1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
|
/*****************************************************************************
* Copyright (C) 2013-2020 MulticoreWare, Inc
*
* Authors: Steve Borho <steve@borho.org>
* Min Chen <chenm003@163.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "primitives.h"
#include "quant.h"
#include "framedata.h"
#include "entropy.h"
#include "yuv.h"
#include "cudata.h"
#include "contexts.h"
using namespace X265_NS;
#define SIGN(x,y) ((x^(y >> 31))-(y >> 31))
namespace {
struct coeffGroupRDStats
{
int nnzBeforePos0; /* indicates coeff other than pos 0 are coded */
int64_t codedLevelAndDist; /* distortion and level cost of coded coefficients */
int64_t uncodedDist; /* uncoded distortion cost of coded coefficients */
int64_t sigCost; /* cost of signaling significant coeff bitmap */
int64_t sigCost0; /* cost of signaling sig coeff bit of coeff 0 */
};
inline int fastMin(int x, int y)
{
return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1))); // min(x, y)
}
inline int getICRate(uint32_t absLevel, int32_t diffLevel, const int* greaterOneBits, const int* levelAbsBits, const uint32_t absGoRice, const uint32_t maxVlc, const uint32_t c1c2Rate)
{
X265_CHECK(absGoRice <= 4, "absGoRice check failure\n");
if (!absLevel)
{
X265_CHECK(diffLevel < 0, "diffLevel check failure\n");
return 0;
}
int rate = 0;
if (diffLevel < 0)
{
X265_CHECK(absLevel <= 2, "absLevel check failure\n");
rate += greaterOneBits[(absLevel == 2)];
if (absLevel == 2)
rate += levelAbsBits[0];
}
else
{
uint32_t symbol = diffLevel;
bool expGolomb = (symbol > maxVlc);
if (expGolomb)
{
absLevel = symbol - maxVlc;
// NOTE: mapping to x86 hardware instruction BSR
unsigned long size;
CLZ(size, absLevel);
int egs = size * 2 + 1;
rate += egs << 15;
// NOTE: in here, expGolomb=true means (symbol >= maxVlc + 1)
X265_CHECK(fastMin(symbol, (maxVlc + 1)) == (int)maxVlc + 1, "min check failure\n");
symbol = maxVlc + 1;
}
uint32_t prefLen = (symbol >> absGoRice) + 1;
uint32_t numBins = fastMin(prefLen + absGoRice, 8 /* g_goRicePrefixLen[absGoRice] + absGoRice */);
rate += numBins << 15;
rate += c1c2Rate;
}
return rate;
}
#if CHECKED_BUILD || _DEBUG
inline int getICRateNegDiff(uint32_t absLevel, const int* greaterOneBits, const int* levelAbsBits)
{
X265_CHECK(absLevel <= 2, "absLevel check failure\n");
int rate;
if (absLevel == 0)
rate = 0;
else if (absLevel == 2)
rate = greaterOneBits[1] + levelAbsBits[0];
else
rate = greaterOneBits[0];
return rate;
}
#endif
inline int getICRateLessVlc(uint32_t absLevel, int32_t diffLevel, const uint32_t absGoRice)
{
X265_CHECK(absGoRice <= 4, "absGoRice check failure\n");
if (!absLevel)
{
X265_CHECK(diffLevel < 0, "diffLevel check failure\n");
return 0;
}
int rate;
uint32_t symbol = diffLevel;
uint32_t prefLen = (symbol >> absGoRice) + 1;
uint32_t numBins = fastMin(prefLen + absGoRice, 8 /* g_goRicePrefixLen[absGoRice] + absGoRice */);
rate = numBins << 15;
return rate;
}
/* Calculates the cost for specific absolute transform level */
inline uint32_t getICRateCost(uint32_t absLevel, int32_t diffLevel, const int* greaterOneBits, const int* levelAbsBits, uint32_t absGoRice, const uint32_t c1c2Rate)
{
X265_CHECK(absLevel, "absLevel should not be zero\n");
if (diffLevel < 0)
{
X265_CHECK((absLevel == 1) || (absLevel == 2), "absLevel range check failure\n");
uint32_t rate = greaterOneBits[(absLevel == 2)];
if (absLevel == 2)
rate += levelAbsBits[0];
return rate;
}
else
{
uint32_t rate;
uint32_t symbol = diffLevel;
if ((symbol >> absGoRice) < COEF_REMAIN_BIN_REDUCTION)
{
uint32_t length = symbol >> absGoRice;
rate = (length + 1 + absGoRice) << 15;
}
else
{
uint32_t length = 0;
symbol = (symbol >> absGoRice) - COEF_REMAIN_BIN_REDUCTION;
if (symbol)
{
unsigned long idx;
CLZ(idx, symbol + 1);
length = idx;
}
rate = (COEF_REMAIN_BIN_REDUCTION + length + absGoRice + 1 + length) << 15;
}
rate += c1c2Rate;
return rate;
}
}
}
Quant::rdoQuant_t Quant::rdoQuant_func[NUM_CU_DEPTH] = {&Quant::rdoQuant<2>, &Quant::rdoQuant<3>, &Quant::rdoQuant<4>, &Quant::rdoQuant<5>};
Quant::Quant()
{
m_resiDctCoeff = NULL;
m_fencDctCoeff = NULL;
m_fencShortBuf = NULL;
m_frameNr = NULL;
m_nr = NULL;
}
bool Quant::init(double psyScale, const ScalingList& scalingList, Entropy& entropy)
{
m_entropyCoder = &entropy;
m_psyRdoqScale = (int32_t)(psyScale * 256.0);
X265_CHECK((psyScale * 256.0) < (double)MAX_INT, "psyScale value too large\n");
m_scalingList = &scalingList;
m_resiDctCoeff = X265_MALLOC(int16_t, MAX_TR_SIZE * MAX_TR_SIZE * 2);
m_fencDctCoeff = m_resiDctCoeff + (MAX_TR_SIZE * MAX_TR_SIZE);
m_fencShortBuf = X265_MALLOC(int16_t, MAX_TR_SIZE * MAX_TR_SIZE);
return m_resiDctCoeff && m_fencShortBuf;
}
bool Quant::allocNoiseReduction(const x265_param& param)
{
m_frameNr = X265_MALLOC(NoiseReduction, param.frameNumThreads);
if (m_frameNr)
memset(m_frameNr, 0, sizeof(NoiseReduction) * param.frameNumThreads);
else
return false;
return true;
}
Quant::~Quant()
{
X265_FREE(m_frameNr);
X265_FREE(m_resiDctCoeff);
X265_FREE(m_fencShortBuf);
}
void Quant::setQPforQuant(const CUData& ctu, int qp)
{
m_nr = m_frameNr ? &m_frameNr[ctu.m_encData->m_frameEncoderID] : NULL;
m_qpParam[TEXT_LUMA].setQpParam(qp + QP_BD_OFFSET);
m_rdoqLevel = ctu.m_encData->m_param->rdoqLevel;
if (ctu.m_chromaFormat != X265_CSP_I400)
{
setChromaQP(qp + ctu.m_slice->m_pps->chromaQpOffset[0] + ctu.m_slice->m_chromaQpOffset[0], TEXT_CHROMA_U, ctu.m_chromaFormat);
setChromaQP(qp + ctu.m_slice->m_pps->chromaQpOffset[1] + ctu.m_slice->m_chromaQpOffset[1], TEXT_CHROMA_V, ctu.m_chromaFormat);
}
}
void Quant::setChromaQP(int qpin, TextType ttype, int chFmt)
{
int qp = x265_clip3(-QP_BD_OFFSET, 57, qpin);
if (qp >= 30)
{
if (chFmt == X265_CSP_I420)
qp = g_chromaScale[qp];
else
qp = X265_MIN(qp, QP_MAX_SPEC);
}
m_qpParam[ttype].setQpParam(qp + QP_BD_OFFSET);
}
/* To minimize the distortion only. No rate is considered */
uint32_t Quant::signBitHidingHDQ(int16_t* coeff, int32_t* deltaU, uint32_t numSig, const TUEntropyCodingParameters &codeParams, uint32_t log2TrSize)
{
uint32_t trSize = 1 << log2TrSize;
const uint16_t* scan = codeParams.scan;
uint8_t coeffNum[MLS_GRP_NUM]; // value range[0, 16]
uint16_t coeffSign[MLS_GRP_NUM]; // bit mask map for non-zero coeff sign
uint16_t coeffFlag[MLS_GRP_NUM]; // bit mask map for non-zero coeff
#if CHECKED_BUILD || _DEBUG
// clean output buffer, the asm version of scanPosLast Never output anything after latest non-zero coeff group
memset(coeffNum, 0, sizeof(coeffNum) * sizeof(uint8_t));
memset(coeffSign, 0, sizeof(coeffNum) * sizeof(uint16_t));
memset(coeffFlag, 0, sizeof(coeffNum) * sizeof(uint16_t));
#endif
const int lastScanPos = primitives.scanPosLast(codeParams.scan, coeff, coeffSign, coeffFlag, coeffNum, numSig, g_scan4x4[codeParams.scanType], trSize);
const int cgLastScanPos = (lastScanPos >> LOG2_SCAN_SET_SIZE);
unsigned long tmp;
// first CG need specially processing
const uint32_t correctOffset = 0x0F & (lastScanPos ^ 0xF);
coeffFlag[cgLastScanPos] <<= correctOffset;
for (int cg = cgLastScanPos; cg >= 0; cg--)
{
int cgStartPos = cg << LOG2_SCAN_SET_SIZE;
int n;
#if CHECKED_BUILD || _DEBUG
for (n = SCAN_SET_SIZE - 1; n >= 0; --n)
if (coeff[scan[n + cgStartPos]])
break;
int lastNZPosInCG0 = n;
#endif
if (coeffNum[cg] == 0)
{
X265_CHECK(lastNZPosInCG0 < 0, "all zero block check failure\n");
continue;
}
#if CHECKED_BUILD || _DEBUG
for (n = 0;; n++)
if (coeff[scan[n + cgStartPos]])
break;
int firstNZPosInCG0 = n;
#endif
CLZ(tmp, coeffFlag[cg]);
const int firstNZPosInCG = (15 ^ tmp);
CTZ(tmp, coeffFlag[cg]);
const int lastNZPosInCG = (15 ^ tmp);
X265_CHECK(firstNZPosInCG0 == firstNZPosInCG, "firstNZPosInCG0 check failure\n");
X265_CHECK(lastNZPosInCG0 == lastNZPosInCG, "lastNZPosInCG0 check failure\n");
if (lastNZPosInCG - firstNZPosInCG >= SBH_THRESHOLD)
{
uint32_t signbit = coeff[scan[cgStartPos + firstNZPosInCG]] > 0 ? 0 : 1;
uint32_t absSum = 0;
for (n = firstNZPosInCG; n <= lastNZPosInCG; n++)
absSum += coeff[scan[n + cgStartPos]];
if (signbit != (absSum & 0x1)) // compare signbit with sum_parity
{
int minCostInc = MAX_INT, minPos = -1, curCost = MAX_INT;
int32_t finalChange = 0, curChange = 0;
uint32_t cgFlags = coeffFlag[cg];
if (cg == cgLastScanPos)
cgFlags >>= correctOffset;
for (n = (cg == cgLastScanPos ? lastNZPosInCG : SCAN_SET_SIZE - 1); n >= 0; --n)
{
uint32_t blkPos = scan[n + cgStartPos];
X265_CHECK(!!coeff[blkPos] == !!(cgFlags & 1), "non zero coeff check failure\n");
if (cgFlags & 1)
{
if (deltaU[blkPos] > 0)
{
curCost = -deltaU[blkPos];
curChange = 1;
}
else
{
if ((cgFlags == 1) && (abs(coeff[blkPos]) == 1))
{
X265_CHECK(n == firstNZPosInCG, "firstNZPosInCG position check failure\n");
curCost = MAX_INT;
}
else
{
curCost = deltaU[blkPos];
curChange = -1;
}
}
}
else
{
if (cgFlags == 0)
{
X265_CHECK(n < firstNZPosInCG, "firstNZPosInCG position check failure\n");
uint32_t thisSignBit = m_resiDctCoeff[blkPos] >= 0 ? 0 : 1;
if (thisSignBit != signbit)
curCost = MAX_INT;
else
{
curCost = -deltaU[blkPos];
curChange = 1;
}
}
else
{
curCost = -deltaU[blkPos];
curChange = 1;
}
}
if (curCost < minCostInc)
{
minCostInc = curCost;
finalChange = curChange;
minPos = blkPos;
}
cgFlags>>=1;
}
/* do not allow change to violate coeff clamp */
if (coeff[minPos] == 32767 || coeff[minPos] == -32768)
finalChange = -1;
if (!coeff[minPos])
numSig++;
else if (finalChange == -1 && abs(coeff[minPos]) == 1)
numSig--;
{
const int16_t sigMask = ((int16_t)m_resiDctCoeff[minPos]) >> 15;
coeff[minPos] += ((int16_t)finalChange ^ sigMask) - sigMask;
}
}
}
}
return numSig;
}
uint32_t Quant::transformNxN(const CUData& cu, const pixel* fenc, uint32_t fencStride, const int16_t* residual, uint32_t resiStride,
coeff_t* coeff, uint32_t log2TrSize, TextType ttype, uint32_t absPartIdx, bool useTransformSkip)
{
const uint32_t sizeIdx = log2TrSize - 2;
if (cu.m_tqBypass[0])
{
X265_CHECK(log2TrSize >= 2 && log2TrSize <= 5, "Block size mistake!\n");
return primitives.cu[sizeIdx].copy_cnt(coeff, residual, resiStride);
}
bool isLuma = ttype == TEXT_LUMA;
bool usePsy = m_psyRdoqScale && isLuma && !useTransformSkip;
int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; // Represents scaling through forward transform
X265_CHECK((cu.m_slice->m_sps->quadtreeTULog2MaxSize >= log2TrSize), "transform size too large\n");
if (useTransformSkip)
{
#if X265_DEPTH <= 10
X265_CHECK(transformShift >= 0, "invalid transformShift\n");
primitives.cu[sizeIdx].cpy2Dto1D_shl(m_resiDctCoeff, residual, resiStride, transformShift);
#else
if (transformShift >= 0)
primitives.cu[sizeIdx].cpy2Dto1D_shl(m_resiDctCoeff, residual, resiStride, transformShift);
else
primitives.cu[sizeIdx].cpy2Dto1D_shr(m_resiDctCoeff, residual, resiStride, -transformShift);
#endif
}
else
{
bool isIntra = cu.isIntra(absPartIdx);
if (!sizeIdx && isLuma && isIntra)
primitives.dst4x4(residual, m_resiDctCoeff, resiStride);
else
primitives.cu[sizeIdx].dct(residual, m_resiDctCoeff, resiStride);
/* NOTE: if RDOQ is disabled globally, psy-rdoq is also disabled, so
* there is no risk of performing this DCT unnecessarily */
if (usePsy)
{
int trSize = 1 << log2TrSize;
/* perform DCT on source pixels for psy-rdoq */
primitives.cu[sizeIdx].copy_ps(m_fencShortBuf, trSize, fenc, fencStride);
primitives.cu[sizeIdx].dct(m_fencShortBuf, m_fencDctCoeff, trSize);
}
if (m_nr && m_nr->offset)
{
/* denoise is not applied to intra residual, so DST can be ignored */
int cat = sizeIdx + 4 * !isLuma + 8 * !isIntra;
int numCoeff = 1 << (log2TrSize * 2);
primitives.denoiseDct(m_resiDctCoeff, m_nr->residualSum[cat], m_nr->offset[cat], numCoeff);
m_nr->count[cat]++;
}
}
if (m_rdoqLevel)
return (this->*rdoQuant_func[log2TrSize - 2])(cu, coeff, ttype, absPartIdx, usePsy);
else
{
int deltaU[32 * 32];
int scalingListType = (cu.isIntra(absPartIdx) ? 0 : 3) + ttype;
int rem = m_qpParam[ttype].rem;
int per = m_qpParam[ttype].per;
const int32_t* quantCoeff = m_scalingList->m_quantCoef[log2TrSize - 2][scalingListType][rem];
int qbits = QUANT_SHIFT + per + transformShift;
int add = (cu.m_slice->m_sliceType == I_SLICE ? 171 : 85) << (qbits - 9);
int numCoeff = 1 << (log2TrSize * 2);
uint32_t numSig = primitives.quant(m_resiDctCoeff, quantCoeff, deltaU, coeff, qbits, add, numCoeff);
if (numSig >= 2 && cu.m_slice->m_pps->bSignHideEnabled)
{
TUEntropyCodingParameters codeParams;
cu.getTUEntropyCodingParameters(codeParams, absPartIdx, log2TrSize, isLuma);
return signBitHidingHDQ(coeff, deltaU, numSig, codeParams, log2TrSize);
}
else
return numSig;
}
}
uint64_t Quant::ssimDistortion(const CUData& cu, const pixel* fenc, uint32_t fStride, const pixel* recon, intptr_t rstride, uint32_t log2TrSize, TextType ttype, uint32_t absPartIdx)
{
static const int ssim_c1 = (int)(.01 * .01 * PIXEL_MAX * PIXEL_MAX * 64 + .5); // 416
static const int ssim_c2 = (int)(.03 * .03 * PIXEL_MAX * PIXEL_MAX * 64 * 63 + .5); // 235963
int shift = (X265_DEPTH - 8);
int trSize = 1 << log2TrSize;
uint64_t ssDc = 0, ssBlock = 0, ssAc = 0;
// Calculation of (X(0) - Y(0)) * (X(0) - Y(0)), DC
ssDc = 0;
for (int y = 0; y < trSize; y += 4)
{
for (int x = 0; x < trSize; x += 4)
{
int temp = fenc[y * fStride + x] - recon[y * rstride + x]; // copy of residual coeff
ssDc += temp * temp;
}
}
// Calculation of (X(k) - Y(k)) * (X(k) - Y(k)), AC
ssBlock = 0;
uint64_t ac_k = 0;
primitives.cu[log2TrSize - 2].ssimDist(fenc, fStride, recon, rstride, &ssBlock, shift, &ac_k);
ssAc = ssBlock - ssDc;
// 1. Calculation of fdc'
// Calculate numerator of dc normalization factor
uint64_t fDc_num = 0;
// 2. Calculate dc component
uint64_t dc_k = 0;
for (int block_yy = 0; block_yy < trSize; block_yy += 4)
{
for (int block_xx = 0; block_xx < trSize; block_xx += 4)
{
uint32_t temp = fenc[block_yy * fStride + block_xx] >> shift;
dc_k += temp * temp;
}
}
fDc_num = (2 * dc_k) + (trSize * trSize * ssim_c1); // 16 pixels -> for each 4x4 block
fDc_num /= ((trSize >> 2) * (trSize >> 2));
// 1. Calculation of fac'
// Calculate numerator of ac normalization factor
uint64_t fAc_num = 0;
// 2. Calculate ac component
ac_k -= dc_k;
double s = 1 + 0.005 * cu.m_qp[absPartIdx];
fAc_num = ac_k + uint64_t(s * ac_k) + ssim_c2;
fAc_num /= ((trSize >> 2) * (trSize >> 2));
// Calculate dc and ac normalization factor
uint64_t ssim_distortion = ((ssDc * cu.m_fDc_den[ttype]) / fDc_num) + ((ssAc * cu.m_fAc_den[ttype]) / fAc_num);
return ssim_distortion;
}
void Quant::invtransformNxN(const CUData& cu, int16_t* residual, uint32_t resiStride, const coeff_t* coeff,
uint32_t log2TrSize, TextType ttype, bool bIntra, bool useTransformSkip, uint32_t numSig)
{
const uint32_t sizeIdx = log2TrSize - 2;
if (cu.m_tqBypass[0])
{
primitives.cu[sizeIdx].cpy1Dto2D_shl[resiStride % 64 == 0](residual, coeff, resiStride, 0);
return;
}
// Values need to pass as input parameter in dequant
int rem = m_qpParam[ttype].rem;
int per = m_qpParam[ttype].per;
int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize;
int shift = QUANT_IQUANT_SHIFT - QUANT_SHIFT - transformShift;
int numCoeff = 1 << (log2TrSize * 2);
if (m_scalingList->m_bEnabled)
{
int scalingListType = (bIntra ? 0 : 3) + ttype;
const int32_t* dequantCoef = m_scalingList->m_dequantCoef[sizeIdx][scalingListType][rem];
primitives.dequant_scaling(coeff, dequantCoef, m_resiDctCoeff, numCoeff, per, shift);
}
else
{
int scale = m_scalingList->s_invQuantScales[rem] << per;
primitives.dequant_normal(coeff, m_resiDctCoeff, numCoeff, scale, shift);
}
if (useTransformSkip)
{
#if X265_DEPTH <= 10
X265_CHECK(transformShift > 0, "invalid transformShift\n");
primitives.cu[sizeIdx].cpy1Dto2D_shr(residual, m_resiDctCoeff, resiStride, transformShift);
#else
if (transformShift > 0)
primitives.cu[sizeIdx].cpy1Dto2D_shr(residual, m_resiDctCoeff, resiStride, transformShift);
else
primitives.cu[sizeIdx].cpy1Dto2D_shl[resiStride % 64 == 0](residual, m_resiDctCoeff, resiStride, -transformShift);
#endif
}
else
{
int useDST = !sizeIdx && ttype == TEXT_LUMA && bIntra;
X265_CHECK((int)numSig == primitives.cu[log2TrSize - 2].count_nonzero(coeff), "numSig differ\n");
// DC only
if (numSig == 1 && coeff[0] != 0 && !useDST)
{
const int shift_1st = 7 - 6;
const int add_1st = 1 << (shift_1st - 1);
const int shift_2nd = 12 - (X265_DEPTH - 8) - 3;
const int add_2nd = 1 << (shift_2nd - 1);
int dc_val = (((m_resiDctCoeff[0] * (64 >> 6) + add_1st) >> shift_1st) * (64 >> 3) + add_2nd) >> shift_2nd;
primitives.cu[sizeIdx].blockfill_s[resiStride % 64 == 0](residual, resiStride, (int16_t)dc_val);
return;
}
if (useDST)
primitives.idst4x4(m_resiDctCoeff, residual, resiStride);
else
primitives.cu[sizeIdx].idct(m_resiDctCoeff, residual, resiStride);
}
}
/* Rate distortion optimized quantization for entropy coding engines using
* probability models like CABAC */
template<uint32_t log2TrSize>
uint32_t Quant::rdoQuant(const CUData& cu, int16_t* dstCoeff, TextType ttype, uint32_t absPartIdx, bool usePsy)
{
const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */
int scalingListType = (cu.isIntra(absPartIdx) ? 0 : 3) + ttype;
const uint32_t usePsyMask = usePsy ? -1 : 0;
X265_CHECK(scalingListType < 6, "scaling list type out of range\n");
int rem = m_qpParam[ttype].rem;
int per = m_qpParam[ttype].per;
int qbits = QUANT_SHIFT + per + transformShift; /* Right shift of non-RDOQ quantizer level = (coeff*Q + offset)>>q_bits */
int add = (1 << (qbits - 1));
const int32_t* qCoef = m_scalingList->m_quantCoef[log2TrSize - 2][scalingListType][rem];
const int numCoeff = 1 << (log2TrSize * 2);
uint32_t numSig = primitives.nquant(m_resiDctCoeff, qCoef, dstCoeff, qbits, add, numCoeff);
X265_CHECK((int)numSig == primitives.cu[log2TrSize - 2].count_nonzero(dstCoeff), "numSig differ\n");
if (!numSig)
return 0;
const uint32_t trSize = 1 << log2TrSize;
int64_t lambda2 = m_qpParam[ttype].lambda2;
int64_t psyScale = ((int64_t)m_psyRdoqScale * m_qpParam[ttype].lambda);
/* unquant constants for measuring distortion. Scaling list quant coefficients have a (1 << 4)
* scale applied that must be removed during unquant. Note that in real dequant there is clipping
* at several stages. We skip the clipping for simplicity when measuring RD cost */
const int32_t* unquantScale = m_scalingList->m_dequantCoef[log2TrSize - 2][scalingListType][rem];
int unquantShift = QUANT_IQUANT_SHIFT - QUANT_SHIFT - transformShift + (m_scalingList->m_bEnabled ? 4 : 0);
int unquantRound = (unquantShift > per) ? 1 << (unquantShift - per - 1) : 0;
const int scaleBits = SCALE_BITS - 2 * transformShift;
#define UNQUANT(lvl) (((lvl) * (unquantScale[blkPos] << per) + unquantRound) >> unquantShift)
#define SIGCOST(bits) ((lambda2 * (bits)) >> 8)
#define RDCOST(d, bits) ((((int64_t)d * d) << scaleBits) + SIGCOST(bits))
#define PSYVALUE(rec) ((psyScale * (rec)) >> X265_MAX(0, (2 * transformShift + 1)))
int64_t costCoeff[trSize * trSize]; /* d*d + lambda * bits */
int64_t costUncoded[trSize * trSize]; /* d*d + lambda * 0 */
int64_t costSig[trSize * trSize]; /* lambda * bits */
int rateIncUp[trSize * trSize]; /* signal overhead of increasing level */
int rateIncDown[trSize * trSize]; /* signal overhead of decreasing level */
int sigRateDelta[trSize * trSize]; /* signal difference between zero and non-zero */
int64_t costCoeffGroupSig[MLS_GRP_NUM]; /* lambda * bits of group coding cost */
uint64_t sigCoeffGroupFlag64 = 0;
const uint32_t cgSize = (1 << MLS_CG_SIZE); /* 4x4 num coef = 16 */
bool bIsLuma = ttype == TEXT_LUMA;
/* total rate distortion cost of transform block, as CBF=0 */
int64_t totalUncodedCost = 0;
/* Total rate distortion cost of this transform block, counting te distortion of uncoded blocks,
* the distortion and signal cost of coded blocks, and the coding cost of significant
* coefficient and coefficient group bitmaps */
int64_t totalRdCost = 0;
TUEntropyCodingParameters codeParams;
cu.getTUEntropyCodingParameters(codeParams, absPartIdx, log2TrSize, bIsLuma);
const uint32_t log2TrSizeCG = log2TrSize - 2;
const uint32_t cgNum = 1 << (log2TrSizeCG * 2);
const uint32_t cgStride = (trSize >> MLS_CG_LOG2_SIZE);
uint8_t coeffNum[MLS_GRP_NUM]; // value range[0, 16]
uint16_t coeffSign[MLS_GRP_NUM]; // bit mask map for non-zero coeff sign
uint16_t coeffFlag[MLS_GRP_NUM]; // bit mask map for non-zero coeff
#if CHECKED_BUILD || _DEBUG
// clean output buffer, the asm version of scanPosLast Never output anything after latest non-zero coeff group
memset(coeffNum, 0, sizeof(coeffNum) * sizeof(uint8_t));
memset(coeffSign, 0, sizeof(coeffNum) * sizeof(uint16_t));
memset(coeffFlag, 0, sizeof(coeffNum) * sizeof(uint16_t));
#endif
const int lastScanPos = primitives.scanPosLast(codeParams.scan, dstCoeff, coeffSign, coeffFlag, coeffNum, numSig, g_scan4x4[codeParams.scanType], trSize);
const int cgLastScanPos = (lastScanPos >> LOG2_SCAN_SET_SIZE);
/* TODO: update bit estimates if dirty */
EstBitsSbac& estBitsSbac = m_entropyCoder->m_estBitsSbac;
uint32_t scanPos = 0;
uint32_t c1 = 1;
// process trail all zero Coeff Group
/* coefficients after lastNZ have no distortion signal cost */
const int zeroCG = cgNum - 1 - cgLastScanPos;
memset(&costCoeff[(cgLastScanPos + 1) << MLS_CG_SIZE], 0, zeroCG * MLS_CG_BLK_SIZE * sizeof(int64_t));
memset(&costSig[(cgLastScanPos + 1) << MLS_CG_SIZE], 0, zeroCG * MLS_CG_BLK_SIZE * sizeof(int64_t));
/* sum zero coeff (uncodec) cost */
// TODO: does we need these cost?
if (usePsyMask)
{
for (int cgScanPos = cgLastScanPos + 1; cgScanPos < (int)cgNum ; cgScanPos++)
{
X265_CHECK(coeffNum[cgScanPos] == 0, "count of coeff failure\n");
uint32_t scanPosBase = (cgScanPos << MLS_CG_SIZE);
uint32_t blkPos = codeParams.scan[scanPosBase];
#if X265_ARCH_X86
bool enable512 = detect512();
if (enable512)
primitives.cu[log2TrSize - 2].psyRdoQuant(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
else
{
primitives.cu[log2TrSize - 2].psyRdoQuant_1p(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost,blkPos);
primitives.cu[log2TrSize - 2].psyRdoQuant_2p(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
}
#else
primitives.cu[log2TrSize - 2].psyRdoQuant_1p(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, blkPos);
primitives.cu[log2TrSize - 2].psyRdoQuant_2p(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
#endif
}
}
else
{
// non-psy path
for (int cgScanPos = cgLastScanPos + 1; cgScanPos < (int)cgNum ; cgScanPos++)
{
X265_CHECK(coeffNum[cgScanPos] == 0, "count of coeff failure\n");
uint32_t scanPosBase = (cgScanPos << MLS_CG_SIZE);
uint32_t blkPos = codeParams.scan[scanPosBase];
primitives.cu[log2TrSize - 2].nonPsyRdoQuant(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, blkPos);
}
}
static const uint8_t table_cnt[5][SCAN_SET_SIZE] =
{
// patternSigCtx = 0
{
2, 1, 1, 0,
1, 1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 0,
},
// patternSigCtx = 1
{
2, 2, 2, 2,
1, 1, 1, 1,
0, 0, 0, 0,
0, 0, 0, 0,
},
// patternSigCtx = 2
{
2, 1, 0, 0,
2, 1, 0, 0,
2, 1, 0, 0,
2, 1, 0, 0,
},
// patternSigCtx = 3
{
2, 2, 2, 2,
2, 2, 2, 2,
2, 2, 2, 2,
2, 2, 2, 2,
},
// 4x4
{
0, 1, 4, 5,
2, 3, 4, 5,
6, 6, 8, 8,
7, 7, 8, 8
}
};
/* iterate over coding groups in reverse scan order */
for (int cgScanPos = cgLastScanPos; cgScanPos >= 0; cgScanPos--)
{
uint32_t ctxSet = (cgScanPos && bIsLuma) ? 2 : 0;
const uint32_t cgBlkPos = codeParams.scanCG[cgScanPos];
const uint32_t cgPosY = cgBlkPos >> log2TrSizeCG;
const uint32_t cgPosX = cgBlkPos & ((1 << log2TrSizeCG) - 1);
const uint64_t cgBlkPosMask = ((uint64_t)1 << cgBlkPos);
const int patternSigCtx = calcPatternSigCtx(sigCoeffGroupFlag64, cgPosX, cgPosY, cgBlkPos, cgStride);
const int ctxSigOffset = codeParams.firstSignificanceMapContext + (cgScanPos && bIsLuma ? 3 : 0);
if (c1 == 0)
ctxSet++;
c1 = 1;
if (cgScanPos && (coeffNum[cgScanPos] == 0))
{
// TODO: does we need zero-coeff cost?
const uint32_t scanPosBase = (cgScanPos << MLS_CG_SIZE);
uint32_t blkPos = codeParams.scan[scanPosBase];
if (usePsyMask)
{
#if X265_ARCH_X86
bool enable512 = detect512();
if (enable512)
primitives.cu[log2TrSize - 2].psyRdoQuant(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
else
{
primitives.cu[log2TrSize - 2].psyRdoQuant_1p(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, blkPos);
primitives.cu[log2TrSize - 2].psyRdoQuant_2p(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
}
#else
primitives.cu[log2TrSize - 2].psyRdoQuant_1p(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, blkPos);
primitives.cu[log2TrSize - 2].psyRdoQuant_2p(m_resiDctCoeff, m_fencDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, &psyScale, blkPos);
#endif
blkPos = codeParams.scan[scanPosBase];
for (int y = 0; y < MLS_CG_SIZE; y++)
{
for (int x = 0; x < MLS_CG_SIZE; x++)
{
const uint32_t scanPosOffset = y * MLS_CG_SIZE + x;
const uint32_t ctxSig = table_cnt[patternSigCtx][g_scan4x4[codeParams.scanType][scanPosOffset]] + ctxSigOffset;
X265_CHECK(trSize > 4, "trSize check failure\n");
X265_CHECK(ctxSig == getSigCtxInc(patternSigCtx, log2TrSize, trSize, codeParams.scan[scanPosBase + scanPosOffset], bIsLuma, codeParams.firstSignificanceMapContext), "sigCtx check failure\n");
costSig[scanPosBase + scanPosOffset] = SIGCOST(estBitsSbac.significantBits[0][ctxSig]);
costCoeff[scanPosBase + scanPosOffset] = costUncoded[blkPos + x];
sigRateDelta[blkPos + x] = estBitsSbac.significantBits[1][ctxSig] - estBitsSbac.significantBits[0][ctxSig];
}
blkPos += trSize;
}
}
else
{
// non-psy path
primitives.cu[log2TrSize - 2].nonPsyRdoQuant(m_resiDctCoeff, costUncoded, &totalUncodedCost, &totalRdCost, blkPos);
blkPos = codeParams.scan[scanPosBase];
for (int y = 0; y < MLS_CG_SIZE; y++)
{
for (int x = 0; x < MLS_CG_SIZE; x++)
{
const uint32_t scanPosOffset = y * MLS_CG_SIZE + x;
const uint32_t ctxSig = table_cnt[patternSigCtx][g_scan4x4[codeParams.scanType][scanPosOffset]] + ctxSigOffset;
X265_CHECK(trSize > 4, "trSize check failure\n");
X265_CHECK(ctxSig == getSigCtxInc(patternSigCtx, log2TrSize, trSize, codeParams.scan[scanPosBase + scanPosOffset], bIsLuma, codeParams.firstSignificanceMapContext), "sigCtx check failure\n");
costSig[scanPosBase + scanPosOffset] = SIGCOST(estBitsSbac.significantBits[0][ctxSig]);
costCoeff[scanPosBase + scanPosOffset] = costUncoded[blkPos + x];
sigRateDelta[blkPos + x] = estBitsSbac.significantBits[1][ctxSig] - estBitsSbac.significantBits[0][ctxSig];
}
blkPos += trSize;
}
}
/* there were no coded coefficients in this coefficient group */
{
uint32_t ctxSig = getSigCoeffGroupCtxInc(sigCoeffGroupFlag64, cgPosX, cgPosY, cgBlkPos, cgStride);
costCoeffGroupSig[cgScanPos] = SIGCOST(estBitsSbac.significantCoeffGroupBits[ctxSig][0]);
totalRdCost += costCoeffGroupSig[cgScanPos]; /* add cost of 0 bit in significant CG bitmap */
}
continue;
}
coeffGroupRDStats cgRdStats;
memset(&cgRdStats, 0, sizeof(coeffGroupRDStats));
uint32_t subFlagMask = coeffFlag[cgScanPos];
int c2 = 0;
uint32_t goRiceParam = 0;
uint32_t levelThreshold = 3;
uint32_t c1Idx = 0;
uint32_t c2Idx = 0;
/* iterate over coefficients in each group in reverse scan order */
for (int scanPosinCG = cgSize - 1; scanPosinCG >= 0; scanPosinCG--)
{
scanPos = (cgScanPos << MLS_CG_SIZE) + scanPosinCG;
uint32_t blkPos = codeParams.scan[scanPos];
uint32_t maxAbsLevel = dstCoeff[blkPos]; /* abs(quantized coeff) */
int signCoef = m_resiDctCoeff[blkPos]; /* pre-quantization DCT coeff */
int predictedCoef = m_fencDctCoeff[blkPos] - signCoef; /* predicted DCT = source DCT - residual DCT*/
/* RDOQ measures distortion as the squared difference between the unquantized coded level
* and the original DCT coefficient. The result is shifted scaleBits to account for the
* FIX15 nature of the CABAC cost tables minus the forward transform scale */
/* cost of not coding this coefficient (all distortion, no signal bits) */
costUncoded[blkPos] = ((int64_t)signCoef * signCoef) << scaleBits;
X265_CHECK((!!scanPos ^ !!blkPos) == 0, "failed on (blkPos=0 && scanPos!=0)\n");
if (usePsyMask & scanPos)
/* when no residual coefficient is coded, predicted coef == recon coef */
costUncoded[blkPos] -= PSYVALUE(predictedCoef);
totalUncodedCost += costUncoded[blkPos];
// coefficient level estimation
const int* greaterOneBits = estBitsSbac.greaterOneBits[4 * ctxSet + c1];
//const uint32_t ctxSig = (blkPos == 0) ? 0 : table_cnt[(trSize == 4) ? 4 : patternSigCtx][g_scan4x4[codeParams.scanType][scanPosinCG]] + ctxSigOffset;
static const uint64_t table_cnt64[4] = {0x0000000100110112ULL, 0x0000000011112222ULL, 0x0012001200120012ULL, 0x2222222222222222ULL};
uint64_t ctxCnt = (trSize == 4) ? 0x8877886654325410ULL : table_cnt64[patternSigCtx];
const uint32_t ctxSig = (blkPos == 0) ? 0 : ((ctxCnt >> (4 * g_scan4x4[codeParams.scanType][scanPosinCG])) & 0xF) + ctxSigOffset;
// NOTE: above equal to 'table_cnt[(trSize == 4) ? 4 : patternSigCtx][g_scan4x4[codeParams.scanType][scanPosinCG]] + ctxSigOffset'
X265_CHECK(ctxSig == getSigCtxInc(patternSigCtx, log2TrSize, trSize, blkPos, bIsLuma, codeParams.firstSignificanceMapContext), "sigCtx check failure\n");
// before find lastest non-zero coeff
if (scanPos > (uint32_t)lastScanPos)
{
/* coefficients after lastNZ have no distortion signal cost */
costCoeff[scanPos] = 0;
costSig[scanPos] = 0;
/* No non-zero coefficient yet found, but this does not mean
* there is no uncoded-cost for this coefficient. Pre-
* quantization the coefficient may have been non-zero */
totalRdCost += costUncoded[blkPos];
}
else if (!(subFlagMask & 1))
{
// fast zero coeff path
/* set default costs to uncoded costs */
costSig[scanPos] = SIGCOST(estBitsSbac.significantBits[0][ctxSig]);
costCoeff[scanPos] = costUncoded[blkPos] + costSig[scanPos];
sigRateDelta[blkPos] = estBitsSbac.significantBits[1][ctxSig] - estBitsSbac.significantBits[0][ctxSig];
totalRdCost += costCoeff[scanPos];
rateIncUp[blkPos] = greaterOneBits[0];
subFlagMask >>= 1;
}
else
{
subFlagMask >>= 1;
const uint32_t c1c2idx = ((c1Idx - 8) >> (sizeof(int) * CHAR_BIT - 1)) + (((-(int)c2Idx) >> (sizeof(int) * CHAR_BIT - 1)) + 1) * 2;
const uint32_t baseLevel = ((uint32_t)0xD9 >> (c1c2idx * 2)) & 3; // {1, 2, 1, 3}
X265_CHECK(!!((int)c1Idx < C1FLAG_NUMBER) == (int)((c1Idx - 8) >> (sizeof(int) * CHAR_BIT - 1)), "scan validation 1\n");
X265_CHECK(!!(c2Idx == 0) == ((-(int)c2Idx) >> (sizeof(int) * CHAR_BIT - 1)) + 1, "scan validation 2\n");
X265_CHECK((int)baseLevel == ((c1Idx < C1FLAG_NUMBER) ? (2 + (c2Idx == 0)) : 1), "scan validation 3\n");
X265_CHECK(c1c2idx <= 3, "c1c2Idx check failure\n");
// coefficient level estimation
const int* levelAbsBits = estBitsSbac.levelAbsBits[ctxSet + c2];
const uint32_t c1c2Rate = ((c1c2idx & 1) ? greaterOneBits[1] : 0) + ((c1c2idx == 3) ? levelAbsBits[1] : 0);
uint32_t level = 0;
uint32_t sigCoefBits = 0;
costCoeff[scanPos] = MAX_INT64;
if ((int)scanPos == lastScanPos)
sigRateDelta[blkPos] = 0;
else
{
if (maxAbsLevel < 3)
{
/* set default costs to uncoded costs */
costSig[scanPos] = SIGCOST(estBitsSbac.significantBits[0][ctxSig]);
costCoeff[scanPos] = costUncoded[blkPos] + costSig[scanPos];
}
sigRateDelta[blkPos] = estBitsSbac.significantBits[1][ctxSig] - estBitsSbac.significantBits[0][ctxSig];
sigCoefBits = estBitsSbac.significantBits[1][ctxSig];
}
const uint32_t unQuantLevel = (maxAbsLevel * (unquantScale[blkPos] << per) + unquantRound);
// NOTE: X265_MAX(maxAbsLevel - 1, 1) ==> (X>=2 -> X-1), (X<2 -> 1) | (0 < X < 2 ==> X=1)
if (maxAbsLevel == 1)
{
uint32_t levelBits = (c1c2idx & 1) ? greaterOneBits[0] + IEP_RATE : ((1 + goRiceParam) << 15) + IEP_RATE;
X265_CHECK(levelBits == getICRateCost(1, 1 - baseLevel, greaterOneBits, levelAbsBits, goRiceParam, c1c2Rate) + IEP_RATE, "levelBits mistake\n");
int unquantAbsLevel = unQuantLevel >> unquantShift;
X265_CHECK(UNQUANT(1) == unquantAbsLevel, "DQuant check failed\n");
int d = abs(signCoef) - unquantAbsLevel;
int64_t curCost = RDCOST(d, sigCoefBits + levelBits);
/* Psy RDOQ: bias in favor of higher AC coefficients in the reconstructed frame */
if (usePsyMask & scanPos)
{
int reconCoef = abs(unquantAbsLevel + SIGN(predictedCoef, signCoef));
curCost -= PSYVALUE(reconCoef);
}
if (curCost < costCoeff[scanPos])
{
level = 1;
costCoeff[scanPos] = curCost;
costSig[scanPos] = SIGCOST(sigCoefBits);
}
}
else if (maxAbsLevel)
{
uint32_t levelBits0 = getICRateCost(maxAbsLevel, maxAbsLevel - baseLevel, greaterOneBits, levelAbsBits, goRiceParam, c1c2Rate) + IEP_RATE;
uint32_t levelBits1 = getICRateCost(maxAbsLevel - 1, maxAbsLevel - 1 - baseLevel, greaterOneBits, levelAbsBits, goRiceParam, c1c2Rate) + IEP_RATE;
const uint32_t preDQuantLevelDiff = (unquantScale[blkPos] << per);
const int unquantAbsLevel0 = unQuantLevel >> unquantShift;
X265_CHECK(UNQUANT(maxAbsLevel) == (uint32_t)unquantAbsLevel0, "DQuant check failed\n");
int d0 = abs(signCoef) - unquantAbsLevel0;
int64_t curCost0 = RDCOST(d0, sigCoefBits + levelBits0);
const int unquantAbsLevel1 = (unQuantLevel - preDQuantLevelDiff) >> unquantShift;
X265_CHECK(UNQUANT(maxAbsLevel - 1) == (uint32_t)unquantAbsLevel1, "DQuant check failed\n");
int d1 = abs(signCoef) - unquantAbsLevel1;
int64_t curCost1 = RDCOST(d1, sigCoefBits + levelBits1);
/* Psy RDOQ: bias in favor of higher AC coefficients in the reconstructed frame */
if (usePsyMask & scanPos)
{
int reconCoef;
reconCoef = abs(unquantAbsLevel0 + SIGN(predictedCoef, signCoef));
curCost0 -= PSYVALUE(reconCoef);
reconCoef = abs(unquantAbsLevel1 + SIGN(predictedCoef, signCoef));
curCost1 -= PSYVALUE(reconCoef);
}
if (curCost0 < costCoeff[scanPos])
{
level = maxAbsLevel;
costCoeff[scanPos] = curCost0;
costSig[scanPos] = SIGCOST(sigCoefBits);
}
if (curCost1 < costCoeff[scanPos])
{
level = maxAbsLevel - 1;
costCoeff[scanPos] = curCost1;
costSig[scanPos] = SIGCOST(sigCoefBits);
}
}
dstCoeff[blkPos] = (int16_t)level;
totalRdCost += costCoeff[scanPos];
/* record costs for sign-hiding performed at the end */
if ((cu.m_slice->m_pps->bSignHideEnabled ? ~0 : 0) & level)
{
const int32_t diff0 = level - 1 - baseLevel;
const int32_t diff2 = level + 1 - baseLevel;
const int32_t maxVlc = g_goRiceRange[goRiceParam];
int rate0, rate1, rate2;
if (diff0 < -2) // prob (92.9, 86.5, 74.5)%
{
// NOTE: Min: L - 1 - {1,2,1,3} < -2 ==> L < {0,1,0,2}
// additional L > 0, so I got (L > 0 && L < 2) ==> L = 1
X265_CHECK(level == 1, "absLevel check failure\n");
const int rateEqual2 = greaterOneBits[1] + levelAbsBits[0];;
const int rateNotEqual2 = greaterOneBits[0];
rate0 = 0;
rate2 = rateEqual2;
rate1 = rateNotEqual2;
X265_CHECK(rate1 == getICRateNegDiff(level + 0, greaterOneBits, levelAbsBits), "rate1 check failure!\n");
X265_CHECK(rate2 == getICRateNegDiff(level + 1, greaterOneBits, levelAbsBits), "rate1 check failure!\n");
X265_CHECK(rate0 == getICRateNegDiff(level - 1, greaterOneBits, levelAbsBits), "rate1 check failure!\n");
}
else if (diff0 >= 0 && diff2 <= maxVlc) // prob except from above path (98.6, 97.9, 96.9)%
{
// NOTE: no c1c2 correct rate since all of rate include this factor
rate1 = getICRateLessVlc(level + 0, diff0 + 1, goRiceParam);
rate2 = getICRateLessVlc(level + 1, diff0 + 2, goRiceParam);
rate0 = getICRateLessVlc(level - 1, diff0 + 0, goRiceParam);
}
else
{
rate1 = getICRate(level + 0, diff0 + 1, greaterOneBits, levelAbsBits, goRiceParam, maxVlc, c1c2Rate);
rate2 = getICRate(level + 1, diff0 + 2, greaterOneBits, levelAbsBits, goRiceParam, maxVlc, c1c2Rate);
rate0 = getICRate(level - 1, diff0 + 0, greaterOneBits, levelAbsBits, goRiceParam, maxVlc, c1c2Rate);
}
rateIncUp[blkPos] = rate2 - rate1;
rateIncDown[blkPos] = rate0 - rate1;
}
else
{
rateIncUp[blkPos] = greaterOneBits[0];
rateIncDown[blkPos] = 0;
}
/* Update CABAC estimation state */
if ((level >= baseLevel) && (goRiceParam < 4) && (level > levelThreshold))
{
goRiceParam++;
levelThreshold <<= 1;
}
const uint32_t isNonZero = (uint32_t)(-(int32_t)level) >> 31;
c1Idx += isNonZero;
/* update bin model */
if (level > 1)
{
c1 = 0;
c2 += (uint32_t)(c2 - 2) >> 31;
c2Idx++;
}
else if (((c1 == 1) | (c1 == 2)) & isNonZero)
c1++;
if (dstCoeff[blkPos])
{
sigCoeffGroupFlag64 |= cgBlkPosMask;
cgRdStats.codedLevelAndDist += costCoeff[scanPos] - costSig[scanPos];
cgRdStats.uncodedDist += costUncoded[blkPos];
cgRdStats.nnzBeforePos0 += scanPosinCG;
}
}
cgRdStats.sigCost += costSig[scanPos];
} /* end for (scanPosinCG) */
X265_CHECK((cgScanPos << MLS_CG_SIZE) == (int)scanPos, "scanPos mistake\n");
cgRdStats.sigCost0 = costSig[scanPos];
costCoeffGroupSig[cgScanPos] = 0;
/* nothing to do at this case */
X265_CHECK(cgLastScanPos >= 0, "cgLastScanPos check failure\n");
if (!cgScanPos || cgScanPos == cgLastScanPos)
{
/* coeff group 0 is implied to be present, no signal cost */
/* coeff group with last NZ is implied to be present, handled below */
}
else if (sigCoeffGroupFlag64 & cgBlkPosMask)
{
if (!cgRdStats.nnzBeforePos0)
{
/* if only coeff 0 in this CG is coded, its significant coeff bit is implied */
totalRdCost -= cgRdStats.sigCost0;
cgRdStats.sigCost -= cgRdStats.sigCost0;
}
/* there are coded coefficients in this group, but now we include the signaling cost
* of the significant coefficient group flag and evaluate whether the RD cost of the
* coded group is more than the RD cost of the uncoded group */
uint32_t sigCtx = getSigCoeffGroupCtxInc(sigCoeffGroupFlag64, cgPosX, cgPosY, cgBlkPos, cgStride);
int64_t costZeroCG = totalRdCost + SIGCOST(estBitsSbac.significantCoeffGroupBits[sigCtx][0]);
costZeroCG += cgRdStats.uncodedDist; /* add distortion for resetting non-zero levels to zero levels */
costZeroCG -= cgRdStats.codedLevelAndDist; /* remove distortion and level cost of coded coefficients */
costZeroCG -= cgRdStats.sigCost; /* remove signaling cost of significant coeff bitmap */
costCoeffGroupSig[cgScanPos] = SIGCOST(estBitsSbac.significantCoeffGroupBits[sigCtx][1]);
totalRdCost += costCoeffGroupSig[cgScanPos]; /* add the cost of 1 bit in significant CG bitmap */
if (costZeroCG < totalRdCost && m_rdoqLevel > 1)
{
sigCoeffGroupFlag64 &= ~cgBlkPosMask;
totalRdCost = costZeroCG;
costCoeffGroupSig[cgScanPos] = SIGCOST(estBitsSbac.significantCoeffGroupBits[sigCtx][0]);
/* reset all coeffs to 0. UNCODE THIS COEFF GROUP! */
const uint32_t blkPos = codeParams.scan[cgScanPos * cgSize];
memset(&dstCoeff[blkPos + 0 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 1 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 2 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 3 * trSize], 0, 4 * sizeof(*dstCoeff));
}
}
else
{
/* there were no coded coefficients in this coefficient group */
uint32_t ctxSig = getSigCoeffGroupCtxInc(sigCoeffGroupFlag64, cgPosX, cgPosY, cgBlkPos, cgStride);
costCoeffGroupSig[cgScanPos] = SIGCOST(estBitsSbac.significantCoeffGroupBits[ctxSig][0]);
totalRdCost += costCoeffGroupSig[cgScanPos]; /* add cost of 0 bit in significant CG bitmap */
totalRdCost -= cgRdStats.sigCost; /* remove cost of significant coefficient bitmap */
}
} /* end for (cgScanPos) */
X265_CHECK(lastScanPos >= 0, "numSig non zero, but no coded CG\n");
/* calculate RD cost of uncoded block CBF=0, and add cost of CBF=1 to total */
int64_t bestCost;
if (!cu.isIntra(absPartIdx) && bIsLuma && !cu.m_tuDepth[absPartIdx])
{
bestCost = totalUncodedCost + SIGCOST(estBitsSbac.blockRootCbpBits[0]);
totalRdCost += SIGCOST(estBitsSbac.blockRootCbpBits[1]);
}
else
{
int ctx = ctxCbf[ttype][cu.m_tuDepth[absPartIdx]];
bestCost = totalUncodedCost + SIGCOST(estBitsSbac.blockCbpBits[ctx][0]);
totalRdCost += SIGCOST(estBitsSbac.blockCbpBits[ctx][1]);
}
/* This loop starts with the last non-zero found in the first loop and then refines this last
* non-zero by measuring the true RD cost of the last NZ at this position, and then the RD costs
* at all previous coefficients until a coefficient greater than 1 is encountered or we run out
* of coefficients to evaluate. This will factor in the cost of coding empty groups and empty
* coeff prior to the last NZ. The base best cost is the RD cost of CBF=0 */
int bestLastIdx = 0;
bool foundLast = false;
for (int cgScanPos = cgLastScanPos; cgScanPos >= 0 && !foundLast; cgScanPos--)
{
if (!cgScanPos || cgScanPos == cgLastScanPos)
{
/* the presence of these coefficient groups are inferred, they have no bit in
* sigCoeffGroupFlag64 and no saved costCoeffGroupSig[] cost */
}
else if (sigCoeffGroupFlag64 & (1ULL << codeParams.scanCG[cgScanPos]))
{
/* remove cost of significant coeff group flag, the group's presence would be inferred
* from lastNZ if it were present in this group */
totalRdCost -= costCoeffGroupSig[cgScanPos];
}
else
{
/* remove cost of signaling this empty group as not present */
totalRdCost -= costCoeffGroupSig[cgScanPos];
continue;
}
for (int scanPosinCG = cgSize - 1; scanPosinCG >= 0; scanPosinCG--)
{
scanPos = cgScanPos * cgSize + scanPosinCG;
if ((int)scanPos > lastScanPos)
continue;
/* if the coefficient was coded, measure the RD cost of it as the last non-zero and then
* continue as if it were uncoded. If the coefficient was already uncoded, remove the
* cost of signaling it as not-significant */
uint32_t blkPos = codeParams.scan[scanPos];
if (dstCoeff[blkPos])
{
// Calculates the cost of signaling the last significant coefficient in the block
uint32_t pos[2] = { (blkPos & (trSize - 1)), (blkPos >> log2TrSize) };
if (codeParams.scanType == SCAN_VER)
std::swap(pos[0], pos[1]);
uint32_t bitsLastNZ = 0;
for (int i = 0; i < 2; i++)
{
int temp = g_lastCoeffTable[pos[i]];
int prefixOnes = temp & 15;
int suffixLen = temp >> 4;
bitsLastNZ += m_entropyCoder->m_estBitsSbac.lastBits[i][prefixOnes];
bitsLastNZ += IEP_RATE * suffixLen;
}
int64_t costAsLast = totalRdCost - costSig[scanPos] + SIGCOST(bitsLastNZ);
if (costAsLast < bestCost)
{
bestLastIdx = scanPos + 1;
bestCost = costAsLast;
}
if (dstCoeff[blkPos] > 1 || m_rdoqLevel == 1)
{
foundLast = true;
break;
}
totalRdCost -= costCoeff[scanPos];
totalRdCost += costUncoded[blkPos];
}
else
totalRdCost -= costSig[scanPos];
}
}
/* recount non-zero coefficients and re-apply sign of DCT coef */
numSig = 0;
for (int pos = 0; pos < bestLastIdx; pos++)
{
int blkPos = codeParams.scan[pos];
int level = dstCoeff[blkPos];
numSig += (level != 0);
uint32_t mask = (int32_t)m_resiDctCoeff[blkPos] >> 31;
dstCoeff[blkPos] = (int16_t)((level ^ mask) - mask);
}
// Average 49.62 pixels
/* clean uncoded coefficients */
X265_CHECK((uint32_t)(fastMin(lastScanPos, bestLastIdx) | (SCAN_SET_SIZE - 1)) < trSize * trSize, "array beyond bound\n");
for (int pos = bestLastIdx; pos <= (fastMin(lastScanPos, bestLastIdx) | (SCAN_SET_SIZE - 1)); pos++)
{
dstCoeff[codeParams.scan[pos]] = 0;
}
for (int pos = (bestLastIdx & ~(SCAN_SET_SIZE - 1)) + SCAN_SET_SIZE; pos <= lastScanPos; pos += SCAN_SET_SIZE)
{
const uint32_t blkPos = codeParams.scan[pos];
memset(&dstCoeff[blkPos + 0 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 1 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 2 * trSize], 0, 4 * sizeof(*dstCoeff));
memset(&dstCoeff[blkPos + 3 * trSize], 0, 4 * sizeof(*dstCoeff));
}
/* rate-distortion based sign-hiding */
if (cu.m_slice->m_pps->bSignHideEnabled && numSig >= 2)
{
const int realLastScanPos = (bestLastIdx - 1) >> LOG2_SCAN_SET_SIZE;
int lastCG = 1;
for (int subSet = realLastScanPos; subSet >= 0; subSet--)
{
int subPos = subSet << LOG2_SCAN_SET_SIZE;
int n;
if (!(sigCoeffGroupFlag64 & (1ULL << codeParams.scanCG[subSet])))
continue;
/* measure distance between first and last non-zero coef in this
* coding group */
const uint32_t posFirstLast = primitives.findPosFirstLast(&dstCoeff[codeParams.scan[subPos]], trSize, g_scan4x4[codeParams.scanType]);
const int firstNZPosInCG = (uint8_t)posFirstLast;
const int lastNZPosInCG = (int8_t)(posFirstLast >> 8);
const uint32_t absSumSign = posFirstLast;
if (lastNZPosInCG - firstNZPosInCG >= SBH_THRESHOLD)
{
const int32_t signbit = ((int32_t)dstCoeff[codeParams.scan[subPos + firstNZPosInCG]]);
#if CHECKED_BUILD || _DEBUG
int32_t absSum_dummy = 0;
for (n = firstNZPosInCG; n <= lastNZPosInCG; n++)
absSum_dummy += dstCoeff[codeParams.scan[n + subPos]];
X265_CHECK(((uint32_t)absSum_dummy & 1) == (absSumSign >> 31), "absSumSign check failure\n");
#endif
//if (signbit != absSumSign)
if (((int32_t)(signbit ^ absSumSign)) < 0)
{
/* We must find a coeff to toggle up or down so the sign bit of the first non-zero coeff
* is properly implied. Note dstCoeff[] are signed by this point but curChange and
* finalChange imply absolute levels (+1 is away from zero, -1 is towards zero) */
int64_t minCostInc = MAX_INT64, curCost = MAX_INT64;
uint32_t minPos = 0;
int8_t finalChange = 0;
int curChange = 0;
uint32_t lastCoeffAdjust = (lastCG & (abs(dstCoeff[codeParams.scan[lastNZPosInCG + subPos]]) == 1)) * 4 * IEP_RATE;
for (n = (lastCG ? lastNZPosInCG : SCAN_SET_SIZE - 1); n >= 0; --n)
{
const uint32_t blkPos = codeParams.scan[n + subPos];
const int32_t signCoef = m_resiDctCoeff[blkPos]; /* pre-quantization DCT coeff */
const int absLevel = abs(dstCoeff[blkPos]);
// TODO: this is constant in non-scaling mode
const uint32_t preDQuantLevelDiff = (unquantScale[blkPos] << per);
const uint32_t unQuantLevel = (absLevel * (unquantScale[blkPos] << per) + unquantRound);
int d = abs(signCoef) - (unQuantLevel >> unquantShift);
X265_CHECK((uint32_t)UNQUANT(absLevel) == (unQuantLevel >> unquantShift), "dquant check failed\n");
const int64_t origDist = (((int64_t)d * d));
#define DELTARDCOST(d0, d, deltabits) ((((int64_t)d * d - d0) << scaleBits) + ((lambda2 * (int64_t)(deltabits)) >> 8))
const uint32_t isOne = (absLevel == 1);
if (dstCoeff[blkPos])
{
d = abs(signCoef) - ((unQuantLevel + preDQuantLevelDiff) >> unquantShift);
X265_CHECK((uint32_t)UNQUANT(absLevel + 1) == ((unQuantLevel + preDQuantLevelDiff) >> unquantShift), "dquant check failed\n");
int64_t costUp = DELTARDCOST(origDist, d, rateIncUp[blkPos]);
/* if decrementing would make the coeff 0, we can include the
* significant coeff flag cost savings */
d = abs(signCoef) - ((unQuantLevel - preDQuantLevelDiff) >> unquantShift);
X265_CHECK((uint32_t)UNQUANT(absLevel - 1) == ((unQuantLevel - preDQuantLevelDiff) >> unquantShift), "dquant check failed\n");
int downBits = rateIncDown[blkPos] - (isOne ? (IEP_RATE + sigRateDelta[blkPos]) : 0);
int64_t costDown = DELTARDCOST(origDist, d, downBits);
costDown -= lastCoeffAdjust;
curCost = ((n == firstNZPosInCG) & isOne) ? MAX_INT64 : costDown;
curChange = 2 * (costUp < costDown) - 1;
curCost = (costUp < costDown) ? costUp : curCost;
}
//else if ((n < firstNZPosInCG) & (signbit != ((uint32_t)signCoef >> 31)))
else if ((n < firstNZPosInCG) & ((signbit ^ signCoef) < 0))
{
/* don't try to make a new coded coeff before the first coeff if its
* sign would be different than the first coeff, the inferred sign would
* still be wrong and we'd have to do this again. */
curCost = MAX_INT64;
}
else
{
/* evaluate changing an uncoded coeff 0 to a coded coeff +/-1 */
d = abs(signCoef) - ((preDQuantLevelDiff + unquantRound) >> unquantShift);
X265_CHECK((uint32_t)UNQUANT(1) == ((preDQuantLevelDiff + unquantRound) >> unquantShift), "dquant check failed\n");
curCost = DELTARDCOST(origDist, d, rateIncUp[blkPos] + IEP_RATE + sigRateDelta[blkPos]);
curChange = 1;
}
if (curCost < minCostInc)
{
minCostInc = curCost;
finalChange = (int8_t)curChange;
minPos = blkPos + (absLevel << 16);
}
lastCoeffAdjust = 0;
}
const int absInMinPos = (minPos >> 16);
minPos = (uint16_t)minPos;
// if (dstCoeff[minPos] == 32767 || dstCoeff[minPos] == -32768)
if (absInMinPos >= 32767)
/* don't allow sign hiding to violate the SPEC range */
finalChange = -1;
// NOTE: Reference code
//if (dstCoeff[minPos] == 0)
// numSig++;
//else if (finalChange == -1 && abs(dstCoeff[minPos]) == 1)
// numSig--;
numSig += (absInMinPos == 0) - ((finalChange == -1) & (absInMinPos == 1));
// NOTE: Reference code
//if (m_resiDctCoeff[minPos] >= 0)
// dstCoeff[minPos] += finalChange;
//else
// dstCoeff[minPos] -= finalChange;
const int16_t resiCoeffSign = ((int16_t)m_resiDctCoeff[minPos] >> 16);
dstCoeff[minPos] += (((int16_t)finalChange ^ resiCoeffSign) - resiCoeffSign);
}
}
lastCG = 0;
}
}
return numSig;
}
/* Context derivation process of coeff_abs_significant_flag */
uint32_t Quant::getSigCtxInc(uint32_t patternSigCtx, uint32_t log2TrSize, uint32_t trSize, uint32_t blkPos, bool bIsLuma,
uint32_t firstSignificanceMapContext)
{
static const uint8_t ctxIndMap[16] =
{
0, 1, 4, 5,
2, 3, 4, 5,
6, 6, 8, 8,
7, 7, 8, 8
};
if (!blkPos) // special case for the DC context variable
return 0;
if (log2TrSize == 2) // 4x4
return ctxIndMap[blkPos];
const uint32_t posY = blkPos >> log2TrSize;
const uint32_t posX = blkPos & (trSize - 1);
X265_CHECK((blkPos - (posY << log2TrSize)) == posX, "block pos check failed\n");
int posXinSubset = blkPos & 3;
X265_CHECK((posX & 3) == (blkPos & 3), "pos alignment fail\n");
int posYinSubset = posY & 3;
// NOTE: [patternSigCtx][posXinSubset][posYinSubset]
static const uint8_t table_cnt[4][4][4] =
{
// patternSigCtx = 0
{
{ 2, 1, 1, 0 },
{ 1, 1, 0, 0 },
{ 1, 0, 0, 0 },
{ 0, 0, 0, 0 },
},
// patternSigCtx = 1
{
{ 2, 1, 0, 0 },
{ 2, 1, 0, 0 },
{ 2, 1, 0, 0 },
{ 2, 1, 0, 0 },
},
// patternSigCtx = 2
{
{ 2, 2, 2, 2 },
{ 1, 1, 1, 1 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
},
// patternSigCtx = 3
{
{ 2, 2, 2, 2 },
{ 2, 2, 2, 2 },
{ 2, 2, 2, 2 },
{ 2, 2, 2, 2 },
}
};
int cnt = table_cnt[patternSigCtx][posXinSubset][posYinSubset];
int offset = firstSignificanceMapContext;
offset += cnt;
return (bIsLuma && (posX | posY) >= 4) ? 3 + offset : offset;
}
|