1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
/*****************************************************************************
* Copyright (C) 2013-2020 MulticoreWare, Inc
*
* Author: Gopu Govindaswamy <gopu@multicorewareinc.com>
* Min Chen <chenm003@163.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "deblock.h"
#include "framedata.h"
#include "picyuv.h"
#include "slice.h"
#include "mv.h"
using namespace X265_NS;
#define DEBLOCK_SMALLEST_BLOCK 8
#define DEFAULT_INTRA_TC_OFFSET 2
void Deblock::deblockCTU(const CUData* ctu, const CUGeom& cuGeom, int32_t dir)
{
uint8_t blockStrength[MAX_NUM_PARTITIONS];
memset(blockStrength, 0, sizeof(uint8_t) * cuGeom.numPartitions);
deblockCU(ctu, cuGeom, dir, blockStrength);
}
static inline uint8_t bsCuEdge(const CUData* cu, uint32_t absPartIdx, int32_t dir)
{
if (dir == Deblock::EDGE_VER)
{
if (cu->m_cuPelX + g_zscanToPelX[absPartIdx] > 0)
{
uint32_t tempPartIdx;
const CUData* tempCU = cu->getPULeft(tempPartIdx, absPartIdx);
return tempCU ? 2 : 0;
}
}
else
{
if (cu->m_cuPelY + g_zscanToPelY[absPartIdx] > 0)
{
uint32_t tempPartIdx;
const CUData* tempCU = cu->getPUAbove(tempPartIdx, absPartIdx);
return tempCU ? 2 : 0;
}
}
return 0;
}
/* Deblocking filter process in CU-based (the same function as conventional's)
* param Edge the direction of the edge in block boundary (horizonta/vertical), which is added newly */
void Deblock::deblockCU(const CUData* cu, const CUGeom& cuGeom, const int32_t dir, uint8_t blockStrength[])
{
uint32_t absPartIdx = cuGeom.absPartIdx;
uint32_t depth = cuGeom.depth;
if (cu->m_predMode[absPartIdx] == MODE_NONE)
return;
if (cu->m_cuDepth[absPartIdx] > depth)
{
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
deblockCU(cu, childGeom, dir, blockStrength);
}
return;
}
uint32_t numUnits = 1 << (cuGeom.log2CUSize - LOG2_UNIT_SIZE);
setEdgefilterPU(cu, absPartIdx, dir, blockStrength, numUnits);
setEdgefilterTU(cu, absPartIdx, 0, dir, blockStrength);
setEdgefilterMultiple(absPartIdx, dir, 0, bsCuEdge(cu, absPartIdx, dir), blockStrength, numUnits);
uint32_t numParts = cuGeom.numPartitions;
for (uint32_t partIdx = absPartIdx; partIdx < absPartIdx + numParts; partIdx++)
{
uint32_t bsCheck = !(partIdx & (1 << dir));
if (bsCheck && blockStrength[partIdx])
blockStrength[partIdx] = getBoundaryStrength(cu, dir, partIdx, blockStrength);
}
const uint32_t partIdxIncr = DEBLOCK_SMALLEST_BLOCK >> LOG2_UNIT_SIZE;
uint32_t shiftFactor = (dir == EDGE_VER) ? cu->m_hChromaShift : cu->m_vChromaShift;
uint32_t chromaMask = ((DEBLOCK_SMALLEST_BLOCK << shiftFactor) >> LOG2_UNIT_SIZE) - 1;
uint32_t e0 = (dir == EDGE_VER ? g_zscanToPelX[absPartIdx] : g_zscanToPelY[absPartIdx]) >> LOG2_UNIT_SIZE;
for (uint32_t e = 0; e < numUnits; e += partIdxIncr)
{
edgeFilterLuma(cu, absPartIdx, depth, dir, e, blockStrength);
if (!((e0 + e) & chromaMask) && cu->m_chromaFormat != X265_CSP_I400)
edgeFilterChroma(cu, absPartIdx, depth, dir, e, blockStrength);
}
}
static inline uint32_t calcBsIdx(uint32_t absPartIdx, int32_t dir, int32_t edgeIdx, int32_t baseUnitIdx)
{
if (dir)
return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (edgeIdx << LOG2_RASTER_SIZE) + baseUnitIdx];
else
return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (baseUnitIdx << LOG2_RASTER_SIZE) + edgeIdx];
}
void Deblock::setEdgefilterMultiple(uint32_t scanIdx, int32_t dir, int32_t edgeIdx, uint8_t value, uint8_t blockStrength[], uint32_t numUnits)
{
X265_CHECK(numUnits > 0, "numUnits edge filter check\n");
for (uint32_t i = 0; i < numUnits; i++)
{
const uint32_t bsidx = calcBsIdx(scanIdx, dir, edgeIdx, i);
blockStrength[bsidx] = value;
}
}
void Deblock::setEdgefilterTU(const CUData* cu, uint32_t absPartIdx, uint32_t tuDepth, int32_t dir, uint8_t blockStrength[])
{
uint32_t log2TrSize = cu->m_log2CUSize[absPartIdx] - tuDepth;
if (cu->m_tuDepth[absPartIdx] > tuDepth)
{
uint32_t qNumParts = 1 << (log2TrSize - LOG2_UNIT_SIZE - 1) * 2;
for (uint32_t qIdx = 0; qIdx < 4; ++qIdx, absPartIdx += qNumParts)
setEdgefilterTU(cu, absPartIdx, tuDepth + 1, dir, blockStrength);
return;
}
uint32_t numUnits = 1 << (log2TrSize - LOG2_UNIT_SIZE);
setEdgefilterMultiple(absPartIdx, dir, 0, 2, blockStrength, numUnits);
}
void Deblock::setEdgefilterPU(const CUData* cu, uint32_t absPartIdx, int32_t dir, uint8_t blockStrength[], uint32_t numUnits)
{
const uint32_t hNumUnits = numUnits >> 1;
const uint32_t qNumUnits = numUnits >> 2;
switch (cu->m_partSize[absPartIdx])
{
case SIZE_2NxN:
if (EDGE_HOR == dir)
setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_Nx2N:
if (EDGE_VER == dir)
setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_NxN:
setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_2NxnU:
if (EDGE_HOR == dir)
setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_nLx2N:
if (EDGE_VER == dir)
setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_2NxnD:
if (EDGE_HOR == dir)
setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_nRx2N:
if (EDGE_VER == dir)
setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
break;
case SIZE_2Nx2N:
default:
break;
}
}
uint8_t Deblock::getBoundaryStrength(const CUData* cuQ, int32_t dir, uint32_t partQ, const uint8_t blockStrength[])
{
// Calculate block index
uint32_t partP;
const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));
// Set BS for Intra MB : BS = 2
if (cuP->isIntra(partP) || cuQ->isIntra(partQ))
return 2;
// Set BS for not Intra MB : BS = 1 or 0
if (blockStrength[partQ] > 1 &&
(cuQ->getCbf(partQ, TEXT_LUMA, cuQ->m_tuDepth[partQ]) ||
cuP->getCbf(partP, TEXT_LUMA, cuP->m_tuDepth[partP])))
return 1;
static const MV zeroMv(0, 0);
const Slice* const sliceQ = cuQ->m_slice;
const Slice* const sliceP = cuP->m_slice;
const Frame* refP0 = (cuP->m_refIdx[0][partP] >= 0) ? sliceP->m_refFrameList[0][cuP->m_refIdx[0][partP]] : NULL;
const Frame* refQ0 = (cuQ->m_refIdx[0][partQ] >= 0) ? sliceQ->m_refFrameList[0][cuQ->m_refIdx[0][partQ]] : NULL;
const MV& mvP0 = refP0 ? cuP->m_mv[0][partP] : zeroMv;
const MV& mvQ0 = refQ0 ? cuQ->m_mv[0][partQ] : zeroMv;
if (sliceQ->isInterP() && sliceP->isInterP())
{
return ((refP0 != refQ0) ||
(abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4)) ? 1 : 0;
}
// (sliceQ->isInterB() || sliceP->isInterB())
const Frame* refP1 = (cuP->m_refIdx[1][partP] >= 0) ? sliceP->m_refFrameList[1][cuP->m_refIdx[1][partP]] : NULL;
const Frame* refQ1 = (cuQ->m_refIdx[1][partQ] >= 0) ? sliceQ->m_refFrameList[1][cuQ->m_refIdx[1][partQ]] : NULL;
const MV& mvP1 = refP1 ? cuP->m_mv[1][partP] : zeroMv;
const MV& mvQ1 = refQ1 ? cuQ->m_mv[1][partQ] : zeroMv;
if (((refP0 == refQ0) && (refP1 == refQ1)) || ((refP0 == refQ1) && (refP1 == refQ0)))
{
if (refP0 != refP1) // Different L0 & L1
{
if (refP0 == refQ0)
return ((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
(abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) ? 1 : 0;
else
return ((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
(abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4)) ? 1 : 0;
}
else // Same L0 & L1
{
return (((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
(abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) &&
((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
(abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4))) ? 1 : 0;
}
}
// for all different Ref_Idx
return 1;
}
static inline int32_t calcDP(pixel* src, intptr_t offset)
{
return abs(static_cast<int32_t>(src[-offset * 3]) - 2 * src[-offset * 2] + src[-offset]);
}
static inline int32_t calcDQ(pixel* src, intptr_t offset)
{
return abs(static_cast<int32_t>(src[0]) - 2 * src[offset] + src[offset * 2]);
}
static inline bool useStrongFiltering(intptr_t offset, int32_t beta, int32_t tc, pixel* src)
{
int16_t m4 = (int16_t)src[0];
int16_t m3 = (int16_t)src[-offset];
int16_t m7 = (int16_t)src[offset * 3];
int16_t m0 = (int16_t)src[-offset * 4];
int32_t strong = abs(m0 - m3) + abs(m7 - m4);
return (strong < (beta >> 3)) && (abs(m3 - m4) < ((tc * 5 + 1) >> 1));
}
/* Deblocking for the luminance component with strong or weak filter
* \param src pointer to picture data
* \param offset offset value for picture data
* \param tc tc value
* \param maskP indicator to enable filtering on partP
* \param maskQ indicator to enable filtering on partQ
* \param maskP1 decision weak filter/no filter for partP
* \param maskQ1 decision weak filter/no filter for partQ */
static inline void pelFilterLuma(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tc, int32_t maskP, int32_t maskQ,
int32_t maskP1, int32_t maskQ1)
{
int32_t thrCut = tc * 10;
int32_t tc2 = tc >> 1;
maskP1 &= maskP;
maskQ1 &= maskQ;
for (int32_t i = 0; i < UNIT_SIZE; i++, src += srcStep)
{
int16_t m4 = (int16_t)src[0];
int16_t m3 = (int16_t)src[-offset];
int16_t m5 = (int16_t)src[offset];
int16_t m2 = (int16_t)src[-offset * 2];
int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4;
if (abs(delta) < thrCut)
{
delta = x265_clip3(-tc, tc, delta);
src[-offset] = x265_clip(m3 + (delta & maskP));
src[0] = x265_clip(m4 - (delta & maskQ));
if (maskP1)
{
int16_t m1 = (int16_t)src[-offset * 3];
int32_t delta1 = x265_clip3(-tc2, tc2, ((((m1 + m3 + 1) >> 1) - m2 + delta) >> 1));
src[-offset * 2] = x265_clip(m2 + delta1);
}
if (maskQ1)
{
int16_t m6 = (int16_t)src[offset * 2];
int32_t delta2 = x265_clip3(-tc2, tc2, ((((m6 + m4 + 1) >> 1) - m5 - delta) >> 1));
src[offset] = x265_clip(m5 + delta2);
}
}
}
}
void Deblock::edgeFilterLuma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
PicYuv* reconPic = cuQ->m_encData->m_reconPic[0];
pixel* src = reconPic->getLumaAddr(cuQ->m_cuAddr, absPartIdx);
intptr_t stride = reconPic->m_stride;
const PPS* pps = cuQ->m_slice->m_pps;
intptr_t offset, srcStep;
int32_t maskP = -1;
int32_t maskQ = -1;
int32_t betaOffset = pps->deblockingFilterBetaOffsetDiv2 << 1;
int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;
bool bCheckNoFilter = pps->bTransquantBypassEnabled;
if (dir == EDGE_VER)
{
offset = 1;
srcStep = stride;
src += (edge << LOG2_UNIT_SIZE);
}
else // (dir == EDGE_HOR)
{
offset = stride;
srcStep = 1;
src += (edge << LOG2_UNIT_SIZE) * stride;
}
uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> depth;
for (uint32_t idx = 0; idx < numUnits; idx++)
{
uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx);
uint32_t bs = blockStrength[partQ];
if (!bs)
continue;
// Derive neighboring PU index
uint32_t partP;
const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));
if (bCheckNoFilter)
{
// check if each of PUs is lossless coded
maskP = cuP->m_tqBypass[partP] - 1;
maskQ = cuQ->m_tqBypass[partQ] - 1;
if (!(maskP | maskQ))
continue;
}
int32_t qpQ = cuQ->m_qp[partQ];
int32_t qpP = cuP->m_qp[partP];
int32_t qp = (qpP + qpQ + 1) >> 1;
int32_t indexB = x265_clip3(0, QP_MAX_SPEC, qp + betaOffset);
const int32_t bitdepthShift = X265_DEPTH - 8;
int32_t beta = s_betaTable[indexB] << bitdepthShift;
intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
int32_t dp0 = calcDP(src + unitOffset , offset);
int32_t dq0 = calcDQ(src + unitOffset , offset);
int32_t dp3 = calcDP(src + unitOffset + srcStep * 3, offset);
int32_t dq3 = calcDQ(src + unitOffset + srcStep * 3, offset);
int32_t d0 = dp0 + dq0;
int32_t d3 = dp3 + dq3;
int32_t d = d0 + d3;
if (d >= beta)
continue;
int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET * (bs - 1) + tcOffset));
int32_t tc = s_tcTable[indexTC] << bitdepthShift;
bool sw = (2 * d0 < (beta >> 2) &&
2 * d3 < (beta >> 2) &&
useStrongFiltering(offset, beta, tc, src + unitOffset ) &&
useStrongFiltering(offset, beta, tc, src + unitOffset + srcStep * 3));
if (sw)
{
int32_t tc2 = 2 * tc;
int32_t tcP = (tc2 & maskP);
int32_t tcQ = (tc2 & maskQ);
primitives.pelFilterLumaStrong[dir](src + unitOffset, srcStep, offset, tcP, tcQ);
}
else
{
int32_t sideThreshold = (beta + (beta >> 1)) >> 3;
int32_t dp = dp0 + dp3;
int32_t dq = dq0 + dq3;
int32_t maskP1 = (dp < sideThreshold ? -1 : 0);
int32_t maskQ1 = (dq < sideThreshold ? -1 : 0);
pelFilterLuma(src + unitOffset, srcStep, offset, tc, maskP, maskQ, maskP1, maskQ1);
}
}
}
void Deblock::edgeFilterChroma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
int32_t chFmt = cuQ->m_chromaFormat, chromaShift;
intptr_t offset, srcStep;
const PPS* pps = cuQ->m_slice->m_pps;
int32_t maskP = -1;
int32_t maskQ = -1;
int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;
X265_CHECK(((dir == EDGE_VER)
? ((g_zscanToPelX[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_hChromaShift)
: ((g_zscanToPelY[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_vChromaShift)) % DEBLOCK_SMALLEST_BLOCK == 0,
"invalid edge\n");
PicYuv* reconPic = cuQ->m_encData->m_reconPic[0];
intptr_t stride = reconPic->m_strideC;
intptr_t srcOffset = reconPic->getChromaAddrOffset(cuQ->m_cuAddr, absPartIdx);
bool bCheckNoFilter = pps->bTransquantBypassEnabled;
if (dir == EDGE_VER)
{
chromaShift = cuQ->m_vChromaShift;
srcOffset += (edge << (LOG2_UNIT_SIZE - cuQ->m_hChromaShift));
offset = 1;
srcStep = stride;
}
else // (dir == EDGE_HOR)
{
chromaShift = cuQ->m_hChromaShift;
srcOffset += edge * stride << (LOG2_UNIT_SIZE - cuQ->m_vChromaShift);
offset = stride;
srcStep = 1;
}
pixel* srcChroma[2];
srcChroma[0] = reconPic->m_picOrg[1] + srcOffset;
srcChroma[1] = reconPic->m_picOrg[2] + srcOffset;
uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> (depth + chromaShift);
for (uint32_t idx = 0; idx < numUnits; idx++)
{
uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx << chromaShift);
uint32_t bs = blockStrength[partQ];
if (bs <= 1)
continue;
// Derive neighboring PU index
uint32_t partP;
const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));
if (bCheckNoFilter)
{
// check if each of PUs is lossless coded
maskP = (cuP->m_tqBypass[partP] ? 0 : -1);
maskQ = (cuQ->m_tqBypass[partQ] ? 0 : -1);
if (!(maskP | maskQ))
continue;
}
int32_t qpQ = cuQ->m_qp[partQ];
int32_t qpP = cuP->m_qp[partP];
int32_t qpA = (qpP + qpQ + 1) >> 1;
intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
for (uint32_t chromaIdx = 0; chromaIdx < 2; chromaIdx++)
{
int32_t qp = qpA + pps->chromaQpOffset[chromaIdx];
if (qp >= 30)
qp = chFmt == X265_CSP_I420 ? g_chromaScale[qp] : X265_MIN(qp, QP_MAX_SPEC);
int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET + tcOffset));
const int32_t bitdepthShift = X265_DEPTH - 8;
int32_t tc = s_tcTable[indexTC] << bitdepthShift;
pixel* srcC = srcChroma[chromaIdx];
primitives.pelFilterChroma[dir](srcC + unitOffset, srcStep, offset, tc, maskP, maskQ);
}
}
}
const uint8_t Deblock::s_tcTable[54] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24
};
const uint8_t Deblock::s_betaTable[52] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64
};
|