File: deblock.cpp

package info (click to toggle)
x265 4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,408 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (510 lines) | stat: -rw-r--r-- 19,297 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/*****************************************************************************
* Copyright (C) 2013-2020 MulticoreWare, Inc
*
* Author: Gopu Govindaswamy <gopu@multicorewareinc.com>
*         Min Chen <chenm003@163.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/

#include "common.h"
#include "deblock.h"
#include "framedata.h"
#include "picyuv.h"
#include "slice.h"
#include "mv.h"

using namespace X265_NS;

#define DEBLOCK_SMALLEST_BLOCK  8
#define DEFAULT_INTRA_TC_OFFSET 2

void Deblock::deblockCTU(const CUData* ctu, const CUGeom& cuGeom, int32_t dir)
{
    uint8_t blockStrength[MAX_NUM_PARTITIONS];

    memset(blockStrength, 0, sizeof(uint8_t) * cuGeom.numPartitions);

    deblockCU(ctu, cuGeom, dir, blockStrength);
}

static inline uint8_t bsCuEdge(const CUData* cu, uint32_t absPartIdx, int32_t dir)
{
    if (dir == Deblock::EDGE_VER)
    {
        if (cu->m_cuPelX + g_zscanToPelX[absPartIdx] > 0)
        {
            uint32_t    tempPartIdx;
            const CUData* tempCU = cu->getPULeft(tempPartIdx, absPartIdx);
            return tempCU ? 2 : 0;
        }
    }
    else
    {
        if (cu->m_cuPelY + g_zscanToPelY[absPartIdx] > 0)
        {
            uint32_t    tempPartIdx;
            const CUData* tempCU = cu->getPUAbove(tempPartIdx, absPartIdx);
            return tempCU ? 2 : 0;
        }
    }

    return 0;
}

/* Deblocking filter process in CU-based (the same function as conventional's)
 * param Edge the direction of the edge in block boundary (horizonta/vertical), which is added newly */
void Deblock::deblockCU(const CUData* cu, const CUGeom& cuGeom, const int32_t dir, uint8_t blockStrength[])
{
    uint32_t absPartIdx = cuGeom.absPartIdx;
    uint32_t depth = cuGeom.depth;
    if (cu->m_predMode[absPartIdx] == MODE_NONE)
        return;

    if (cu->m_cuDepth[absPartIdx] > depth)
    {
        for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
        {
            const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
            if (childGeom.flags & CUGeom::PRESENT)
                deblockCU(cu, childGeom, dir, blockStrength);
        }
        return;
    }

    uint32_t numUnits = 1 << (cuGeom.log2CUSize - LOG2_UNIT_SIZE);
    setEdgefilterPU(cu, absPartIdx, dir, blockStrength, numUnits);
    setEdgefilterTU(cu, absPartIdx, 0, dir, blockStrength);
    setEdgefilterMultiple(absPartIdx, dir, 0, bsCuEdge(cu, absPartIdx, dir), blockStrength, numUnits);

    uint32_t numParts = cuGeom.numPartitions;
    for (uint32_t partIdx = absPartIdx; partIdx < absPartIdx + numParts; partIdx++)
    {
        uint32_t bsCheck = !(partIdx & (1 << dir));

        if (bsCheck && blockStrength[partIdx])
            blockStrength[partIdx] = getBoundaryStrength(cu, dir, partIdx, blockStrength);
    }

    const uint32_t partIdxIncr = DEBLOCK_SMALLEST_BLOCK >> LOG2_UNIT_SIZE;
    uint32_t shiftFactor = (dir == EDGE_VER) ? cu->m_hChromaShift : cu->m_vChromaShift;
    uint32_t chromaMask = ((DEBLOCK_SMALLEST_BLOCK << shiftFactor) >> LOG2_UNIT_SIZE) - 1;
    uint32_t e0 = (dir == EDGE_VER ? g_zscanToPelX[absPartIdx] : g_zscanToPelY[absPartIdx]) >> LOG2_UNIT_SIZE;
        
    for (uint32_t e = 0; e < numUnits; e += partIdxIncr)
    {
        edgeFilterLuma(cu, absPartIdx, depth, dir, e, blockStrength);
        if (!((e0 + e) & chromaMask) && cu->m_chromaFormat != X265_CSP_I400)
            edgeFilterChroma(cu, absPartIdx, depth, dir, e, blockStrength);
    }
}

static inline uint32_t calcBsIdx(uint32_t absPartIdx, int32_t dir, int32_t edgeIdx, int32_t baseUnitIdx)
{
    if (dir)
        return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (edgeIdx << LOG2_RASTER_SIZE) + baseUnitIdx];
    else
        return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (baseUnitIdx << LOG2_RASTER_SIZE) + edgeIdx];
}

void Deblock::setEdgefilterMultiple(uint32_t scanIdx, int32_t dir, int32_t edgeIdx, uint8_t value, uint8_t blockStrength[], uint32_t numUnits)
{
    X265_CHECK(numUnits > 0, "numUnits edge filter check\n");
    for (uint32_t i = 0; i < numUnits; i++)
    {
        const uint32_t bsidx = calcBsIdx(scanIdx, dir, edgeIdx, i);
        blockStrength[bsidx] = value;
    }
}

void Deblock::setEdgefilterTU(const CUData* cu, uint32_t absPartIdx, uint32_t tuDepth, int32_t dir, uint8_t blockStrength[])
{
    uint32_t log2TrSize = cu->m_log2CUSize[absPartIdx] - tuDepth;
    if (cu->m_tuDepth[absPartIdx] > tuDepth)
    {
        uint32_t qNumParts = 1 << (log2TrSize - LOG2_UNIT_SIZE - 1) * 2;
        for (uint32_t qIdx = 0; qIdx < 4; ++qIdx, absPartIdx += qNumParts)
            setEdgefilterTU(cu, absPartIdx, tuDepth + 1, dir, blockStrength);
        return;
    }

    uint32_t numUnits = 1 << (log2TrSize - LOG2_UNIT_SIZE);
    setEdgefilterMultiple(absPartIdx, dir, 0, 2, blockStrength, numUnits);
}

void Deblock::setEdgefilterPU(const CUData* cu, uint32_t absPartIdx, int32_t dir, uint8_t blockStrength[], uint32_t numUnits)
{
    const uint32_t hNumUnits = numUnits >> 1;
    const uint32_t qNumUnits = numUnits >> 2;

    switch (cu->m_partSize[absPartIdx])
    {
    case SIZE_2NxN:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_Nx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_NxN:
        setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_2NxnU:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_nLx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_2NxnD:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_nRx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
        break;

    case SIZE_2Nx2N:
    default:
        break;
    }
}

uint8_t Deblock::getBoundaryStrength(const CUData* cuQ, int32_t dir, uint32_t partQ, const uint8_t blockStrength[])
{
    // Calculate block index
    uint32_t partP;
    const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

    // Set BS for Intra MB : BS = 2
    if (cuP->isIntra(partP) || cuQ->isIntra(partQ))
        return 2;

    // Set BS for not Intra MB : BS = 1 or 0
    if (blockStrength[partQ] > 1 &&
        (cuQ->getCbf(partQ, TEXT_LUMA, cuQ->m_tuDepth[partQ]) ||
         cuP->getCbf(partP, TEXT_LUMA, cuP->m_tuDepth[partP])))
        return 1;

    static const MV zeroMv(0, 0);
    const Slice* const sliceQ = cuQ->m_slice;
    const Slice* const sliceP = cuP->m_slice;
    const Frame* refP0 = (cuP->m_refIdx[0][partP] >= 0) ? sliceP->m_refFrameList[0][cuP->m_refIdx[0][partP]] : NULL;
    const Frame* refQ0 = (cuQ->m_refIdx[0][partQ] >= 0) ? sliceQ->m_refFrameList[0][cuQ->m_refIdx[0][partQ]] : NULL;
    const MV& mvP0 = refP0 ? cuP->m_mv[0][partP] : zeroMv;
    const MV& mvQ0 = refQ0 ? cuQ->m_mv[0][partQ] : zeroMv;
    if (sliceQ->isInterP() && sliceP->isInterP())
    {
        return ((refP0 != refQ0) ||
                (abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4)) ? 1 : 0;
    }
    // (sliceQ->isInterB() || sliceP->isInterB())
    const Frame* refP1 = (cuP->m_refIdx[1][partP] >= 0) ? sliceP->m_refFrameList[1][cuP->m_refIdx[1][partP]] : NULL;
    const Frame* refQ1 = (cuQ->m_refIdx[1][partQ] >= 0) ? sliceQ->m_refFrameList[1][cuQ->m_refIdx[1][partQ]] : NULL;
    const MV& mvP1 = refP1 ? cuP->m_mv[1][partP] : zeroMv;
    const MV& mvQ1 = refQ1 ? cuQ->m_mv[1][partQ] : zeroMv;

    if (((refP0 == refQ0) && (refP1 == refQ1)) || ((refP0 == refQ1) && (refP1 == refQ0)))
    {
        if (refP0 != refP1) // Different L0 & L1
        {
            if (refP0 == refQ0)
                return ((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
                        (abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) ? 1 : 0;
            else
                return ((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
                        (abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4)) ? 1 : 0;
        }
        else // Same L0 & L1
        {
            return (((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
                     (abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) &&
                    ((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
                     (abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4))) ? 1 : 0;
        }
    }
        
    // for all different Ref_Idx
    return 1;
}

static inline int32_t calcDP(pixel* src, intptr_t offset)
{
    return abs(static_cast<int32_t>(src[-offset * 3]) - 2 * src[-offset * 2] + src[-offset]);
}

static inline int32_t calcDQ(pixel* src, intptr_t offset)
{
    return abs(static_cast<int32_t>(src[0]) - 2 * src[offset] + src[offset * 2]);
}

static inline bool useStrongFiltering(intptr_t offset, int32_t beta, int32_t tc, pixel* src)
{
    int16_t m4     = (int16_t)src[0];
    int16_t m3     = (int16_t)src[-offset];
    int16_t m7     = (int16_t)src[offset * 3];
    int16_t m0     = (int16_t)src[-offset * 4];
    int32_t strong = abs(m0 - m3) + abs(m7 - m4);

    return (strong < (beta >> 3)) && (abs(m3 - m4) < ((tc * 5 + 1) >> 1));
}

/* Deblocking for the luminance component with strong or weak filter
 * \param src     pointer to picture data
 * \param offset  offset value for picture data
 * \param tc      tc value
 * \param maskP   indicator to enable filtering on partP
 * \param maskQ   indicator to enable filtering on partQ
 * \param maskP1  decision weak filter/no filter for partP
 * \param maskQ1  decision weak filter/no filter for partQ */
static inline void pelFilterLuma(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tc, int32_t maskP, int32_t maskQ,
                                 int32_t maskP1, int32_t maskQ1)
{
    int32_t thrCut = tc * 10;
    int32_t tc2 = tc >> 1;
    maskP1 &= maskP;
    maskQ1 &= maskQ;

    for (int32_t i = 0; i < UNIT_SIZE; i++, src += srcStep)
    {
        int16_t m4  = (int16_t)src[0];
        int16_t m3  = (int16_t)src[-offset];
        int16_t m5  = (int16_t)src[offset];
        int16_t m2  = (int16_t)src[-offset * 2];

        int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4;

        if (abs(delta) < thrCut)
        {
            delta = x265_clip3(-tc, tc, delta);

            src[-offset] = x265_clip(m3 + (delta & maskP));
            src[0] = x265_clip(m4 - (delta & maskQ));
            if (maskP1)
            {
                int16_t m1  = (int16_t)src[-offset * 3];
                int32_t delta1 = x265_clip3(-tc2, tc2, ((((m1 + m3 + 1) >> 1) - m2 + delta) >> 1));
                src[-offset * 2] = x265_clip(m2 + delta1);
            }
            if (maskQ1)
            {
                int16_t m6  = (int16_t)src[offset * 2];
                int32_t delta2 = x265_clip3(-tc2, tc2, ((((m6 + m4 + 1) >> 1) - m5 - delta) >> 1));
                src[offset] = x265_clip(m5 + delta2);
            }
        }
    }
}

void Deblock::edgeFilterLuma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
    PicYuv* reconPic = cuQ->m_encData->m_reconPic[0];
    pixel* src = reconPic->getLumaAddr(cuQ->m_cuAddr, absPartIdx);
    intptr_t stride = reconPic->m_stride;
    const PPS* pps = cuQ->m_slice->m_pps;

    intptr_t offset, srcStep;

    int32_t maskP = -1;
    int32_t maskQ = -1;
    int32_t betaOffset = pps->deblockingFilterBetaOffsetDiv2 << 1;
    int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;
    bool bCheckNoFilter = pps->bTransquantBypassEnabled;

    if (dir == EDGE_VER)
    {
        offset = 1;
        srcStep = stride;
        src += (edge << LOG2_UNIT_SIZE);
    }
    else // (dir == EDGE_HOR)
    {
        offset = stride;
        srcStep = 1;
        src += (edge << LOG2_UNIT_SIZE) * stride;
    }

    uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> depth;
    for (uint32_t idx = 0; idx < numUnits; idx++)
    {
        uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx);
        uint32_t bs = blockStrength[partQ];

        if (!bs)
            continue;

        // Derive neighboring PU index
        uint32_t partP;
        const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

        if (bCheckNoFilter)
        {
            // check if each of PUs is lossless coded
            maskP = cuP->m_tqBypass[partP] - 1;
            maskQ = cuQ->m_tqBypass[partQ] - 1;
            if (!(maskP | maskQ))
                continue;
        }

        int32_t qpQ = cuQ->m_qp[partQ];
        int32_t qpP = cuP->m_qp[partP];
        int32_t qp  = (qpP + qpQ + 1) >> 1;

        int32_t indexB = x265_clip3(0, QP_MAX_SPEC, qp + betaOffset);

        const int32_t bitdepthShift = X265_DEPTH - 8;
        int32_t beta = s_betaTable[indexB] << bitdepthShift;

        intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
        int32_t dp0 = calcDP(src + unitOffset              , offset);
        int32_t dq0 = calcDQ(src + unitOffset              , offset);
        int32_t dp3 = calcDP(src + unitOffset + srcStep * 3, offset);
        int32_t dq3 = calcDQ(src + unitOffset + srcStep * 3, offset);
        int32_t d0 = dp0 + dq0;
        int32_t d3 = dp3 + dq3;

        int32_t d =  d0 + d3;

        if (d >= beta)
            continue;

        int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET * (bs - 1) + tcOffset));
        int32_t tc = s_tcTable[indexTC] << bitdepthShift;

        bool sw = (2 * d0 < (beta >> 2) &&
                   2 * d3 < (beta >> 2) &&
                   useStrongFiltering(offset, beta, tc, src + unitOffset              ) &&
                   useStrongFiltering(offset, beta, tc, src + unitOffset + srcStep * 3));

        if (sw)
        {
            int32_t tc2 = 2 * tc;
            int32_t tcP = (tc2 & maskP);
            int32_t tcQ = (tc2 & maskQ);
            primitives.pelFilterLumaStrong[dir](src + unitOffset, srcStep, offset, tcP, tcQ);
        }
        else
        {
            int32_t sideThreshold = (beta + (beta >> 1)) >> 3;
            int32_t dp = dp0 + dp3;
            int32_t dq = dq0 + dq3;
            int32_t maskP1 = (dp < sideThreshold ? -1 : 0);
            int32_t maskQ1 = (dq < sideThreshold ? -1 : 0);

            pelFilterLuma(src + unitOffset, srcStep, offset, tc, maskP, maskQ, maskP1, maskQ1);
        }
    }
}

void Deblock::edgeFilterChroma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
    int32_t chFmt = cuQ->m_chromaFormat, chromaShift;
    intptr_t offset, srcStep;
    const PPS* pps = cuQ->m_slice->m_pps;

    int32_t maskP = -1;
    int32_t maskQ = -1;
    int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;

    X265_CHECK(((dir == EDGE_VER)
                ? ((g_zscanToPelX[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_hChromaShift)
                : ((g_zscanToPelY[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_vChromaShift)) % DEBLOCK_SMALLEST_BLOCK == 0,
               "invalid edge\n");

    PicYuv* reconPic = cuQ->m_encData->m_reconPic[0];
    intptr_t stride = reconPic->m_strideC;
    intptr_t srcOffset = reconPic->getChromaAddrOffset(cuQ->m_cuAddr, absPartIdx);
    bool bCheckNoFilter = pps->bTransquantBypassEnabled;

    if (dir == EDGE_VER)
    {
        chromaShift = cuQ->m_vChromaShift;
        srcOffset += (edge << (LOG2_UNIT_SIZE - cuQ->m_hChromaShift));
        offset     = 1;
        srcStep    = stride;
    }
    else // (dir == EDGE_HOR)
    {
        chromaShift = cuQ->m_hChromaShift;
        srcOffset += edge * stride << (LOG2_UNIT_SIZE - cuQ->m_vChromaShift);
        offset     = stride;
        srcStep    = 1;
    }

    pixel* srcChroma[2];
    srcChroma[0] = reconPic->m_picOrg[1] + srcOffset;
    srcChroma[1] = reconPic->m_picOrg[2] + srcOffset;

    uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> (depth + chromaShift);
    for (uint32_t idx = 0; idx < numUnits; idx++)
    {
        uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx << chromaShift);
        uint32_t bs = blockStrength[partQ];

        if (bs <= 1)
            continue;

        // Derive neighboring PU index
        uint32_t partP;
        const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

        if (bCheckNoFilter)
        {
            // check if each of PUs is lossless coded
            maskP = (cuP->m_tqBypass[partP] ? 0 : -1);
            maskQ = (cuQ->m_tqBypass[partQ] ? 0 : -1);
            if (!(maskP | maskQ))
                continue;
        }

        int32_t qpQ = cuQ->m_qp[partQ];
        int32_t qpP = cuP->m_qp[partP];
        int32_t qpA = (qpP + qpQ + 1) >> 1;

        intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
        for (uint32_t chromaIdx = 0; chromaIdx < 2; chromaIdx++)
        {
            int32_t qp = qpA + pps->chromaQpOffset[chromaIdx];
            if (qp >= 30)
                qp = chFmt == X265_CSP_I420 ? g_chromaScale[qp] : X265_MIN(qp, QP_MAX_SPEC);

            int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET + tcOffset));
            const int32_t bitdepthShift = X265_DEPTH - 8;
            int32_t tc = s_tcTable[indexTC] << bitdepthShift;
            pixel* srcC = srcChroma[chromaIdx];

            primitives.pelFilterChroma[dir](srcC + unitOffset, srcStep, offset, tc, maskP, maskQ);
        }
    }
}

const uint8_t Deblock::s_tcTable[54] =
{
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
    2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24
};

const uint8_t Deblock::s_betaTable[52] =
{
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64
};