
:param int `stride`: number of bytes per scan line in the destination buffer, typically ``width * 4``
:returns: :class:`wx.Bitmap`
"""
buf = self.Rasterize(tx, ty, scale, width, height, stride)
bmp = wx.Bitmap.FromBufferRGBA(width, height, buf)
return bmp
def ConvertToScaledBitmap(self, size, window=None):
"""
Automatically scales the SVG image so it will fit in the given size,
and creates a :class:`wx.Bitmap` of that size, containing a rasterized
version of the SVG image. If a window is passed then the size of the
bitmap will automatically be adjusted to the content scale factor of
that window. For example, if a (32,32) pixel bitmap is requested for a
window on a Retina display, then a (64,64) pixel bitmap will be created.
:param wx.Size `size`: Size of the bitmap to create, in pixels
:param wx.Window `window`: Adjust the size by this window's content scale factor, if supported on the platform
:returns: :class:`wx.Bitmap`
"""
size = wx.Size(*size)
if window:
size.width = int(size.width * window.GetContentScaleFactor())
size.height = int(size.height * window.GetContentScaleFactor())
# We can only have one overall scale factor for both dimensions with
# this rasterization method, so chose either the minimum of width or
# height to help ensure it fits both ways within the specified size.
sx = size.width / self.width
sy = size.height / self.height
scale = min(sx, sy)
return self.ConvertToBitmap(scale=scale, width=size.width, height=size.height)
def RenderToGC(self, ctx, scale=None, size=None):
"""
Draw the collection of shapes and paths in the SVG image
onto the given :class:`wx.GraphicsContext` using the drawing primitives
provided by the context. The Context's state is saved and restored so
any transformations done while rendering the SVG will be undone.
:param wx.GraphicsContext `ctx`: The context to draw upon
:param float `scale`: If given, apply to the context's scale.
:param (float, float) `size`: If given, scale the image's width and height
to that provided in this parameter. Ignored if ``scale`` is also specified.
.. note::
Some GraphicsContext backends perform better than others.
The default GDI+ backend on Windows is the most glitchy, but the
Direct2D backend works well.
"""
ctx.PushState()
try:
# set scale either from the scale parameter or as ratio of the sizes
if scale is not None:
ctx.Scale(scale, scale)
elif size is not None:
# scale the context to the given size
size = wx.Size(*size)
sx = size.width / self.width
sy = size.height / self.height
ctx.Scale(sx, sy)
for shape in self.shapes:
if not shape.flags & SVG_FLAGS_VISIBLE:
continue
if shape.opacity != 1.0:
ctx.BeginLayer(shape.opacity)
brush = self._makeBrush(ctx, shape)
pen = self._makePen(ctx, shape)
rule = { SVG_FILLRULE_NONZERO : wx.WINDING_RULE,
SVG_FILLRULE_EVENODD : wx.ODDEVEN_RULE }.get(shape.fillRule, 0)
# The shape's path is comprised of one or more subpaths, collect
# and accumulate them in a new GraphicsPath
path = ctx.CreatePath()
for svg_path in shape.paths:
subpath = self._makeSubPath(ctx, svg_path)
path.AddPath(subpath)
# Draw the combined set of paths, using the given pen and brush to
# fill and stroke the shape.
ctx.SetBrush(brush)
ctx.SetPen(pen)
ctx.DrawPath(path, rule)
if shape.opacity != 1.0:
ctx.EndLayer()
finally:
ctx.Flush()
ctx.PopState()
def _makeSubPath(self, ctx, svg_path):
points = svg_path.points
path = ctx.CreatePath()
x, y = points[0]
path.MoveToPoint(x,y)
for (cx1, cy1), (cx2, cy2), (x,y) in _chunker(points[1:], 3, (0,0)):
path.AddCurveToPoint(cx1, cy1, cx2, cy2, x,y)
if svg_path.closed:
path.CloseSubpath()
return path
def _makeGradientStops(self, gradient):
stops = [stop for stop in gradient.stops]
first = stops[0]
last = stops[-1]
gcstops = wx.GraphicsGradientStops(wx.Colour(*first.color_rgba),
wx.Colour(*last.color_rgba))
for stop in stops:
color = wx.Colour(*stop.color_rgba)
gcstop = wx.GraphicsGradientStop(color, stop.offset)
gcstops.Add(gcstop)
return gcstops
def _getGradientColors(self, gradient):
return [stop.color_rgba for stop in gradient.stops]
def _makeBrush(self, ctx, shape):
# set up a brush from the shape.fill (SVGpaint) object
# no brush
if shape.fill.type == SVG_PAINT_NONE:
brush = wx.NullGraphicsBrush
# brush with a solid color
elif shape.fill.type == SVG_PAINT_COLOR:
r,g,b,a = shape.fill.color_rgba
brush = ctx.CreateBrush(wx.Brush(wx.Colour(r,g,b,a)))
# brush with a linear gradient
elif shape.fill.type == SVG_PAINT_LINEAR_GRADIENT:
# NanoSVG gives gradients their own transform which normalizes the
# linear gradients to go from (0, 0) to (0,1) in the transformed
# space. So once we have the transform set we can use those points
# too.
x1, y1, = (0.0, 0.0)
x2, y2, = (0.0, 1.0)
gradient = shape.fill.gradient
matrix = ctx.CreateMatrix(*gradient.xform)
# Except for GDI+, which doesn't support applying a transform to a
# gradient, so we'll translate the points back to real space
# ourselves. This is only an approximation of the desired outcome
# however, as things like scale and shear in the transform will not
# be applied to the rest of the fill.
if ctx.Renderer.Type in _RenderersWithoutGradientTransforms:
matrix.Invert()
x1, y1 = matrix.TransformPoint(x1, y1)
x2, y2 = matrix.TransformPoint(x2, y2)
matrix = wx.NullGraphicsMatrix
stops = self._makeGradientStops(gradient)
brush = ctx.CreateLinearGradientBrush(x1,y1, x2,y2, stops, matrix)
# brush with a radial gradient
elif shape.fill.type == SVG_PAINT_RADIAL_GRADIENT:
# Likewise, NanoSVG normalizes radial gradients with a transform
# that puts the center (cx, cy) at (0,0) and the radius has a length
# of 1.
cx, cy = (0.0, 0.0)
radius = 1
gradient = shape.fill.gradient
matrix = ctx.CreateMatrix(*gradient.xform)
# Except for GDI+... See note above
if ctx.Renderer.Type in _RenderersWithoutGradientTransforms:
matrix.Invert()
cx, cy = matrix.TransformPoint(cx, cy)
r1, r2 = matrix.TransformPoint(0, 1)
radius = r2 - cy
matrix = wx.NullGraphicsMatrix
stops = self._makeGradientStops(gradient)
brush = ctx.CreateRadialGradientBrush(cx,cy, cx,cy, radius, stops, matrix)
else:
raise ValueError("Unknown fill type")
return brush
def _makePen(self, ctx, shape):
# set up a pen from the shape.stroke (SVGpaint) object
width = shape.strokeWidth
join = { SVG_JOIN_MITER : wx.JOIN_MITER,
SVG_JOIN_ROUND : wx.JOIN_ROUND,
SVG_JOIN_BEVEL : wx.JOIN_BEVEL}.get(shape.strokeLineJoin, 0)
cap = { SVG_CAP_BUTT : wx.CAP_BUTT,
SVG_CAP_ROUND : wx.CAP_ROUND,
SVG_CAP_SQUARE : wx.CAP_PROJECTING}.get(shape.strokeLineCap, 0)
# TODO: handle dashes
info = wx.GraphicsPenInfo(wx.BLACK).Width(width).Join(join).Cap(cap)
if shape.stroke.type == SVG_PAINT_NONE:
pen = wx.NullGraphicsPen
elif shape.stroke.type == SVG_PAINT_COLOR:
info.Colour(shape.stroke.color_rgba)
pen = ctx.CreatePen(info)
elif shape.stroke.type == SVG_PAINT_LINEAR_GRADIENT:
x1, y1, = (0.0, 0.0)
x2, y2, = (0.0, 1.0)
gradient = shape.stroke.gradient
matrix = ctx.CreateMatrix(*gradient.xform)
# Except for GDI+... See note above
if ctx.Renderer.Type in _RenderersWithoutGradientTransforms:
matrix.Invert()
x1, y1 = matrix.TransformPoint(x1, y1)
x2, y2 = matrix.TransformPoint(x2, y2)
matrix = wx.NullGraphicsMatrix
stops = self._makeGradientStops(gradient)
info.LinearGradient(x1,y1, x2,y2, stops, matrix)
pen = ctx.CreatePen(info)
elif shape.stroke.type == SVG_PAINT_RADIAL_GRADIENT:
cx, cy = (0.0, 0.0)
radius = 1
gradient = shape.stroke.gradient
matrix = ctx.CreateMatrix(*gradient.xform)
# Except for GDI+... See note above
if ctx.Renderer.Type in _RenderersWithoutGradientTransforms:
matrix.Invert()
cx, cy = matrix.TransformPoint(cx, cy)
r1, r2 = matrix.TransformPoint(0, 1)
radius = r2 - cy
matrix = wx.NullGraphicsMatrix
stops = self._makeGradientStops(gradient)
info.RadialGradient(0,0, 0,0, 1, stops, matrix)
pen = ctx.CreatePen(info)
else:
raise ValueError("Unknown stroke type")
return pen
def _chunker(iterable, n, fillvalue=None):
"Collect items from an iterable into fixed-length chunks or blocks"
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
|