1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
/*
* Copyright (c) 2002 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the XFree86 Project shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from the
* XFree86 Project.
*
* Author: Paulo César Pereira de Andrade
*/
/* $XFree86: xc/programs/xedit/lisp/mp/mp.c,v 1.2 2002/11/08 08:01:00 paulo Exp $ */
#include "mp.h"
/*
* TODO:
* o Optimize squaring
* o Write better division code and move from mpi.c to here
* o Make multiplication code don't required memory to be zeroed
* + The first step is easy, just multiply the low word,
* then the high word, that may overlap with the result
* of the first multiply (in case of carry), and then
* just make sure carry is properly propagated in the
* subsequent multiplications.
* + Some code needs also to be rewritten because some
* intermediate addition code in mp_mul, mp_karatsuba_mul,
* and mp_toom_mul is assuming the memory is zeroed.
*/
/*
* Prototypes
*/
/* out of memory handler */
static void mp_outmem(void);
/* memory allocation fallback functions */
static void *_mp_malloc(size_t);
static void *_mp_calloc(size_t, size_t);
static void *_mp_realloc(void*, size_t);
static void _mp_free(void*);
/*
* Initialization
*/
static mp_malloc_fun __mp_malloc = _mp_malloc;
static mp_calloc_fun __mp_calloc = _mp_calloc;
static mp_realloc_fun __mp_realloc = _mp_realloc;
static mp_free_fun __mp_free = _mp_free;
/*
* Implementation
*/
static void
mp_outmem(void)
{
fprintf(stderr, "out of memory in MP library.\n");
exit(1);
}
static void *
_mp_malloc(size_t size)
{
return (malloc(size));
}
void *
mp_malloc(size_t size)
{
void *pointer = (*__mp_malloc)(size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_malloc_fun
mp_set_malloc(mp_malloc_fun fun)
{
mp_malloc_fun old = __mp_malloc;
__mp_malloc = fun;
return (old);
}
static void *
_mp_calloc(size_t nmemb, size_t size)
{
return (calloc(nmemb, size));
}
void *
mp_calloc(size_t nmemb, size_t size)
{
void *pointer = (*__mp_calloc)(nmemb, size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_calloc_fun
mp_set_calloc(mp_calloc_fun fun)
{
mp_calloc_fun old = __mp_calloc;
__mp_calloc = fun;
return (old);
}
static void *
_mp_realloc(void *old, size_t size)
{
return (realloc(old, size));
}
void *
mp_realloc(void *old, size_t size)
{
void *pointer = (*__mp_realloc)(old, size);
if (pointer == NULL)
mp_outmem();
return (pointer);
}
mp_realloc_fun
mp_set_realloc(mp_realloc_fun fun)
{
mp_realloc_fun old = __mp_realloc;
__mp_realloc = fun;
return (old);
}
static void
_mp_free(void *pointer)
{
free(pointer);
}
void
mp_free(void *pointer)
{
(*__mp_free)(pointer);
}
mp_free_fun
mp_set_free(mp_free_fun fun)
{
mp_free_fun old = __mp_free;
__mp_free = fun;
return (old);
}
long
mp_add(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
BNI value; /* intermediate result */
BNS carry; /* carry flag */
long size; /* result size */
if (len1 < len2)
MP_SWAP(op1, op2, len1, len2);
/* unroll start of loop */
value = op1[0] + op2[0];
rop[0] = value;
carry = value >> BNSBITS;
/* add op1 and op2 */
for (size = 1; size < len2; size++) {
value = op1[size] + op2[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
if (rop != op1) {
for (; size < len1; size++) {
value = op1[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
}
else {
/* if rop == op1, than just adjust carry */
for (; carry && size < len1; size++) {
value = op1[size] + carry;
rop[size] = value;
carry = value >> BNSBITS;
}
size = len1;
}
if (carry)
rop[size++] = carry;
return (size);
}
long
mp_sub(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long svalue; /* intermediate result */
BNS carry; /* carry flag */
long size; /* result size */
/* special case */
if (op1 == op2) {
rop[0] = 0;
return (1);
}
/* unroll start of loop */
svalue = op1[0] - op2[0];
rop[0] = svalue;
carry = svalue < 0;
/* subtracts op2 from op1 */
for (size = 1; size < len2; size++) {
svalue = (long)(op1[size]) - op2[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
if (rop != op1) {
for (; size < len1; size++) {
svalue = op1[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
}
else {
/* if rop == op1, than just adjust carry */
for (; carry && size < len1; size++) {
svalue = op1[size] - carry;
rop[size] = svalue;
carry = svalue < 0;
}
size = len1;
}
/* calculate result size */
while (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
long
mp_lshift(BNS *rop, BNS *op, BNI len, long shift)
{
long i, size;
BNI words, bits; /* how many word and bit shifts */
words = shift / BNSBITS;
bits = shift % BNSBITS;
size = len + words;
if (bits) {
BNS hi, lo;
BNI carry;
int adj;
for (i = 1, carry = CARRY >> 1; carry; i++, carry >>= 1)
if (op[len - 1] & carry)
break;
adj = (bits + (BNSBITS - i)) / BNSBITS;
size += adj;
lo = hi = op[0];
rop[words] = lo << bits;
for (i = 1; i < len; i++) {
hi = op[i];
rop[words + i] = hi << bits | (lo >> (BNSBITS - bits));
lo = hi;
}
if (adj)
rop[size - 1] = hi >> (BNSBITS - bits);
}
else
memmove(rop + size - len, op, sizeof(BNS) * len);
if (words)
memset(rop, '\0', sizeof(BNS) * words);
return (size);
}
long
mp_rshift(BNS *rop, BNS *op, BNI len, long shift)
{
int adj = 0;
long i, size;
BNI words, bits; /* how many word and bit shifts */
words = shift / BNSBITS;
bits = shift % BNSBITS;
size = len - words;
if (bits) {
BNS hi, lo;
BNI carry;
for (i = 0, carry = CARRY >> 1; carry; i++, carry >>= 1)
if (op[len - 1] & carry)
break;
adj = (bits + i) / BNSBITS;
if (size - adj == 0) {
rop[0] = 0;
return (1);
}
hi = lo = op[words + size - 1];
rop[size - 1] = hi >> bits;
for (i = size - 2; i >= 0; i--) {
lo = op[words + i];
rop[i] = (lo >> bits) | (hi << (BNSBITS - bits));
hi = lo;
}
if (adj)
rop[0] |= lo << (BNSBITS - bits);
}
else
memmove(rop, op + len - size, size * sizeof(BNS));
return (size - adj);
}
/* rop must be a pointer to len1 + len2 elements
* rop cannot be either op1 or op2
* rop must be all zeros */
long
mp_base_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long i, j; /* counters */
BNI value; /* intermediate result */
BNS carry; /* carry value */
long size = len1 + len2;
/* simple optimization: first pass does not need to deference rop[i+j] */
if (op1[0]) {
value = (BNI)(op1[0]) * op2[0];
rop[0] = value;
carry = (BNS)(value >> BNSBITS);
for (j = 1; j < len2; j++) {
value = (BNI)(op1[0]) * op2[j] + carry;
rop[j] = value;
carry = (BNS)(value >> BNSBITS);
}
rop[j] = carry;
}
/* do the multiplication */
for (i = 1; i < len1; i++) {
if (op1[i]) {
/* unrool loop initialization */
value = (BNI)(op1[i]) * op2[0] + rop[i];
rop[i] = value;
carry = (BNS)(value >> BNSBITS);
/* multiply */
for (j = 1; j < len2; j++) {
value = (BNI)(op1[i]) * op2[j] + rop[i + j] + carry;
rop[i + j] = value;
carry = (BNS)(value >> BNSBITS);
}
rop[i + j] = carry;
}
}
if (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
/* Karatsuba method
* t + ((a0 + a1) (b0 + b1) - t - u) x + ux²
* where t = a0b0 and u = a1b1
*
* Karatsuba method reduces the number of multiplications. Example:
* Square a 40 length number
* instead of a plain 40*40 = 1600 multiplies/adds, it does:
* 20*20+20*20+20*20 = 1200
* but since it is recursive, every 20*20=400 is reduced to
* 10*10+10*10+10*10=300
* and so on.
* The multiplication by x and x² is a just a shift, as it is a
* power of two, and is implemented below by just writting at the
* correct offset */
long
mp_karatsuba_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
BNI x; /* shift count */
BNI la0, la1, lb0, lb1; /* length of a0, a1, b0, and b1 */
BNS *t; /* temporary memory for t product */
BNS *u; /* temporary memory for u product */
BNS *r; /* pointer to rop */
long xlen, tlen, ulen;
/* calculate value of x, that is 2^(BNSBITS*x) */
if (len1 >= len2)
x = (len1 + 1) >> 1;
else
x = (len2 + 1) >> 1;
/* calculate length of operands */
la0 = x;
la1 = len1 - x;
lb0 = x;
lb1 = len2 - x;
/* allocate buffer for t and (a0 + a1) */
tlen = la0 + lb0;
t = mp_malloc(sizeof(BNS) * tlen);
/* allocate buffer for u and (b0 + b1) */
if (la1 + lb1 < lb0 + lb1 + 1)
ulen = lb0 + lb1 + 1;
else
ulen = la1 + lb1;
u = mp_malloc(sizeof(BNS) * ulen);
/* calculate a0 + a1, store result in t */
tlen = mp_add(t, op1, op1 + x, la0, la1);
/* calculate b0 + b1, store result in u */
ulen = mp_add(u, op2, op2 + x, lb0, lb1);
/* store (a0 + a1) * (b0 + b1) in rop */
r = rop + x; /* multiplied by 2^(BNSBITS*x) */
xlen = mp_mul(r, t, u, tlen, ulen);
/* must zero t and u memory, this is required for mp_mul */
/* calculate t = a0 * b0 */
tlen = la0 + lb0;
memset(t, '\0', sizeof(BNS) * tlen);
tlen = mp_mul(t, op1, op2, la0, lb0);
/* calculate u = a1 * b1 */
ulen = la1 + lb1;
memset(u, '\0', sizeof(BNS) * ulen);
ulen = mp_mul(u, op1 + x, op2 + x, la1, lb1);
/* subtract t from partial result */
xlen = mp_sub(r, r, t, xlen, tlen);
/* subtract u form partial result */
xlen = mp_sub(r, r, u, xlen, ulen);
/* add ux^2 to partial result */
r = rop + (x << 1); /* multiplied by x^2 = 2^(BNSBITS*x*2) */
xlen = len1 + len2;
xlen = mp_add(r, r, u, xlen, ulen);
/* now add t to final result */
xlen = mp_add(rop, rop, t, xlen, tlen);
mp_free(t);
mp_free(u);
if (xlen > 1 && rop[xlen - 1] == 0)
--xlen;
return (xlen);
}
/* Toom method (partially based on GMP documentation)
* Evaluation at k = [ 0 1/2 1 2 oo ]
* U(x) = (U2k + U1)k + U0
* V(x) = (V2k + V1)k + V0
* W(x) = U(x)V(x)
*
* Sample:
* 123 * 456
*
* EVALUATION:
* U(0) = (1*0+2)*0+3 => 3
* U(1) = 1+(2+3*2)*2 => 17
* U(2) = 1+2+3 => 6
* U(3) = (1*2+2)*2+3 => 11
* U(4) = 1+(2+3*0)*0 => 1
*
* V(0) = (4*0+5)*0+6 => 6
* V(1) = 4+(5+6*2)*2 => 38
* V(2) = 4+5+6 => 15
* V(3) = (4*2+5)*2+6 => 32
* V(4) = 4+(5+6*0)*0 => 4
*
* U = [ 3 17 6 11 1 ]
* V = [ 6 38 15 32 4 ]
* W = [ 18 646 90 352 4 ]
*
* After that, we have:
* a = 18 (w0 already known)
* b = 16w0 + 8w1 + 4w2 + 2w3 + w4
* c = w0 + w1 + w2 + w3 + w4
* d = w0 + 2w1 + 4w2 + 8w3 + 16w4
* e = 4 (w4 already known)
*
* INTERPOLATION:
* b = b -16a - e (354)
* c = c - a - e (68)
* d = d - a - 16e (270)
*
* w = (b + d) - 8c = (10w1+8w2+10w3) - (8w1+8w2+8w3) = 2w1+2w3
* w = 2c - w (56)
* b = b/2 = 4w1+w+w3
* b = b-c = 4w1+w+w3 - w1+w2+w3 = 3w1+w2
* c = w/2 (w2 = 28)
* b = b-c = 3w1+c - c = 3w1
* b = b/3 (w1 = 27)
* d = d/2
* d = d-b-w = b+w+4w3 - b-w = 4w3
* d = d/4 (w3 = 13)
*
* RESULT:
* w4*10^4 + w3*10³ + w2*10² + w1*10 + w0
* 40000 + 13000 + 2800 + 270 + 18
* 10 is the base where the calculation was done
*
* This sample uses small numbers, so it does not show the
* advantage of the method. But for example (in base 10), when squaring
* 123456789012345678901234567890
* The normal method would do 30*30=900 multiplications
* Karatsuba method would do 15*15*3=675 multiplications
* Toom method would do 10*10*5=500 multiplications
* Toom method has a larger overhead if compared with Karatsuba method,
* due to evaluation and interpolation, so it should be used for larger
* numbers, so that the computation time of evaluation/interpolation
* would be smaller than the time spent using other methods.
*
* Note that Karatsuba method can be seen as a special case of
* Toom method, i.e:
* U1U0 * V1V0
* with k = [ 0 1 oo ]
* U = [ U0 U1+U0 U1 ]
* V = [ V0 V1+V0 V1 ]
* W = [ U0*V0 (U1+U0)*(V1+V0) (U1+V1) ]
*
* w0 = U0*V0
* w = (U1+U0)*(V1+V0)
* w2 = (U1*V1)
*
* w1 = w - w0 - w2
* w2x² + w1x + w0
*
* See Knuth's Seminumerical Algorithms for a sample implemention
* using 4 stacks and k = [ 0 1 2 3 ... ], based on the size of the
* input.
*/
long
mp_toom_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
long size, xsize, i;
BNI value; /* used in division */
BNS carry;
BNI x; /* shift count */
BNI l1, l2;
BNI al, bl, cl, dl, el, Ul[3], Vl[3];
BNS *a, *b, *c, *d, *e, *U[3], *V[3];
/* x is the base i.e. 2^(BNSBITS*x) */
x = (len1 + len2 + 4) / 6;
l1 = len1 - (x << 1); /* length of remaining piece of op1 */
l2 = len2 - (x << 1); /* length of remaining piece of op2 */
/* allocate memory for storing U and V */
U[0] = mp_malloc(sizeof(BNS) * (x + 2));
V[0] = mp_malloc(sizeof(BNS) * (x + 2));
U[1] = mp_malloc(sizeof(BNS) * (x + 1));
V[1] = mp_malloc(sizeof(BNS) * (x + 1));
U[2] = mp_malloc(sizeof(BNS) * (x + 2));
V[2] = mp_malloc(sizeof(BNS) * (x + 2));
/* EVALUATE U AND V */
/* Numbers are in the format U2x²+U1x+U0 and V2x²+V1x+V0 */
/* U[0] = U2+U1*2+U0*4 */
/* store U1*2 in U[1], this value is used twice */
Ul[1] = mp_lshift(U[1], op1 + x, x, 1);
/* store U0*4 in U[0] */
Ul[0] = mp_lshift(U[0], op1, x, 2);
/* add U1*2 to U[0] */
Ul[0] = mp_add(U[0], U[0], U[1], Ul[0], Ul[1]);
/* add U2 to U[0] */
Ul[0] = mp_add(U[0], U[0], op1 + x + x, Ul[0], l1);
/* U[2] = U2*4+U1*2+U0 */
/* store U2*4 in U[2] */
Ul[2] = mp_lshift(U[2], op1 + x + x, l1, 2);
/* add U1*2 to U[2] */
Ul[2] = mp_add(U[2], U[2], U[1], Ul[2], Ul[1]);
/* add U0 to U[2] */
Ul[2] = mp_add(U[2], U[2], op1, Ul[2], x);
/* U[1] = U2+U1+U0 */
Ul[1] = mp_add(U[1], op1, op1 + x, x, x);
Ul[1] = mp_add(U[1], U[1], op1 + x + x, Ul[1], l1);
/* Evaluate V[x], same code as U[x] */
Vl[1] = mp_lshift(V[1], op2 + x, x, 1);
Vl[0] = mp_lshift(V[0], op2, x, 2);
Vl[0] = mp_add(V[0], V[0], V[1], Vl[0], Vl[1]);
Vl[0] = mp_add(V[0], V[0], op2 + x + x, Vl[0], l2);
Vl[2] = mp_lshift(V[2], op2 + x + x, l2, 2);
Vl[2] = mp_add(V[2], V[2], V[1], Vl[2], Vl[1]);
Vl[2] = mp_add(V[2], V[2], op2, Vl[2], x);
Vl[1] = mp_add(V[1], op2, op2 + x, x, x);
Vl[1] = mp_add(V[1], V[1], op2 + x + x, Vl[1], l2);
/* MULTIPLY U[] AND V[] */
/* calculate (U2+U1*2+U0*4) * (V2+V1*2+V0*4) */
b = mp_calloc(1, sizeof(BNS) * (Ul[0] * Vl[0]));
bl = mp_mul(b, U[0], V[0], Ul[0], Vl[0]);
mp_free(U[0]);
mp_free(V[0]);
/* calculate (U2+U1+U0) * (V2+V1+V0) */
c = mp_calloc(1, sizeof(BNS) * (Ul[1] * Vl[1]));
cl = mp_mul(c, U[1], V[1], Ul[1], Vl[1]);
mp_free(U[1]);
mp_free(V[1]);
/* calculate (U2*4+U1*2+U0) * (V2*4+V1*2+V0) */
d = mp_calloc(1, sizeof(BNS) * (Ul[2] * Vl[2]));
dl = mp_mul(d, U[2], V[2], Ul[2], Vl[2]);
mp_free(U[2]);
mp_free(V[2]);
/* calculate U0 * V0 */
a = mp_calloc(1, sizeof(BNS) * (x + x));
al = mp_mul(a, op1, op2, x, x);
/* calculate U2 * V2 */
e = mp_calloc(1, sizeof(BNS) * (l1 + l2));
el = mp_mul(e, op1 + x + x, op2 + x + x, l1, l2);
/* INTERPOLATE COEFFICIENTS */
/* b = b - 16a - e */
size = mp_lshift(rop, a, al, 4);
bl = mp_sub(b, b, rop, bl, size);
bl = mp_sub(b, b, e, bl, el);
/* c = c - a - e*/
cl = mp_sub(c, c, a, cl, al);
cl = mp_sub(c, c, e, cl, el);
/* d = d - a - 16e */
dl = mp_sub(d, d, a, dl, al);
size = mp_lshift(rop, e, el, 4);
dl = mp_sub(d, d, rop, dl, size);
/* w = (b + d) - 8c */
size = mp_add(rop, b, d, bl, dl);
xsize = mp_lshift(rop + size, c, cl, 3); /* rop has enough storage */
size = mp_sub(rop, rop, rop + size, size, xsize);
/* w = 2c - w*/
xsize = mp_lshift(rop + size, c, cl, 1);
size = mp_sub(rop, rop + size, rop, xsize, size);
/* b = b/2 */
bl = mp_rshift(b, b, bl, 1);
/* b = b - c */
bl = mp_sub(b, b, c, bl, cl);
/* c = w / 2 */
cl = mp_rshift(c, rop, size, 1);
/* b = b - c */
bl = mp_sub(b, b, c, bl, cl);
/* b = b/3 */
/* maybe the most expensive calculation */
i = bl - 1;
value = b[i];
b[i] = value / 3;
for (--i; i >= 0; i--) {
carry = value % 3;
value = ((BNI)carry << BNSBITS) + b[i];
b[i] = (BNS)(value / 3);
}
/* d = d/2 */
dl = mp_rshift(d, d, dl, 1);
/* d = d - b - w */
dl = mp_sub(d, d, b, dl, bl);
dl = mp_sub(d, d, rop, dl, size);
/* d = d/4 */
dl = mp_rshift(d, d, dl, 2);
/* STORE RESULT IN ROP */
/* first clear memory used as temporary variable w and 8c */
memset(rop, '\0', sizeof(BNS) * (len1 + len2));
i = x * 4;
xsize = (len1 + len2) - i;
size = mp_add(rop + i, rop + i, e, xsize, el) + i;
i = x * 3;
xsize = size - i;
size = mp_add(rop + i, rop + i, d, xsize, dl) + i;
i = x * 2;
xsize = size - i;
size = mp_add(rop + i, rop + i, c, xsize, cl) + i;
i = x;
xsize = size - i;
size = mp_add(rop + i, rop + i, b, xsize, bl) + i;
size = mp_add(rop, rop, a, size, al);
mp_free(e);
mp_free(d);
mp_free(c);
mp_free(b);
mp_free(a);
if (size > 1 && rop[size - 1] == 0)
--size;
return (size);
}
long
mp_mul(BNS *rop, BNS *op1, BNS *op2, BNI len1, BNI len2)
{
if (len1 < len2)
MP_SWAP(op1, op2, len1, len2);
if (len1 < KARATSUBA || len2 < KARATSUBA)
return (mp_base_mul(rop, op1, op2, len1, len2));
else if (len1 < TOOM && len2 < TOOM && len2 > ((len1 + 1) >> 1))
return (mp_karatsuba_mul(rop, op1, op2, len1, len2));
else if (len1 >= TOOM && len2 >= TOOM && (len2 + 2) / 3 == (len1 + 2) / 3)
return (mp_toom_mul(rop, op1, op2, len1, len2));
else {
long xsize, psize, isize;
BNS *ptr;
/* adjust index pointer and estimated size of result */
isize = 0;
xsize = len1 + len2;
mp_mul(rop, op1, op2, len2, len2);
/* adjust pointers */
len1 -= len2;
op1 += len2;
/* allocate buffer for intermediate multiplications */
if (len1 > len2)
ptr = mp_calloc(1, sizeof(BNS) * (len2 + len2));
else
ptr = mp_calloc(1, sizeof(BNS) * (len1 + len2));
/* loop multiplying len2 size operands at a time */
while (len1 >= len2) {
isize += len2;
psize = mp_mul(ptr, op1, op2, len2, len2);
mp_add(rop + isize, rop + isize, ptr, xsize - isize, psize);
len1 -= len2;
op1 += len2;
/* multiplication routines require zeroed memory */
memset(ptr, '\0', sizeof(BNS) * (MIN(len1, len2) + len2));
}
/* len1 was not a multiple of len2 */
if (len1) {
isize += len2;
psize = mp_mul(ptr, op2, op1, len2, len1);
mp_add(rop + isize, rop + isize, ptr, xsize, psize);
}
/* adjust result size */
if (rop[xsize - 1] == 0)
--xsize;
mp_free(ptr);
return (xsize);
}
}
|