File: picyuv.cpp

package info (click to toggle)
x265 4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,408 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (725 lines) | stat: -rw-r--r-- 27,123 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*****************************************************************************
 * Copyright (C) 2013-2020 MulticoreWare, Inc
 *
 * Authors: Steve Borho <steve@borho.org>
 *          Min Chen <chenm003@163.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at license @ x265.com.
 *****************************************************************************/

#include "common.h"
#include "picyuv.h"
#include "slice.h"
#include "primitives.h"

using namespace X265_NS;

PicYuv::PicYuv()
{
    m_picBuf[0] = NULL;
    m_picBuf[1] = NULL;
    m_picBuf[2] = NULL;

    m_picOrg[0] = NULL;
    m_picOrg[1] = NULL;
    m_picOrg[2] = NULL;

    m_cuOffsetY = NULL;
    m_cuOffsetC = NULL;
    m_buOffsetY = NULL;
    m_buOffsetC = NULL;

    m_maxLumaLevel = 0;
    m_avgLumaLevel = 0;

    m_maxChromaULevel = 0;
    m_avgChromaULevel = 0;

    m_maxChromaVLevel = 0;
    m_avgChromaVLevel = 0;

#if (X265_DEPTH > 8)
    m_minLumaLevel = 0xFFFF;
    m_minChromaULevel = 0xFFFF;
    m_minChromaVLevel = 0xFFFF;
#else
    m_minLumaLevel = 0xFF;
    m_minChromaULevel = 0xFF;
    m_minChromaVLevel = 0xFF;
#endif

    m_stride = 0;
    m_strideC = 0;
    m_hChromaShift = 0;
    m_vChromaShift = 0;
}

bool PicYuv::create(x265_param* param, bool picAlloc, pixel *pixelbuf)
{
    m_param = param;
    uint32_t picWidth = m_param->sourceWidth;
    uint32_t picHeight = m_param->sourceHeight;
    uint32_t picCsp = m_param->internalCsp;
    m_picWidth  = picWidth;
    m_picHeight = picHeight;
    m_hChromaShift = CHROMA_H_SHIFT(picCsp);
    m_vChromaShift = CHROMA_V_SHIFT(picCsp);
    m_picCsp = picCsp;

    uint32_t numCuInWidth = (m_picWidth + param->maxCUSize - 1)  / param->maxCUSize;
    uint32_t numCuInHeight = (m_picHeight + param->maxCUSize - 1) / param->maxCUSize;

    m_lumaMarginX = param->maxCUSize + 32; // search margin and 8-tap filter half-length, padded for 32-byte alignment
    m_lumaMarginY = param->maxCUSize + 16; // margin for 8-tap filter and infinite padding
    m_stride = (numCuInWidth * param->maxCUSize) + (m_lumaMarginX << 1);

    int maxHeight = numCuInHeight * param->maxCUSize;
    if (pixelbuf)
        m_picOrg[0] = pixelbuf;
    else
    {
        if (picAlloc)
        {
            CHECKED_MALLOC(m_picBuf[0], pixel, m_stride * (maxHeight + (m_lumaMarginY * 2)));
            m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX;
        }
    }

    if (picCsp != X265_CSP_I400)
    {
        m_chromaMarginX = m_lumaMarginX;  // keep 16-byte alignment for chroma CTUs
        m_chromaMarginY = m_lumaMarginY >> m_vChromaShift;
        m_strideC = ((numCuInWidth * m_param->maxCUSize) >> m_hChromaShift) + (m_chromaMarginX * 2);
        if (picAlloc)
        {
            CHECKED_MALLOC(m_picBuf[1], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));
            CHECKED_MALLOC(m_picBuf[2], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));

            m_picOrg[1] = m_picBuf[1] + m_chromaMarginY * m_strideC + m_chromaMarginX;
            m_picOrg[2] = m_picBuf[2] + m_chromaMarginY * m_strideC + m_chromaMarginX;
        }
    }
    else
    {
        m_picBuf[1] = m_picBuf[2] = NULL;
        m_picOrg[1] = m_picOrg[2] = NULL;
    }
    return true;

fail:
    return false;
}

/*Copy pixels from the picture buffer of a frame to picture buffer of another frame*/
void PicYuv::copyFromFrame(PicYuv* source)
{
    uint32_t numCuInHeight = (m_picHeight + m_param->maxCUSize - 1) / m_param->maxCUSize;

    int maxHeight = numCuInHeight * m_param->maxCUSize;
    memcpy(m_picBuf[0], source->m_picBuf[0], sizeof(pixel)* m_stride * (maxHeight + (m_lumaMarginY * 2)));
    m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX;

    if (m_picCsp != X265_CSP_I400)
    {
        memcpy(m_picBuf[1], source->m_picBuf[1], sizeof(pixel)* m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));
        memcpy(m_picBuf[2], source->m_picBuf[2], sizeof(pixel)* m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));

        m_picOrg[1] = m_picBuf[1] + m_chromaMarginY * m_strideC + m_chromaMarginX;
        m_picOrg[2] = m_picBuf[2] + m_chromaMarginY * m_strideC + m_chromaMarginX;
    }
    else
    {
        m_picBuf[1] = m_picBuf[2] = NULL;
        m_picOrg[1] = m_picOrg[2] = NULL;
    }
}

bool PicYuv::createScaledPicYUV(x265_param* param, uint8_t scaleFactor)
{
    m_param = param;
    m_picWidth = m_param->sourceWidth / scaleFactor;
    m_picHeight = m_param->sourceHeight / scaleFactor;
    int maxBlocksInRow = (m_picWidth + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS;
    int maxBlocksInCol = (m_picHeight + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS;
    m_picWidth = maxBlocksInRow * X265_LOWRES_CU_SIZE;
    m_picHeight = maxBlocksInCol * X265_LOWRES_CU_SIZE;

    m_picCsp = m_param->internalCsp;
    m_hChromaShift = CHROMA_H_SHIFT(m_picCsp);
    m_vChromaShift = CHROMA_V_SHIFT(m_picCsp);

    uint32_t numCuInWidth = (m_picWidth + param->maxCUSize - 1) / param->maxCUSize;
    uint32_t numCuInHeight = (m_picHeight + param->maxCUSize - 1) / param->maxCUSize;

    m_lumaMarginX = 128; // search margin for L0 and L1 ME in horizontal direction
    m_lumaMarginY = 128; // search margin for L0 and L1 ME in vertical direction
    m_stride = (numCuInWidth * param->maxCUSize) + (m_lumaMarginX << 1);

    int maxHeight = numCuInHeight * param->maxCUSize;
    CHECKED_MALLOC_ZERO(m_picBuf[0], pixel, m_stride * (maxHeight + (m_lumaMarginY * 2)));
    m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX;
    m_picBuf[1] = m_picBuf[2] = NULL;
    m_picOrg[1] = m_picOrg[2] = NULL;
    return true;

fail:
    return false;
}

int PicYuv::getLumaBufLen(uint32_t picWidth, uint32_t picHeight, uint32_t picCsp)
{
    m_picWidth = picWidth;
    m_picHeight = picHeight;
    m_hChromaShift = CHROMA_H_SHIFT(picCsp);
    m_vChromaShift = CHROMA_V_SHIFT(picCsp);
    m_picCsp = picCsp;

    uint32_t numCuInWidth = (m_picWidth + m_param->maxCUSize - 1) / m_param->maxCUSize;
    uint32_t numCuInHeight = (m_picHeight + m_param->maxCUSize - 1) / m_param->maxCUSize;

    m_lumaMarginX = m_param->maxCUSize + 32; // search margin and 8-tap filter half-length, padded for 32-byte alignment
    m_lumaMarginY = m_param->maxCUSize + 16; // margin for 8-tap filter and infinite padding
    m_stride = (numCuInWidth * m_param->maxCUSize) + (m_lumaMarginX << 1);

    int maxHeight = numCuInHeight * m_param->maxCUSize;
    int bufLen = (int)(m_stride * (maxHeight + (m_lumaMarginY * 2)));

    return bufLen;
}

/* the first picture allocated by the encoder will be asked to generate these
 * offset arrays. Once generated, they will be provided to all future PicYuv
 * allocated by the same encoder. */
bool PicYuv::createOffsets(const SPS& sps)
{
    uint32_t numPartitions = 1 << (m_param->unitSizeDepth * 2);

    if (m_picCsp != X265_CSP_I400)
    {
        CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
        CHECKED_MALLOC(m_cuOffsetC, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
        for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++)
        {
            for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++)
            {
                m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize;
                m_cuOffsetC[cuRow * sps.numCuInWidth + cuCol] = m_strideC * cuRow * (m_param->maxCUSize >> m_vChromaShift) + cuCol * (m_param->maxCUSize >> m_hChromaShift);
            }
        }

        CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions);
        CHECKED_MALLOC(m_buOffsetC, intptr_t, (size_t)numPartitions);
        for (uint32_t idx = 0; idx < numPartitions; ++idx)
        {
            intptr_t x = g_zscanToPelX[idx];
            intptr_t y = g_zscanToPelY[idx];
            m_buOffsetY[idx] = m_stride * y + x;
            m_buOffsetC[idx] = m_strideC * (y >> m_vChromaShift) + (x >> m_hChromaShift);
        }
    }
    else
    {
        CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
        for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++)
        for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++)
            m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize;

        CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions);
        for (uint32_t idx = 0; idx < numPartitions; ++idx)
        {
            intptr_t x = g_zscanToPelX[idx];
            intptr_t y = g_zscanToPelY[idx];
            m_buOffsetY[idx] = m_stride * y + x;
        }
    }
    return true;

fail:
    return false;
}

void PicYuv::destroy()
{
    X265_FREE(m_picBuf[0]);
    X265_FREE(m_picBuf[1]);
    X265_FREE(m_picBuf[2]);
}

/* Copy pixels from an x265_picture into internal PicYuv instance.
 * Shift pixels as necessary, mask off bits above X265_DEPTH for safety. */
void PicYuv::copyFromPicture(const x265_picture& pic, const x265_param& param, int padx, int pady, bool isBase)
{
    /* m_picWidth is the width that is being encoded, padx indicates how many
     * of those pixels are padding to reach multiple of MinCU(4) size.
     *
     * Internally, we need to extend rows out to a multiple of 16 for lowres
     * downscale and other operations. But those padding pixels are never
     * encoded.
     *
     * The same applies to m_picHeight and pady */

    /* width and height - without padsize (input picture raw width and height) */
    int width = m_picWidth - padx;
    int height = m_picHeight - pady;

    /* internal pad to multiple of 16x16 blocks */
    uint8_t rem = width & 15;

    padx = rem ? 16 - rem : padx;
    rem = height & 15;
    pady = rem ? 16 - rem : pady;

    /* add one more row and col of pad for downscale interpolation, fixes
     * warnings from valgrind about using uninitialized pixels */
    padx++;
    pady++;
    m_picCsp = pic.colorSpace;

    X265_CHECK(pic.bitDepth >= 8, "pic.bitDepth check failure");

    uint64_t lumaSum;
    uint64_t cbSum;
    uint64_t crSum;
    lumaSum = cbSum = crSum = 0;

    if (m_param->bCopyPicToFrame)
    {
        if (pic.bitDepth == 8)
        {
#if (X265_DEPTH > 8)
        {
            pixel *yPixel = m_picOrg[0];

            uint8_t *yChar = (uint8_t*)pic.planes[0];
            int shift = (X265_DEPTH - 8);

            primitives.planecopy_cp(yChar, pic.stride[0] / sizeof(*yChar), yPixel, m_stride, width, height, shift);

            if (param.internalCsp != X265_CSP_I400)
            {
                pixel *uPixel = m_picOrg[1];
                pixel *vPixel = m_picOrg[2];

                uint8_t *uChar = (uint8_t*)pic.planes[1];
                uint8_t *vChar = (uint8_t*)pic.planes[2];

                primitives.planecopy_cp(uChar, pic.stride[1] / sizeof(*uChar), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift);
                primitives.planecopy_cp(vChar, pic.stride[2] / sizeof(*vChar), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift);
            }
        }
#else /* Case for (X265_DEPTH == 8) */
            // TODO: Does we need this path? may merge into above in future
        {
            if (isBase || param.numViews > 1)
            {
                int offsetX, offsetY;
                offsetX = (!isBase && pic.format == 1 ? width : 0);
                offsetY = (!isBase && pic.format == 2 ? pic.stride[0] * height : 0);
                pixel *yPixel = m_picOrg[0];
                uint8_t* yChar = (uint8_t*)pic.planes[0] + offsetX + offsetY;

                for (int r = 0; r < height; r++)
                {
                    memcpy(yPixel, yChar, width * sizeof(pixel));

                    yPixel += m_stride;
                    yChar += pic.stride[0] / sizeof(*yChar);
                }

                if (param.internalCsp != X265_CSP_I400)
                {
                    offsetX = offsetX >> m_hChromaShift;
                    int offsetYU = (!isBase && pic.format == 2 ? pic.stride[1] * (height >> m_vChromaShift) : 0);
                    int offsetYV = (!isBase && pic.format == 2 ? pic.stride[2] * (height >> m_vChromaShift) : 0);

                    pixel *uPixel = m_picOrg[1];
                    pixel *vPixel = m_picOrg[2];

                    uint8_t* uChar = (uint8_t*)pic.planes[1] + offsetX + offsetYU;
                    uint8_t* vChar = (uint8_t*)pic.planes[2] + offsetX + offsetYV;

                    for (int r = 0; r < height >> m_vChromaShift; r++)
                    {
                        memcpy(uPixel, uChar, (width >> m_hChromaShift) * sizeof(pixel));
                        memcpy(vPixel, vChar, (width >> m_hChromaShift) * sizeof(pixel));

                        uPixel += m_strideC;
                        vPixel += m_strideC;
                        uChar += pic.stride[1] / sizeof(*uChar);
                        vChar += pic.stride[2] / sizeof(*vChar);
                    }
                }
            }
#if ENABLE_ALPHA
            if (!isBase && param.bEnableAlpha)
            {
                pixel* aPixel = m_picOrg[0];
                uint8_t* aChar = (uint8_t*)pic.planes[3];

                for (int r = 0; r < height; r++)
                {
                    memcpy(aPixel, aChar, width * sizeof(pixel));

                    aPixel += m_stride;
                    aChar += pic.stride[0] / sizeof(*aChar);
                }

                pixel* uPixel = m_picOrg[1];
                pixel* vPixel = m_picOrg[2];

                for (int r = 0; r < height >> m_vChromaShift; r++)
                {
                    memset(uPixel, 128, (width >> m_hChromaShift) * sizeof(pixel));
                    memset(vPixel, 128, (width >> m_hChromaShift) * sizeof(pixel));

                    uPixel += m_strideC;
                    vPixel += m_strideC;
                }
            }
#endif
        }
#endif /* (X265_DEPTH > 8) */
        }
        else /* pic.bitDepth > 8 */
        {
            /* defensive programming, mask off bits that are supposed to be zero */
            if (isBase)
            {
                uint16_t mask = (1 << X265_DEPTH) - 1;
                int shift = abs(pic.bitDepth - X265_DEPTH);
                pixel* yPixel = m_picOrg[0];

                uint16_t* yShort = (uint16_t*)pic.planes[0];

                if (pic.bitDepth > X265_DEPTH)
                {
                    /* shift right and mask pixels to final size */
                    primitives.planecopy_sp(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
                }
                else /* Case for (pic.bitDepth <= X265_DEPTH) */
                {
                    /* shift left and mask pixels to final size */
                    primitives.planecopy_sp_shl(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
                }

                if (param.internalCsp != X265_CSP_I400)
                {
                    pixel* uPixel = m_picOrg[1];
                    pixel* vPixel = m_picOrg[2];

                    uint16_t* uShort = (uint16_t*)pic.planes[1];
                    uint16_t* vShort = (uint16_t*)pic.planes[2];

                    if (pic.bitDepth > X265_DEPTH)
                    {
                        primitives.planecopy_sp(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
                        primitives.planecopy_sp(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
                    }
                    else /* Case for (pic.bitDepth <= X265_DEPTH) */
                    {
                        primitives.planecopy_sp_shl(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
                        primitives.planecopy_sp_shl(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
                    }
                }
            }
#if ENABLE_ALPHA
            if (!isBase && param.bEnableAlpha)
            {
                /* defensive programming, mask off bits that are supposed to be zero */
                uint16_t mask = (1 << X265_DEPTH) - 1;
                int shift = abs(pic.bitDepth - X265_DEPTH);
                pixel* yPixel = m_picOrg[0];

                uint16_t* yShort = (uint16_t*)pic.planes[3];

                if (pic.bitDepth > X265_DEPTH)
                {
                    /* shift right and mask pixels to final size */
                    primitives.planecopy_sp(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
                }
                else /* Case for (pic.bitDepth <= X265_DEPTH) */
                {
                    /* shift left and mask pixels to final size */
                    primitives.planecopy_sp_shl(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
                }

                if (param.internalCsp != X265_CSP_I400)
                {
                    pixel* uPixel = m_picOrg[1];
                    pixel* vPixel = m_picOrg[2];

                    for (int r = 0; r < height >> m_vChromaShift; r++)
                    {
                        for (int c = 0; c < (width >> m_hChromaShift); c++)
                        {
                            uPixel[c] = ((1 << X265_DEPTH) >> 1);
                            vPixel[c] = ((1 << X265_DEPTH) >> 1);
                        }
                        uPixel += m_strideC;
                        vPixel += m_strideC;
                    }
                }
            }
#endif
        }
    }
    else
    {
        m_picOrg[0] = (pixel*)pic.planes[0];
        m_picOrg[1] = (pixel*)pic.planes[1];
        m_picOrg[2] = (pixel*)pic.planes[2];
    }

    pixel *Y = m_picOrg[0];
    pixel *U = m_picOrg[1];
    pixel *V = m_picOrg[2];

    pixel *yPic = m_picOrg[0];
    pixel *uPic = m_picOrg[1];
    pixel *vPic = m_picOrg[2];

    if(param.minLuma != 0 || param.maxLuma != PIXEL_MAX)
    {
        for (int r = 0; r < height; r++)
        {
            for (int c = 0; c < width; c++)
            {
                yPic[c] = X265_MIN(yPic[c], (pixel)param.maxLuma);
                yPic[c] = X265_MAX(yPic[c], (pixel)param.minLuma);
            }
            yPic += m_stride;
        }
    }
    yPic = m_picOrg[0];
    if (param.csvLogLevel >= 2 || param.maxCLL || param.maxFALL)
    {
        for (int r = 0; r < height; r++)
        {
            for (int c = 0; c < width; c++)
            {
                m_maxLumaLevel = X265_MAX(yPic[c], m_maxLumaLevel);
                m_minLumaLevel = X265_MIN(yPic[c], m_minLumaLevel);
                lumaSum += yPic[c];
            }
            yPic += m_stride;
        }
        m_avgLumaLevel = (double)lumaSum / (m_picHeight * m_picWidth);
    }
    if (param.csvLogLevel >= 2)
    {
        if (param.internalCsp != X265_CSP_I400)
        {
            for (int r = 0; r < height >> m_vChromaShift; r++)
            {
                for (int c = 0; c < width >> m_hChromaShift; c++)
                {
                    m_maxChromaULevel = X265_MAX(uPic[c], m_maxChromaULevel);
                    m_minChromaULevel = X265_MIN(uPic[c], m_minChromaULevel);
                    cbSum += uPic[c];

                    m_maxChromaVLevel = X265_MAX(vPic[c], m_maxChromaVLevel);
                    m_minChromaVLevel = X265_MIN(vPic[c], m_minChromaVLevel);
                    crSum += vPic[c];
                }

                uPic += m_strideC;
                vPic += m_strideC;
            }
            m_avgChromaULevel = (double)cbSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift));
            m_avgChromaVLevel = (double)crSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift));
        }
    }

#if HIGH_BIT_DEPTH
    bool calcHDRParams = !!param.minLuma || (param.maxLuma != PIXEL_MAX);
    /* Apply min/max luma bounds for HDR pixel manipulations */
    if (calcHDRParams)
    {
        X265_CHECK(pic.bitDepth == 10, "HDR stats can be applied/calculated only for 10bpp content");
        uint64_t sumLuma;
        m_maxLumaLevel = primitives.planeClipAndMax(Y, m_stride, width, height, &sumLuma, (pixel)param.minLuma, (pixel)param.maxLuma);
        m_avgLumaLevel = (double) sumLuma / (m_picHeight * m_picWidth);
    }
#else
    (void) param;
#endif

    /* extend the right edge if width was not multiple of the minimum CU size */
    for (int r = 0; r < height; r++)
    {
        for (int x = 0; x < padx; x++)
            Y[width + x] = Y[width - 1];
        Y += m_stride;
    }

    /* extend the bottom if height was not multiple of the minimum CU size */
    Y = m_picOrg[0] + (height - 1) * m_stride;
    for (int i = 1; i <= pady; i++)
        memcpy(Y + i * m_stride, Y, (width + padx) * sizeof(pixel));

    if (param.internalCsp != X265_CSP_I400)
    {
        for (int r = 0; r < height >> m_vChromaShift; r++)
        {
            for (int x = 0; x < padx >> m_hChromaShift; x++)
            {
                U[(width >> m_hChromaShift) + x] = U[(width >> m_hChromaShift) - 1];
                V[(width >> m_hChromaShift) + x] = V[(width >> m_hChromaShift) - 1];
            }

            U += m_strideC;
            V += m_strideC;
        }

        U = m_picOrg[1] + ((height >> m_vChromaShift) - 1) * m_strideC;
        V = m_picOrg[2] + ((height >> m_vChromaShift) - 1) * m_strideC;

        for (int j = 1; j <= pady >> m_vChromaShift; j++)
        {
            memcpy(U + j * m_strideC, U, ((width + padx) >> m_hChromaShift) * sizeof(pixel));
            memcpy(V + j * m_strideC, V, ((width + padx) >> m_hChromaShift) * sizeof(pixel));
        }
    }
}

namespace X265_NS {

template<uint32_t OUTPUT_BITDEPTH_DIV8>
static void md5_block(MD5Context& md5, const pixel* plane, uint32_t n)
{
    /* create a 64 byte buffer for packing pixel's into */
    uint8_t buf[64 / OUTPUT_BITDEPTH_DIV8][OUTPUT_BITDEPTH_DIV8];

    for (uint32_t i = 0; i < n; i++)
    {
        pixel pel = plane[i];
        /* perform bitdepth and endian conversion */
        for (uint32_t d = 0; d < OUTPUT_BITDEPTH_DIV8; d++)
            buf[i][d] = (uint8_t)(pel >> (d * 8));
    }

    MD5Update(&md5, (uint8_t*)buf, n * OUTPUT_BITDEPTH_DIV8);
}

/* Update md5 with all samples in plane in raster order, each sample
 * is adjusted to OUTBIT_BITDEPTH_DIV8 */
template<uint32_t OUTPUT_BITDEPTH_DIV8>
static void md5_plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride)
{
    /* N is the number of samples to process per md5 update.
     * All N samples must fit in buf */
    uint32_t N = 32;
    uint32_t width_modN = width % N;
    uint32_t width_less_modN = width - width_modN;

    for (uint32_t y = 0; y < height; y++)
    {
        /* convert pel's into uint32_t chars in little endian byte order.
         * NB, for 8bit data, data is truncated to 8bits. */
        for (uint32_t x = 0; x < width_less_modN; x += N)
            md5_block<OUTPUT_BITDEPTH_DIV8>(md5, &plane[y * stride + x], N);

        /* mop up any of the remaining line */
        md5_block<OUTPUT_BITDEPTH_DIV8>(md5, &plane[y * stride + width_less_modN], width_modN);
    }
}

void updateCRC(const pixel* plane, uint32_t& crcVal, uint32_t height, uint32_t width, intptr_t stride)
{
    uint32_t crcMsb;
    uint32_t bitVal;
    uint32_t bitIdx;

    for (uint32_t y = 0; y < height; y++)
    {
        for (uint32_t x = 0; x < width; x++)
        {
            // take CRC of first pictureData byte
            for (bitIdx = 0; bitIdx < 8; bitIdx++)
            {
                crcMsb = (crcVal >> 15) & 1;
                bitVal = (plane[y * stride + x] >> (7 - bitIdx)) & 1;
                crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021);
            }

#if _MSC_VER
#pragma warning(disable: 4127) // conditional expression is constant
#endif
            // take CRC of second pictureData byte if bit depth is greater than 8-bits
            if (X265_DEPTH > 8)
            {
                for (bitIdx = 0; bitIdx < 8; bitIdx++)
                {
                    crcMsb = (crcVal >> 15) & 1;
                    bitVal = (plane[y * stride + x] >> (15 - bitIdx)) & 1;
                    crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021);
                }
            }
        }
    }
}

void crcFinish(uint32_t& crcVal, uint8_t digest[16])
{
    uint32_t crcMsb;

    for (int bitIdx = 0; bitIdx < 16; bitIdx++)
    {
        crcMsb = (crcVal >> 15) & 1;
        crcVal = ((crcVal << 1) & 0xffff) ^ (crcMsb * 0x1021);
    }

    digest[0] = (crcVal >> 8)  & 0xff;
    digest[1] =  crcVal        & 0xff;
}

void updateChecksum(const pixel* plane, uint32_t& checksumVal, uint32_t height, uint32_t width, intptr_t stride, int row, uint32_t cuHeight)
{
    uint8_t xor_mask;

    for (uint32_t y = row * cuHeight; y < ((row * cuHeight) + height); y++)
    {
        for (uint32_t x = 0; x < width; x++)
        {
            xor_mask = (uint8_t)((x & 0xff) ^ (y & 0xff) ^ (x >> 8) ^ (y >> 8));
            checksumVal = (checksumVal + ((plane[y * stride + x] & 0xff) ^ xor_mask)) & 0xffffffff;

            if (X265_DEPTH > 8)
                checksumVal = (checksumVal + ((plane[y * stride + x] >> 7 >> 1) ^ xor_mask)) & 0xffffffff;
        }
    }
}

void checksumFinish(uint32_t checksum, uint8_t digest[16])
{
    digest[0] = (checksum >> 24) & 0xff;
    digest[1] = (checksum >> 16) & 0xff;
    digest[2] = (checksum >> 8)  & 0xff;
    digest[3] =  checksum        & 0xff;
}

void updateMD5Plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride)
{
    /* choose an md5_plane packing function based on the system bitdepth */
    typedef void(*MD5PlaneFunc)(MD5Context&, const pixel*, uint32_t, uint32_t, intptr_t);
    MD5PlaneFunc md5_plane_func;
    md5_plane_func = X265_DEPTH <= 8 ? (MD5PlaneFunc)md5_plane<1> : (MD5PlaneFunc)md5_plane<2>;

    md5_plane_func(md5, plane, width, height, stride);
}
}