
Modern Non-Cryptographic Hash Function

and Pseudorandom Number Generator

Yi Wang1, Diego Barrios Romero2, Daniel Lemire3, Li Jin1*

1 Ministry of Education Key Laboratory of Contemporary Anthropology,

Collaborative Innovation Center for Genetics and Development, School of Life

Sciences, Human Phenome Institute, Fudan University, Shanghai, China.

2 Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.

3 Université du Québec (TÉLUQ) Montreal, Canada

*Corresponding Author: lijin@fudan.edu.cn

mailto:lijin@fudan.edu.cn

ABSTRACT

The hash function and pseudorandom number generator (PRNG) are two fundamental

functions in computer science with numerous applications. Due to their popularity and

importance, hundreds of hash functions and PRNGs have been proposed in the last

decades. However, few non-cryptographic hash functions and PRNGs achieve both

quality, speed, portability, and simplicity to reach a new consensus beyond the

standard library functions. Here, we propose wyhash hash function and wyrand

PRNG as modern alternatives to the decades-old standard library functions. They are

of high quality and portable across 32bit/64bit, little/big-endian, and

aligned/unaligned architectures as well as VisualC++/gcc/clang compilers.

Benchmark and user feedback suggest a significant speedup by simply replacing

existing hash functions or PRNGs with them. Now they have been packed into the

Debian software source and become the default of the V and Zig language. wyhash

and wyrand are completely free under The Unlicense at https://github.com/wangyi-

fudan/wyhash.

https://github.com/wangyi-fudan/wyhash
https://github.com/wangyi-fudan/wyhash

INTRODUCTION

A hash function is a function that converts arbitrary data to fixed-size hash values

which are usually integers [1] (Figure1). The input data was called the “keys” and the

output was called the “hashes”. The hash function is a cornerstone of computer science

and has numerous applications: hash table, bloom filters, authentication code [1], file

checksum, duplication/collision detection [2], proof-of-work [3], etc. [4].

Figure 1: Illustration of hash function

A pseudo-random number generator (PRNG) is an algorithm that can generate a

stream of numbers which appears random (Figure 2). The PRNG-generated sequence

is not truly random, because it is completely determined by an initial value provided by

the user, called the “seed”. [5] PRNG enables a deterministic computer with

“randomness” thus has wide applications: randomized algorithm [6], statistical

sampling [7], simulation [8], gaming, etc. [4].

Figure 2: Illustration of pseudo-random number generator

 To roughly illustrate the popularity of hash function and PRNG to a broader

audience, we searched GitHub [4]. Figure 3 shows the number of GitHub files

associated with several keywords respectively. Surprisingly, “hash” and “random” are

as popular as “algorithm” and “network”, where the latter two are well known to be key

importance in the computer world. Due to their popularity and hence importance,

numerous hash functions [9] and PRNGs [10-12] have been designed in the last decades

as alternatives to the standard library functions.

Figure 3: Number of GitHub files that contain keywords

Despite the richness of hash functions and PRNGs, few non-cryptographic hash

functions and PRNGs achieve both quality, speed, portability, and simplicity to reach a

new consensus beyond the standard library functions. [9-12] The quality of a hash

function and a PRNG are characterized by their uniformity and independence of output

distribution [9-12]. It is the premise of hash function [27] and PRNG and can be

evaluated by SMHasher [9], PractRand [11], and BigCrush [12]. The speed is the main

goal at the promise of quality. In practice, short key hashing speed attracts more

attention as real key length distribution is biased to short ones [13]. We also emphasize

portability which means the hash function and PRNG should support as many machine

architectures and compilers as possible. Simplicity is measured by the number of

instructions of the function after compilation [9]. A simple hash function and PRNG are

not only cache efficient but also aesthetically amusing.

To approach a new consensus on the non-cryptographic hash function and PRNG,

we introduce the wyhash hash function and wyrand PRNG [14]. They are of high

quality that passed SMHasher, PractRand, and BigCrush. They are the fastest

conventional hash function and PRNG at the premise of high quality. They are portable

to both 32-bit/64-bit, little/big-endian, aligned/unaligned machine architectures as well

as VisualC++/gcc/clang compilers. Their code sizes are small and were distributed

under The Unlicense [15] which means completely free. Considering these advantages,

we bravely propose them as modern alternatives to the decades-old low-quality

standard library functions [9-12].

RESULT

Quality Validation

We perform a statistical quality test on wyhash by SMHasher [9]. wyhash passed

all quality tests. (SI: SMHasher.wyhash.txt). We performed a statistical quality test of

wyrand by PractRand [11] and BigCrush [12] via the testingRNG suite [10]. wyrand

passed all tests (SI: PractRand.wyrand.log, testwyrand*.log).

Hashing Speed Benchmark

According to SMHasher, the following 16 out of 174 hash functions are 64-bit

quality and portable hash functions: poly_2_mersenne, poly_3_mersenne,

poly_4_mersenne, tabulation, floppsyhash, SipHash, GoodOAAT, prvhash42_64,

HighwayHash64, mirhashstrict, pengyhash, FarmHash64, farmhash64_c,

t2ha_atonce, xxHash64, wyhash.

We benchmarked all these functions plus the std::hash with SMHasher which

contains the bulk speed test, short key speed test, and hash map speed test. Figure 4

shows the bulk hash speed of hash functions. Wyhash is the fastest one which is as

3.2X fast as std::hash. Figure 5 shows the small key hash cycles. Wyhash has the

lowest cycles per hash which is as 2.3X fast as std::hash. Figure 6 shows the hash map

cycles. Wyhash is the fastest one which is as 1.6X fast as std::hash.

Figure 4: Bulk Hashing Speed Benchmark

Figure 5： Short Key Hash Cycles

Figure 6: Hash Map Cycles

PRNG Speed Benchmark

We benchmarked all portable PRNG in testingRNG suite: xorshift_k4, xorshift_k5,

mersennetwister, mitchellmoore, widynski, xorshift32, pcg32, rand, lehmer64,

xorshift128plus, xoroshiro128plus, splitmix64, pcg64, xorshift1024star,

xorshift1024plus, wyrand.

Figure 7 shows the PRNG speed benchmark result. We observe that wyrand is the

fastest one which is as 7.2X fast as the C library function rand, and as 3.9X fast as the

famous Mersenne Twister [24].

Figure 7: PRNG Speed Benchmark

Portability

 Wyhash and wyrand are portable to 32-bit/64-bit, little/big-endian,

aligned/unaligned memory architectures as well as VisualC++/gcc/clang compilers due

to defines contributed by many user feedbacks.

Code Size Comparison

 We obtain the compiled code size of 64-bit quality and portable hashes from the

SMHasher home page [9]. FigureS1 shows the comparison of code size. Wyhash is at

the median of code size distribution which is reasonably small. Wyrand code size is

also minimal which is documented in SI.

User Feedback

After 18 months of exposure to the public, wyhash and wyrand have already gained

271 stars and rich impacts on downstream applications. They have become the default

for the V [16] and Zig language [17]. For the V language wyhash become a game-

changer that makes its hash map faster than B-tree implementation [18]. Remote

desktop software xorgxrdp got 3X speedup on 4K screen latency by simply replacing

the CRC hash function with wyhash [19]. Microsoft HoloLens project becomes “much

faster” on X86 CPU by switching to wyhash [20]. Mergerfs avoids crashing on some

architectures by replacing fasthash64 with wyhash [21].

Conclusion

Based on these results, we conclude that wyhash and wyrand are high quality,

fastest, portable, and simple hash function and PRNG respectively. Users can expect a

significant speedup in hash/PRNG heavy tasks by simply replacing existing functions

with them. Considering these advantages, we call for broader application of them and

suggest standardizing them to be modern alternatives to standard library functions.

DISCUSSION

The core function underlying wyhash and wyrand is the MUM function: MUM (A, B)

-> C, where A, B, C are 64-bit unsigned integers [online Method]. As @leo-yuriev

pointed out [25], MUM function without xoring mask is vulnerable, as MUM (0, X)

=0 for any X which losses entropy. As a solution to this problem, we evolved into the

masked-MUM=MUM (A^secret, B^seed). By keeping the mask as secrets or

randomized value, masked-MUM cannot be cracked trivially in non-cryptographic

applications. However, in rare cases (2-64), A^secret=0 or B^seed=0 is still possible.

Further protection against such cases is also available at some cost of speed by

defining a higher security level and invoke the secure-MUM (A, B) =MUM (A, B)

^A^B. It is obvious that for A=0, secure-MUM (A, B) =B will not lose entropy.

Wyrand uses 64-bit internal status and produces 64-bit output. This function is not

bijective [26]. However, it is not necessary to worry about its quality because (1) it

has passed the stringent statistical test and (2) bijective is even not a good property for

a PRNG. Imagine we have a smaller PRNG which has 8-bit internal status and a

bijective 8-bit output. When we draw an output, we will be sure that this number will

never come again within the next 255 draws due to the bijective constrain. Thus,

bijective PRNG violates the randomness expectation and is not a good property for a

PRNG.

 Wyhash uses memcpy to access memory safely. It does not do unaligned

memory access which is unsafe on some machines. Despite the nominal overhead of

memcpy calls, it is as fast as direct memory read thanks to the compiler optimization.

By default, wyhash does not depend on the “read through” method that reads across

memory bound. However, in cases where the short key hashing speed is of critical

importance, wyhash can use such a method and doubling short key hashing speed by

defining a lower security level.

ACKNOWLEDGEMENTS

We sincerely thank the following names due to their contributions to wyhash

development: Reini Urban, Dietrich Epp, Joshua Haberman, Tommy Ettinger, Otmar

Ertl, cocowalla, leo-yuriev, Diego Barrios Romero, paulie-g, dumblob, Yann Collet,

ivte-ms, hyb, James Z.M. Gao, Devin.

REFERENCES

1 Daniel Lemire, Owen Kaser: Faster 64-bit universal hashing using carry-less

multiplications. Journal of Cryptographic Engineering Volume: 6, Issue: 3, pp 171-

185 (2016) DOI: 10.1007/S13389-015-0110-5

2 R. Rivest: The MD5 Message-Digest Algorithm. The MD5 Message-Digest

Algorithm Volume: 1321, pp 1-21 (1992)

3 Melanie Swan: Blockchain: Blueprint for a New Economy (2015)

4 https://github.com/

5 Andrew Rukhin ,Juan Soto ,James Nechvatal ,Miles Smid ,Elaine Barker: A

Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications. Special Publication (NIST SP) - 800-22 Rev 1a (2000)

DOI: 10.6028/NIST.SP.800-22R1A

6 Rajeev Motwani,Prabhakar Raghavan: Randomized Algorithms.(1994)

7 Joseph Felsenstein: CONFIDENCE LIMITS ON PHYLOGENIES: AN

APPROACH USING THE BOOTSTRAP. Evolution Volume: 39, Issue: 4, pp 783-

791 (1985) DOI: 10.1111/J.1558-5646.1985.TB00420.X

8 M. P. Allen 1,D. J. Tildesley: Computer Simulation of Liquids (1988)

9 https://github.com/rurban/smhasher

10 https://github.com/lemire/testingRNG

11 Doty-Humphrey C (2010) Practically random: C++ library of statistical tests for

rngs. https:// sourceforge.net/projects/pracrand

12 L’Ecuyer P, Simard R (2007) Testu01: Ac library for empirical testing of random

number generators. ACM Trans Math Soft (TOMS) 33(4):22

13 https://github.com/rurban/perl-hash-stats

14 https://github.com/wangyi-fudan/wyhash

15 https://unlicense.org/

16 https://github.com/vlang/v

17 https://github.com/ziglang/zig

18 https://github.com/vlang/v/pull/3591

19 https://github.com/neutrinolabs/xorgxrdp/pull/167

20 https://github.com/microsoft/MixedReality-Sharing/issues/115

21 https://github.com/trapexit/mergerfs/pull/805

22 https://github.com/vnmakarov/mum-hash

23 https://github.com/Cyan4973/xxHash

24 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally

equidistributed uniform pseudorandom number generator", ACM Trans. on

Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 (1998)

DOI:10.1145/272991.272995

25 https://github.com/wangyi-fudan/wyhash/issues/49

26 https://github.com/wangyi-fudan/wyhash/issues/16

27 Martin Dietzfelbinger: On Randomness in Hash Functions. Symposium on

Theoretical Aspects of Computer Science Volume: 14, pp 25-28 (2012)

https://github.com/
https://github.com/rurban/smhasher
https://github.com/lemire/testingRNG
https://github.com/rurban/perl-hash-stats
https://github.com/wangyi-fudan/wyhash
https://unlicense.org/
https://github.com/vlang/v
https://github.com/ziglang/zig
https://github.com/vlang/v/pull/3591
https://github.com/neutrinolabs/xorgxrdp/pull/167
https://github.com/microsoft/MixedReality-Sharing/issues/115
https://github.com/trapexit/mergerfs/pull/805
https://github.com/vnmakarov/mum-hash
https://github.com/Cyan4973/xxHash
https://github.com/wangyi-fudan/wyhash/issues/49
https://github.com/wangyi-fudan/wyhash/issues/16

